首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lord JM  Brown RH 《Plant physiology》1975,55(2):360-364
Ribulose 1,5-diphosphate carboxylase has been purified from extracts of autotrophically grown Chlorella fusca by ammonium sulfate precipitation and centrifugation on a linear sucrose density gradient. The enzyme was homogeneous by the criterion of polyacrylamide gel electrophoresis. The molecular weight of the enzyme was 530,000, and it was composed of two types of subunit of molecular weight 53,000 and 14,000. Ribulose 1,5-diphosphate, CO(2), and Mg(2+) had Michaelis constant values of 15 mum, 0.3 mm, and 0.37 mm, respectively. At high bicarbonate concentration (17 mm and 50 mm), 6-phosphogluconate inhibited the enzyme, the inhibition being noncompetitive with respect to ribulose 1,5-diphosphate (Ki 0.065 mm), whereas at low bicarbonate concentration (1 mm), 6-phosphogluconate activated the enzyme. Oxygen was a competitive inhibitor with respect to CO(2), suggesting the enzyme also functions as an oxygenase. This was confirmed by direct assay, a 1: 1 stoichiometry between ribulose 1,5-diphosphate consumed and O(2) uptake being observed.  相似文献   

2.
An antibody specific for ribulose 1,5-diphosphate carboxylase was used to isolate the enzyme from greening barley (Hordeum vulgare L.) leaves. The increase in enzymatic activity during greening was due to de novo synthesis of the enzyme. Increases in enzymatic activity were accompanied by corresponding increases in enzyme protein and by incorporation of radioactive leucine, all of which were inhibited by low concentrations of cycloheximide. 14C-Labeled amino acids were incorporated into the enzyme by covalent peptide bonding.  相似文献   

3.
4.
5.
Ribulose 1,5-diphosphate carboxylase was isolated from Euglena gracilis Klebs strain Z Pringsheim, Chlorella fusca var. vacuolata, and Chlamydobotrys stellata, and the subunits from each enzyme were separated and purified by gel filtration on Sephadex G-200 in the presence of sodium dodecyl sulfate. Rabbit antibody was elicited against purified Euglena ribulose 1,5-diphosphate carboxylase whole enzyme and the isolated large and small subunits. Euglena ribulose 1,5-diphosphate carboxylase showed partial immunological identity on Ouchterlony gels with the Chlorella and Chlamydobotrys carboxylases. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of immunoprecipitates between antibody to the Euglena large subunit and the isolated large subunits of the Chlorella and Chlamydobotrys enzymes showed this was due to determinants on the large subunit. There was no serological affinity between the small subunits of the Euglena, Chlorella, and Chlamydobotrys carboxylases, and NH2-terminal amino acid analyses provided further evidence of variability in the structure of the small subunits.  相似文献   

6.
Wheat was grown in the field with different levels of nitrogenousfertilizer, and the rate of photosynthesis and the activityof ribulose 1,5-diphosphate carboxylase in the flag leaves determined.Additional nitrogen increased the dry-weight and leaf area ofthe plants, but did not increase grain yield; the rate of photosynthesisof the flag leaves was unchanged but the activity of ribulose1,5-diphosphate carboxylase increased. The significance of theseobservations to the loss of potential yield of wheat and therelationship between, photosynthesis and carboxylase activityis considered.  相似文献   

7.
Zhu G  Jensen RG 《Plant physiology》1991,97(4):1348-1353
Xylulose 1,5-bisphosphate (XuBP) is synthesized from ribulose 1,5-bisphosphate (RuBP) at carbamylated catalytic sites on ribulose 1,5-bisphosphate carboxylase (Rubisco) with significant amounts of XuBP being formed at pH less than 8.0. XuBP has been separated by high performance liquid chromatography and identified by pulsed amperometry from compounds bound to Rubisco during catalysis with the purified enzyme and from celery (Apium graveolens var Utah) leaf extracts. XuBP does not bind tightly to carbamylated sites, but does bind tightly to decarbamylated sites. Upon incubation of fully activated Rubisco with 5 micromolar XuBP, loss of activator CO2 occurred before XuBP bound to the enzyme catalytic sites, even in the presence of excess CO2 and Mg2+. Binding of XuBP to decarbamylated Rubisco sites was highly pH dependent. At pH 7.0 and 7.5 with 10 millimolar MgCl2 and 10 millimolar KHCO3, the apparent dissociation constant for XuBP, Kd, was 0.03 micromolar, whereas at pH 8.0 and 8.5, the apparent Kd was 0.35 and 2.0 micromolar, respectively. This increase in Kd with pH was a result of a decrease in the association rate constant and an increase in the dissociation rate constant of XuBP bound to decarbamylated sites on Rubisco. The Kd of 2-carboxyarabinitol 1-phosphate binding to carbamylated sites was only slightly pH dependent.  相似文献   

8.
Symptoms typical of senescence occurred in green detached primary barley (Hordeum vulgare L.) leaves placed in darkness and in light. Chlorophyll, total soluble protein, ribulose 1,5-diphosphate carboxylase protein and activity each progressively decreased in darkness and to a lesser extent in light. In all treatments most of the total soluble protein lost was accounted for by a decrease in ribulose 1,5-diphosphate carboxylase protein, suggesting that the chloroplast was a major site of degradation early in senescence.  相似文献   

9.
Carbon 13 isotope discrimination by ribulose 1,5-diphosphate carboxylase from soybean (Glycine max [Merr.] cv. Amsoy) was studied as a function of temperature, bicarbonate concentration, and pH. None of these factors affected the degree of discrimination against 13C. The average δ13C was −28.3%, a value close to that found for whole C3 plants. The zero temperature response observed here with ribulose 1,5-diphosphate carboxylase corroborates data from whole plants. The lack of effect of bicarbonate concentration on discrimination is consistent with both current theories of alternate forms of carboxylase.  相似文献   

10.
A crude chloroplast preparation of primary leaves of Phaseolus vulgaris was allowed to incorporate 14C-leucine into protein. A chloroplast extract was prepared and purified for ribulose 1,5-diphosphate carboxylase by ammonium sulfate precipitation, chromatography on Sephadex G-200, and chromatography on Sepharose 4B. The distribution of radioactive protein and enzyme in fractions eluted from Sepharose 4B was nearly the same. The radioactivity in the product was in peptide linkage, since it was digested to a trichloroacetic acid-soluble product by Pronase. Whole cells in the plastid preparation were not involved in the incorporation of amino acid into the fraction containing ribulose 1,5-diphosphate carboxylase, since incorporation still occurred after removal of cells. The incorporation into the fraction containing ribulose 1,5-diphosphate carboxylase occurs on ribosomes of plastids, since this incorporation is inhibited by chloramphenicol. These plastid preparations may be incorporating amino acid into ribulose 1,5-diphosphate carboxylase, but the results are not conclusive on this point.  相似文献   

11.
This is the first report showing that ribulose bisphosphatecarboxylase/oxygenase has the non-catalytic sites to bind ribulosebisphosphate (RuBP). A plot of the binding number against theRuBP concentration in the equilibrium binding assay gave a bumpycurve with an intermediate plateau at 0.3 to 0.5 mM RuBP. Thebinding was saturated with 1.5 mM RuBP. The concentrations offree and binding forms of RuBP and the functioning forms ofthe enzyme in chloroplasts could be predicted using the kineticdata of the binding. (Received October 5, 1993; Accepted November 22, 1993)  相似文献   

12.
The half-saturating concentration of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) from Euglena gracilis Z for CO2 in its activation by CO2 in the presence of a saturating concentration of MgCl2 (KJ was measured by analyzing the partial reversible inactivation of the fully activated enzyme in the medium with dilute CO2. The Kd of the Euglena enzyme was 12.5 μm. The K,d values were 6.3/im for the enzyme from soybean, 10.8 fiM from maize, 23.3 jiM from Scenedesmus obliquus, and 20.8 μm from Anabaena 7120. The activated state of Euglena RuBisCO was stabilized by 6-phosphogluconate, fructose 1,6-bisphosphate, and 3-phosphoglycerate in the medium containing low concentrations of CO2. Both fructose 6-phosphate and ATP stimulated inactivation in the medium. NADPH not only stabilized the activated state of the enzyme, but also enhanced the enzyme activity over the full activity measured in the absence of NADPH. NADP+ did not nullify the effects of NADPH on the activation at all. The physiological significance of the effects of these photosynthetic metabolites on the activated state of Euglena RuBisCO is discussed.  相似文献   

13.
The pathway of carbon assimilation in greening roots was compared to the pathway in leaves of Lens culinaris seedlings by means of labelling distribution analysis among the products of 14CO2 fixation in vivo, and in vitro with ribulose 1,5-diphosphate as the substrate. In green leaves, CO2 fixation via ribulose 1,5-diphosphate carboxylase predominated largely while, in green roots, this carboxylase activity and the phosphoenolpyruvate carboxylase contributed almost equally to the whole in vivo CO2 fixation. A participation of the activities of both carboxylases according to the double carboxylation pathway in the synthesis of dicarboxylic acids (malate and aspartate) was demonstrated in vitro after 48 h of greening in roots but seemed to be absent in in vivo experiments.  相似文献   

14.
Hydrogenomonas facilis and H. eutropha cultured in fructose medium retained high levels of ribulose-1,5-diphosphate carboxylase only when the following conditions were fulfilled: low aeration, FeCl(3) addition to fructose medium, and cell harvest at or prior to mid-exponential phase of growth. Repression of carboxylase synthesis was demonstrated under conditions of high oxygen tension during growth of H. eutropha on fructose. Upon depletion of fructose in the growth medium, carboxylase activity fell abruptly in both organisms. The decline could not be attributed to a repressive mechanism. Rapid inactivation of carboxylase was promoted by transfer of mid-exponential-phase H. eutropha to a basal salts medium lacking fructose. During severe fructose starvation, N(2), H(2), 80% H(2) to 20% air, 2,4-dinitrophenol, actinomycin D, streptomycin, bicarbonate, and magnesium ion deficiency spared carboxylase. Nitrogen starvation or chloramphenicol afforded no protection during severe starvation. In vitro inactivation was also demonstrated in crude cell-free extracts from nonstarved, fructose-grown H. eutropha. Substrate bicarbonate protected against this loss. Inactivation of the carboxylase could not be demonstrated either by starvation of autotrophically grown cells or in autotrophic extracts. Autotrophic extracts mixed with heterotrophic extracts lost their carboxylase activity, but mixing with heterotrophic extracts that had been heated to 50 C resulted in no loss of activity. Mechanisms are proposed to accommodate these observations.  相似文献   

15.
SYNOPSIS. The synthesis of chlorophylls in non-proliferating dark-grown etiolated cells of Euglena gracilis var. bacillaris is markedly inhibited by the enzyme inhibitors dinitrophenol (DNP), p -chloromercuribenzoate (pCMB) and sodium fluoride. The pCMB inhibition of greening is reversed to a great extent by glutathione but not by cysteine. The inhibitory effect of fluoride is reversed by both succinate as well as Mg++ during illumination. Fluoride also inhibits the photosynthetic growth of the euglenas; this inhibition is competitively reversed by succinate.  相似文献   

16.
The preparation of a rabbit antibody to ribulose-1,5-bisphosphate carboxylase (RuBPCase) from Euglena gracilis and its use to quantitate RuBPCase in dark- and light-grown cells and during light-induced chloroplast development (greening) are described. Light-grown Euglena have at least 36 times more RuBPCase than dark-grown Euglena. Light is required for both the initiation and continued increase in net synthesis of RuBPCase over the dark level: brief illumination 12 hours before exposure to continuous light eliminates the lags in the accumulation and increase in activity of RuBPCase (as well as in chlorophyll accumulation); net synthesis is blocked in greening cells returned to the dark or exposed to 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Streptomycin or cycloheximide prevents RuBPCase accumulation when added at the beginning of greening but only partially blocks accumulation when added after 25 hours of greening. After 24 hours of greening, the activity of RuBPCase per milligram chlorophyll continues to increase slowly while concentration of the enzyme per milligram chlorophyll remains constant. This increased activity may be due to activation of the enzyme as well as to net synthesis.  相似文献   

17.
The reaction of spinach RuBisCO activated with CO2 and Mg2+proceeded in two phases, an initial burst for a few minutesand the subsequent linear phase, in the presence of saturatingconcentrations of CO2, ribulose 1,5-bisphosphate (RuBP), andMg2+. The percentage of the activity in the linear phase tothat in the initial burst was 55% with RuBisCO prepared withpolyethylene glycol, and very close to the value with the enzymereleased immediately from isolated chloro-plasts. RuBisCO preparedwith ammonium sulfate had a much larger decrease of the activityin the linear phase. The Euglena enzyme had a linear courseof reaction with time for up to 20 minutes. The Km for CO2 of spinach RuBisCO activated beforehand was 20µM in the initial burst, and 28 µM in the linearphase. In the carboxylase reaction initiated with inactive enzyme,the activity was initially negligible, but in 5 minutes increasedto the level observed in the linear phase of the activated enzyme.The Km for CO2 in the linear phase of the pre-inactivated enzymewas 70 µM. The concentration of RuBP was the immediate cause of the two-phasiccourse of the carboxylase reaction of spinach RuBisCO. The curvatureof the time course was not observed below 35 µM RuBP.The enzyme required over 88 µM RuBP for the conventionaltwo-phasic course. Further increase of the concentration ofRuBP increased the extent of the curvature, but did not startthe curvature sooner after the start of the reaction. Even ifspinach RuBisCO was in the linear phase, dilution of RuBP orits consumption by the enzymatic reaction to less than 30 µMcaused the enzyme to show the resumed biphasic reaction courseafter addition of a high concentration of RuBP. 1This paper is the twenty-fourth in a series on PhotosyntheticCarbon Metabolism in Euglena gracilis. (Received September 19, 1988; Accepted November 25, 1988)  相似文献   

18.
The activity of ribulose 1,5-bisphosphate carboxylase (RuBPCase, E. C. 4. 1. 1. 395, fructose 1,6-bisphosphatase (FBPase, E. C. 3. 1. 3. 11) and sedoheptulose 1,7-bisphosphatase (SBPase, E. C. 3. 1. 3. 37) was assayed in the etiolated cotyledons of Brassica juncea after red light or far- red light stimulation. There seemed to be a light-sensitive phase in the course of germination as indicated by the response of leaves to light. During this phase red light stimulated the synthesis of RuBPCase and FBPase, but not SBPase. This effect of red light could be reversed by farred light. Therefore, the initiation of the synthesis of the two enzymes was mediated by phytochrome. The amount of enzyme synthesized was not concerned with the number of light quanta. Phytochrome is only involved in the initiation of the synthesis of certain enzymes, but whether the synthesis will proceed continuosely ro not depends on many other factors, e. g. the availability of substrate and energy.  相似文献   

19.
The accumulation of ribulose-1,5-bisphosphate carboxylase (RuBPCase) in resting Euglena gracilis strain Z during greening is photo-regulated (Freyssinet, Eichholz, Buetow 1984 Plant Physiol 75: 850-857. Greening resting cells are not photosynthetically competent for about the first 24 hours in the light. Therefore, substrates for a net synthesis of the enzyme must come from endogenous constituents. During this time, degradation of endogenous paramylum (carbohydrate) reserves provides the main source of substrates. By about 24 hours of greening, resting cells are photosynthetically competent and RuBPCase accumulation becomes highly sensitive to 3-(3,4 dichlorophenyl)-1,1-dimethylurea. Therefore, from about 24 hours of greening onward, substrates (and/or energy) for RuBPCase synthesis are provided by photosynthesis. Ethanol, a nutritional substrate ordinarily used constitutively by Euglena for growth, inhibits RuBPCase accumulation when added to the resting medium in the light. The alcohol exerts this negative regulatory effect by limiting the availability of substrates needed for a net synthesis of the enzyme.  相似文献   

20.
The concept of ribulose bisphosphate carboxylase as a storage protein is not supported in the case of Lemna minor, where the enzyme appears to be particularly stable under conditions of nitrogen starvation. Total nutrient starvation in light and in the dark induced the degradation of this enzyme, but not at an enhanced rate compared with other leaf proteins and, surprisingly, darkness inhibited the degradation of chlorophyll which occurs with total nutrient starvation in the light. The data suggest that Lemna is not programmed to senesce in response to nutrient starvation. Differences in the pattern of protein degradation, which occurred under the stress conditions employed, are not consistent with a simple model of protein degradation in which the degradative system is assumed to be located in the vacuole. The data is best explained by a dual system in which cytosolic proteins are degraded by a vacuolar/lysosomal system and chloroplast proteins are degraded within the chloroplast. Whatever the system of degradation, our data do not support the proposed correlation between the rate of protein degradation and either protein charge or size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号