首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteopontin (OPN) is a secreted protein that has been implicated in diverse physiological and pathological processes. OPN can bind to integrins, via GRGDS or SVVYGLR amino acid sequences, and to other cell surface receptors, and many of OPN's functions are likely mediated via cell adhesion and subsequent signaling. Here we developed and characterized a series of five monoclonal antibodies, raised to distinct internal peptide sequences of human OPN, and have used these sequence-specific reagents, along with the previously described anti-OPN monoclonal antibody mAb53, to map functional epitopes of OPN that are important to cell adhesion and migration. All antibodies were reactive with native as well as recombinant human OPN. One antibody (2K1) raised against the peptide VDTYDGRGDSVVYGLRS could inhibit RGD-dependent cell binding to OPN, with an efficacy comparable to that of mAb53. Furthermore, 2K1 could inhibit alpha9 integrin-dependent cell binding to OPN. The epitope recognized by 2K1 was not destroyed by thrombin digestion, whereas mAb53 has been shown to be unable to react with OPN following thrombin cleavage. The two distinct epitopes defined by 2K1 and mAb53 antibodies are closely related to the SVVYGLR cell-binding domain and the GLRSKS containing thrombin cleavage site, respectively, and are involved in cell binding and cell migration.  相似文献   

2.
The neural cell adhesion molecule NCAM is capable of mediating cell-cell adhesion via homophilic interactions. In this study, three strategies have been combined to identify regions of NCAM that participate directly in NCAM-NCAM binding: analysis of domain deletion mutations, mapping of epitopes of monoclonal antibodies, and use of synthetic peptides to inhibit NCAM activity. Studies on L cells transfected with NCAM mutant cDNAs using cell aggregation and NCAM-covasphere binding assays indicate that the third immunoglobulin-like domain is involved in homophilic binding. The epitopes of four monoclonal antibodies that have been previously shown to affect cell-cell adhesion mediated by NCAM were also mapped to domain 3. Overlapping hexapeptides were synthesized on plastic pins and assayed for binding with these monoclonal antibodies. One of them (PP) reacted specifically with the sequence KYSFNY. Synthetic oligopeptides containing the PP epitope were potent and specific inhibitors of NCAM binding activity. A substratum containing immobilized peptide conjugates also exhibited adhesiveness for neural retinal cells. Cell attachment was specifically inhibited by peptides that contained the PP-epitope and by anti-NCAM univalent antibodies. The shortest active peptide has the sequence KYSFNYDGSE, suggesting that this site is directly involved in NCAM homophilic interaction.  相似文献   

3.
Pemphigus vulgaris (PV) is an autoimmune epidermal blistering disease caused by autoantibodies directed against the desmosomal cadherin desmoglein-3 (Dsg3). Significant advances in our understanding of pemphigus pathomechanisms have been derived from the generation of pathogenic monoclonal Dsg3 antibodies. However, conflicting models for pemphigus pathogenicity have arisen from studies using either polyclonal PV patient IgG or monoclonal Dsg3 antibodies. In the present study, the pathogenic mechanisms of polyclonal PV IgG and monoclonal Dsg3 antibodies were directly compared. Polyclonal PV IgG cause extensive clustering and endocytosis of keratinocyte cell surface Dsg3, whereas pathogenic mouse monoclonal antibodies compromise cell-cell adhesion strength without causing these alterations in Dsg3 trafficking. Furthermore, tyrosine kinase or p38 MAPK inhibition prevents loss of keratinocyte adhesion in response to polyclonal PV IgG. In contrast, disruption of adhesion by pathogenic monoclonal antibodies is not prevented by these inhibitors either in vitro or in human skin explants. Our results reveal that the pathogenic activity of polyclonal PV IgG can be attributed to p38 MAPK-dependent clustering and endocytosis of Dsg3, whereas pathogenic monoclonal Dsg3 antibodies can function independently of this pathway. These findings have important implications for understanding pemphigus pathophysiology, and for the design of pemphigus model systems and therapeutic interventions.  相似文献   

4.
The HNK-1 and L2 monoclonal antibodies are thought to recognize identical or closely associated carbohydrate epitopes on a family of neural plasma membrane glycoproteins, including myelin-associated glycoprotein, the neural cell adhesion molecule, and the L1 and J1 glycoproteins, all of which have been postulated to play a part in mediating cell-cell interactions in the nervous system. We have used these two antibodies in immunofluorescence and immunogold-electron microscopic studies of semithin and ultrathin frozen sections of adult rat optic nerve, respectively, and we show that they bind mainly to astrocyte processes around nodes of Ranvier. Most other elements of the nerve, including astrocyte cell bodies and large astrocytic processes, are not labeled by the antibodies. To our knowledge, this is the first demonstration that perinodal astrocyte processes are biochemically specialized. We provide evidence that one of the HNK-1+/L2+ molecules concentrated around perinodal astrocyte processes is the J1 glycoprotein; our findings, taken together with previously reported observations, suggest that the other known HNK-1+/L2+ molecules are not concentrated on these processes. Since anti-J1 antibodies previously have been shown to inhibit neuron to astrocyte adhesion in vitro, we hypothesize that J1 may play an important part in the axon-glial interactions that presumably are involved in the assembly and/or maintenance of nodes of Ranvier.  相似文献   

5.
Advances in cell adhesion research have often been linked to technological advances. The development of monoclonal antibody technology allowed the definition of the molecular components of cell adhesion and pointed to the complexity of the leukocyte cell surface (Knapp & Gilks, 1989); previously only the erythrocyte had been subjected to attempts at detailed analysis of membrane associated molecules (Steck, 1974). It was also possible to use selection strategies to produce antibodies that could perturb functional properties of the antigens they recognise. The interaction between the T cell surface molecule CD2 and its natural ligand LFA-3 was defined by monoclonal antibodies which blocked adhesion and the same antibodies have allowed large scale purification of these proteins for detailed in vitro studies (Dustin & Springer, 1991).  相似文献   

6.
Cell adhesion molecules: detection with univalent second antibody   总被引:10,自引:2,他引:8       下载免费PDF全文
Identification of cell surface molecules that play a role in cell-cell adhesion (here called cell adhesion molecules) has been achieved by demonstrating the inhibitory effect of univalent antibodies that bind these molecules in an in vitro assay of cell-cell adhesion. A more convenient reagent, intact (divalent) antibody, has been avoided because it might agglutinate the cells rather than blocking cell-cell adhesion. In this report, we show that intact rabbit immunoglobulin directed against certain cell surface molecules of Dictyostelium discoideum blocks cell-cell adhesion when the in vitro assay is performed in the presence of univalent goat anti-rabbit antibody. Under appropriate experimental conditions, the univalent second antibody blocks agglutination induced by the rabbit antibody without significantly interfering with its effect on cell-cell adhesion. This method promises to be useful for screening monoclonal antibodies raised against potential cell adhesion molecules because: (a) it allows for the screening of large numbers of antibody samples without preparation of univalent fragments; and (b) it requires much less antibody because of the greater affinity of divalent antibodies for antigens.  相似文献   

7.
There is accumulating evidence that acetylcholinesterase has secondary noncholinergic functions, related to adhesion, differentiation, and the deposition of beta-amyloid in Alzheimer's disease. We have observed that the specific acetylcholinesterase peripheral anionic site inhibitors, BW284c51 and propidium iodide, abrogated cell-substrate adhesion in three human neuroblastoma cell lines. The active-site inhibitors, eserine and edrophonium, in contrast, had no effect. Certain anti-AChE antibodies were also shown to inhibit adhesion. Of these, the most effective were a monoclonal (E8) and a polyclonal having cholinesterase-like catalytic activity. These were raised against an acetylcholinesterase-inhibitor complex, implying that the epitope is associated with active-site structures. Two other monoclonal antibodies (E62A1 and E65E8) partially inhibited adhesion. The epitopes of these antibodies have been shown to overlap the peripheral anionic site of acetylcholinesterase. Competition ELISA between the monoclonal antibodies and inhibitors indicated competition between E8, E62A1, and E65E8 and the peripheral-site inhibitors BW284c51 and propidium, but not with the active-site inhibitors eserine and edrophonium. Fluorescence titration between antibodies and propidium confirmed these results. We conclude that the adhesion function of acetylcholinesterase is located at the peripheral anionic site. This has implications, not only for our understanding of neural development and its disorders, but also for the treatment of neuroblastoma, the leukemias, and Alzheimer's disease.  相似文献   

8.
Tunicamycin acts on cell aggregation in Dictyostelium discoideum by changing cell movement and by inhibiting the EDTA-stable type of intercellular adhesion. Tunicamycin-treated cells show unco-ordinated pseudopodial activity such that pseudopods are simultaneously extended from all parts of the cell surface, and the cells are unable to move in straight paths. Concurrent with the inhibition of formation of EDTA-stable contacts, N-glycosylation of a glycoprotein specific for aggregation-competent cells is inhibited. This glycoprotein, previously called contact site A, has an apparent mol. wt. of 80 kilodaltons (kd). In membranes of tunicamycin-treated cells, two components are detected that react with certain monoclonal antibodies against contact sites A: one component of 66 kd, the other of 53 kd apparent mol. wt. Another group of monoclonal antibodies reacts only with the 80-kd glycoprotein and the 66-kd component. These results are in accord with the assumption that the glycoprotein carries two carbohydrate chains, and that the antibodies differ in their requirement for glycosylation of the antigen. Despite the coincidence between blockage of EDTA-stable cell adhesion and inhibited glycosylation of contact sites A, direct involvement of the carbohydrate moieties of this glycoprotein in intercellular adhesion seems questionable. EDTA-stable cell adhesion has not been blocked by Fab fragments from antibodies that specifically react with the glycosylated protein.  相似文献   

9.
Advances in cell adhesion research have often been linked to technological advances. The development of monoclonal antibody technology allowed the definition of the molecular components of cell adhesion and pointed to the complexity of the leukocyte cell surface (Knapp & Gilks, 1989); previously only the erythrocyte had been subjected to attempts at detailed analysis of membrane associated molecules (Steck, 1974). It was also possible to use selection strategies to produce antibodies that could perturb functional properties of the antigens they recognise. The interaction between the T cell surface molecule CD2 and its natural ligand LFA-3 was defined by monoclonal antibodies which blocked adhesion and the same antibodies have allowed large scale purification of these proteins for detailed in vitro studies (Dustin & Springer, 1991).  相似文献   

10.
The L2/HNK-1 carbohydrate epitope has been shown to carry an unusual 3-sulfoglucuronic acid linkedO-glycosidically through a neolactosyl-type back bone to a ceramide residue. Using monoclonal antibodies, the same or a closely related epitope has also been detectedN-glycosidically linked to glycoproteins, amongst them several neural cell adhesion molecules. We used synthetic glycolipids carrying sulfated or non-sulfated glucuronic acid attached to ceramide through glycans of different length to show that not only the sulfated glucuronic acid but also the neolactosyl-type backbone is essential for the recognition of the L2/HNK-1 carbohydrate by a monoclonal antibody, its binding to laminin and its role in neural cell migration and outgrowth of processes from neurons and astrocytes.Abbreviations mab monoclonal antibody - TLC thin layer chromatography - HRP horseradish peroxidase - glcA glucuronic acid - gal galactose - glcNAc N-acetyl-glucosamine - man mannose  相似文献   

11.
A panel of monoclonal antibodies with varying pilus specificities ranging from cross-reacting to type-specific has been used to investigate the role of conserved and variable antigenic domains in the adhesion of gonococci to human epithelial cells. The binding of 125I-labelled alpha pili from strain P9 to buccal epithelial cells was inhibited by three type-specific but not by two cross-reacting antibodies. Four type-specific antibodies inhibited the binding of gamma pili while the two cross-reacting antibodies were again without effect. The virulence of the variants P9-2 (alpha pili) and P9-35 (gamma pili) for Chang conjunctiva epithelial cells was similarly reduced only in the presence of relevant type-specific antibodies. These results indicate the importance of variable antigenic domains in the adhesion of gonococci to human epithelial cells.  相似文献   

12.
A family of functionally important, high-molecular-weight glycoproteins with identical beta subunits has recently been defined on leukocyte cell surfaces. Soon after these molecules and at least some of their functions had been defined with monoclonal antibodies, an inherited disease, LFA-1, Mac-1 deficiency, was discovered in humans. This deficiency has confirmed that this glycoprotein family is of central importance in leukocyte cell surface adhesion reactions.  相似文献   

13.
Polyclonal antibody therapy in the form of hyper-immune serum has for more than a century been used for treatment of many infectious diseases. However, with the emergence of first antibiotics and later recombinant monoclonal antibody therapy, the use of hyper-immune serum has declined. The main reason for this is that methods for consistent manufacturing of safe hyper immune immunoglobulin products have been lacking. In contrast, manufacturing processes of recombinant monoclonal antibodies follow a well established schedule and it appears obvious to use similar methods to produce recombinant polyclonal products. However, the methods for monoclonal antibody manufacturing are, for several reasons, not directly applicable to generation and manufacture of polyclonal recombinant antibodies. A new production strategy based on recombinant mammalian producer cells has recently been developed to support consistent generation of recombinant polyclonal antibodies for therapeutic use. This review describes aspects of this novel technology with emphasis on the generation, production and characterization procedures employed, and provides comparison with alternative polyclonal and monoclonal antibody manufacturing strategies.  相似文献   

14.
The major human rhinovirus receptor is ICAM-1   总被引:131,自引:0,他引:131  
The major human rhinovirus receptor has been identified with monoclonal antibodies that inhibit rhinovirus infection. These monoclonal antibodies recognize a 95 kd cell surface glycoprotein on human cells and on mouse transfectants expressing a rhinovirus binding phenotype. Purified 95 kd protein binds to rhinovirus in vitro. Protein sequence from the 95 kd protein showed an identity with that of intercellular adhesion molecule-1 (ICAM-1); a cDNA clone obtained from mouse transfectants expressing the rhinovirus receptor had essentially the same sequence as ICAM-1. Thus, the major human rhinovirus receptor is ICAM-1. The gene for this receptor maps to human chromosome 19, which also contains the genes for a number of other picornavirus receptors.  相似文献   

15.
WE have raised a monoclonal antibody, designated E28D8, which reacts with an 80,000-dalton membrane glycoprotein (gp80) of Dictyostelium discoideum. gp80 has been implicated in the formation of the EDTA-resistant adhesions ("contact sites A") which appear during development. The monoclonal antibody reacted with other developmentally regulated proteins of D. discoideum, confirming previous results indicating the presence of common antigenic determinants recognized by polyclonal rabbit antibodies directed to gp80. Periodate sensitivity of the determinants suggests that carbohydrate may be necessary for reactivity. Thus, the determinant recognized by E28D8 may result from a posttranslational modification common to a number of proteins. Some of the proteins that carry the determinant were preferentially localized to posterior cells in slugs. Monoclonal antibody E28D8 did not inhibit contact-sites-A-mediated intercellular adhesion. However, gp80 affinity purified on immobilized monoclonal antibody was able to neutralize the adhesion-blocking effect of rabbit antiserum to gp80. Although gp80 itself may not be essential for cell-cell adhesion, it appears to carry the determinants associated with adhesion.  相似文献   

16.
G J Cole  C F McCabe 《Neuron》1991,7(6):1007-1018
Monoclonal antibodies have been used to identify a 320 kd keratan sulfate proteoglycan that is primarily expressed in the embryonic chick nervous system. Immunohistochemical localization of the proteoglycan shows that it is expressed by putative midline barrier structures in the developing chick central nervous system. When added to laminin or neural cell adhesion molecule that has been adsorbed onto nitrocellulose-coated dishes, the proteoglycan abolishes cell attachment and neurite outgrowth on these adhesive substrata. This effect can be reversed by keratanase treatment and incubation with a monoclonal antibody that recognizes the keratan sulfate chains of the proteoglycan. These data suggest that this neural keratan sulfate proteoglycan plays an important role in the modulation of neuronal cell adhesion during embryonic brain development.  相似文献   

17.
A membrane glycoprotein of 24,000 Da (gp24) was purified from developed cells of Dictyostelium discoideum and shown to neutralize a crude antiserum (R695) that blocks EDTA-sensitive cell-cell adhesion during the early developmental stages of this organism. Purified gp24 was used to raise rabbit polyclonal antibodies and mouse monoclonal antibodies. Rabbit antiserum R851 was shown to be highly specific to gp24 by both Western analysis and immunoprecipitation. IgG of R851 is able to block adhesion of dissociated cells swirled in suspension. Adhesion of wild-type cells is blocked by R851 antibodies during the first 8 hr of development but not thereafter when other adhesion mechanisms come into play. The glycoprotein gp80 plays an essential role in the second adhesion system that appears during the aggregation stage of D. discoideum. By adding both anti-gp24 and anti-gp80 antibodies, adhesion of aggregation stage cells could be blocked. Late in development a third adhesion mechanism appears that is not blocked by either antibodies to gp24 or gp80 or both antibodies together. Western analysis and immunoprecipitation with monoclonal antibody mLJ11, specific for gp24, indicated that gp24 is absent in cells growing exponentially on bacteria but is rapidly synthesized and accumulated following the initiation of development. Synthesis of gp24 is maximal during the first 4 hr of development and then continues at a reduced rate throughout the remainder of development. The coordinate appearance of gp24 and EDTA-sensitive cell-cell adhesion as well as the ability of this glycoprotein to neutralize the adhesion blocking activity of R695 and R851 antibodies indicates that it plays a role in early cell-cell adhesion.  相似文献   

18.
Osteopontin (OPN), a secreted protein involved in inflammatory processes and cancer, induces cell adhesion, migration, and activation of inflammatory pathways in various cell types. Cells bind OPN via integrins at a canonical RGD region in the full length form as well as to a contiguous cryptic site that some have shown is unmasked upon thrombin or matrix metalloproteinase cleavage. Thus, the adhesive capacity of osteopontin is enhanced by proteolytic cleavage that may occur in inflammatory conditions such as obesity, atherosclerosis, rheumatoid arthritis, tumor growth and metastasis. Our aim was to inhibit cellular adhesion to recombinant truncated proteins that correspond to the N-terminal cleavage products of thrombin- or matrix metalloproteinase-cleaved OPN in vitro. We specifically targeted the cryptic integrin binding site with monoclonal antibodies and antisera induced by peptide immunization of mice. HEK 293 cells adhered markedly stronger to truncated OPN proteins than to full length OPN. Without affecting cell binding to the full length form, the raised monoclonal antibodies specifically impeded cellular adhesion to the OPN fragments. Moreover, we show that the peptides used for immunization were able to induce antisera, which impeded adhesion either to all OPN forms, including the full-length form, or selectively to the corresponding truncated recombinant proteins. In conclusion, we developed immunological tools to selectively target functional properties of protease-cleaved OPN forms, which could find applications in treatment and prevention of various inflammatory diseases and cancers.  相似文献   

19.
Lepidopterans generally can successfully defend themselves against a variety of parasites or parasitoids. One mechanism they use is to encapsulate the invader in many layers of hemocytes. For encapsulation to occur, the hemocytes must attach to the foreign material, spread, and adhere to each other. The molecules that mediate these processes are not known. One method to identify proteins potentially necessary for adhesion, spreading, and, thus, encapsulation is to use monoclonal antibodies that interfere with these functions. In this paper, we report that a monoclonal antibody against Manduca sexta plasmatocytes effectively inhibited encapsulation of synthetic beads in vitro and in vivo. Furthermore, it inhibited plasmatocyte spreading in vitro. Other anti-hemocyte antibodies did not have these effects. The plasmatocyte-specific monoclonal antibody, mAb MS13, recognized a protein of approximately 90,000 daltons as indicated by Western blot analysis of hemocyte lysate proteins. The epitope recognized by mAb MS13 was present on the exterior surface of plasmatocytes. Using indirect immunohistochemistry with hemocyte-specific antibodies, we also determined that during encapsulation plasmatocytes were the first cells bound to latex beads and later layers consisted of both plasmatocytes and granular cells. Arch.  相似文献   

20.
The need to intensify downstream processing of monoclonal antibodies to complement the advances in upstream productivity has led to increased attention toward implementing membrane technologies. With the industry moving toward continuous operations and single use processes, membrane technologies show promise in fulfilling the industry needs due to their operational flexibility and ease of implementation. Recently, the applicability of membrane-based unit operations in integrating the downstream process has been explored. In this article, the major developments in the application of membrane-based technologies in the bioprocessing of monoclonal antibodies are reviewed. The recent progress toward developing intensified end-to-end bioprocesses and the critical role membrane technology will play in achieving this goal are focused upon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号