首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The regulation of nitrogen assimilation was investigated in the Gram-positive actinomycete Corynebacterium glutamicum. Biochemical studies and site-directed mutagenesis revealed that glutamine synthetase activity is regulated via adenylylation in this organism. The genes encoding the central signal transduction protein PH (glnB) and the primary nitrogen sensor uridylyltransferase (glnD) were isolated and sequenced. Additionally, genes putatively involved in the degradation of ornithine (ocd) and sarcosine (soxA), ammonium uptake (amtP) and protein secretion (ftsY, srp) were identified in C. glutamicum. Based on these observations, the mechanism of N regulation in C. glutamicum is similar to that of the Gram-negative Escherichia coli. As deduced from data base searches, the described regulation may also hold true for the important pathogen Mycobacterium glutamicum.  相似文献   

3.
4.
5.
In order to utilize different nitrogen sources and to survive situations of nitrogen limitation, microorganisms have developed several mechanisms to adapt their metabolism to changes in the nitrogen supply. In this communication, recent advances in our knowledge of ammonium uptake, its assimilation, and connected regulatory systems in Corynebacterium glutamicum are discussed with respect to the situation in the bacterial model organisms Escherichia coli and Bacillus subtilis. The regulatory network of nitrogen control in C. glutamicum differs substantially from that in these bacteria, for example, by the presence of AmtR, the unique "master regulator" of nitrogen control, the absence of a NtrB/NtrC two-component signal transduction system, and a different sensing mechanism in C. glutamicum.  相似文献   

6.
AmtR, the master regulator of nitrogen control in Corynebacterium glutamicum, plays important roles in nitrogen metabolism. To investigate the influence of AmtR on amino acids production in C. glutamicum ATCC 13032, the amtR deletion strain C. glutamicum Q1 was constructed and cultured in modified CGXII minimal medium for 60 h. The ammonium consumption rates as well as amino acids production of both strains cultured in modified CGXII minimal medium were determined. The amtR deletion in C. glutamicum caused an obvious growth defect in the exponential growth phase, but both strains had the same biomass in the stationary phases. Maybe the less alpha-oxoglutarate was used for the tricarboxylic acid cycle to influence the growth of strains. During 12 h, the rate of ammonium consumption and the concentration of Glu, Pro, Arg and Ser were higher but Asp, Gly, Ile, Leu, Lys were lower in the mutation strain. During 48 h, the Q1 had higher levels of Asp, Lys, Pro, Ala and Val,and lower levels of Glu, Arg, Leu and Ile, compared to the wild. The more Glu was synthesized by the activated GS/GOGAT pathway in Q1, and then the accumulation of relative amino acids (Pro, Arg and Ser) were up-regulated within 12 h growth. After 48 h growth, the amtR deletion obviously influenced accumulation of Ala, Asp and Pro. The amtR deletion could influence the growth and amino acids production, which could be useful to the production of amino acids.  相似文献   

7.
Abstract Glutamate uptake in the Gram-positive Corynebacterium glutamicum is mediated via a binding protein-dependent transport system, which is encoded by the gluABCD gene cluster. Cloning of these genes in an expression vector and subsequent transformation of the resulting plasmid allows different strains of the Gram-negative bacterium Escherichia coli to grow on glutamate as sole carbon and nitrogen source. However, overexpression of the glutamate uptake system results in growth inhibitory effects, probably due to the particular topology of the binding protein.  相似文献   

8.
Nitrogen is an essential component of nearly all complex macromolecules in a bacterial cell, such as proteins, nucleic acids and cell wall components. Accordingly, most prokaryotes have developed elaborate control mechanisms to provide an optimal supply of nitrogen for cellular metabolism and to cope with situations of nitrogen limitation. In this review, recent advances in our knowledge of ammonium uptake, its assimilation, and related regulatory systems in Corynebacterium glutamicum, a Gram-positive soil bacterium used for the industrial production of amino acids, are summarized and discussed with respect to the situation in the bacterial model organisms, Escherichia coli and Bacillus subtilis, and in comparison to the situation in other actinomycetes, namely in mycobacteria and streptomycetes. The regulatory network of nitrogen control in C. glutamicum seems to be a patchwork of different elements. It includes proteins similar to the UTase/GlnK pathway of E. coli and expression regulation by a repressor protein as in B. subtilis, but it lacks an NtrB/NtrC two-component signal transduction system. Furthermore, the C. glutamicum regulation network has unique features, such as a new sensing mechanism. Based on its extremely well-investigated central metabolism, well-established molecular biology tools, a public genome sequence and a newly-established proteome project, C. glutamicum seems to be a suitable model organism for other corynebacteria, such as Corynebacterium diphtheriae and Corynebacterium efficiens.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号