首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli contains multiple peptidoglycan-specific hydrolases, but their physiological purposes are poorly understood. Several mutants lacking combinations of hydrolases grow as chains of unseparated cells, indicating that these enzymes help cleave the septum to separate daughter cells after cell division. Here, we confirm previous observations that in the absence of two or more amidases, thickened and dark bands, which we term septal peptidoglycan (SP) rings, appear at division sites in isolated sacculi. The formation of SP rings depends on active cell division, and they apparently represent a cell division structure that accumulates because septal synthesis and hydrolysis are uncoupled. Even though septal constriction was incomplete, SP rings exhibited two properties of mature cell poles: they behaved as though composed of inert peptidoglycan, and they attracted the IcsA protein. Despite not being separated by a completed peptidoglycan wall, adjacent cells in these chains were often compartmentalized by the inner membrane, indicating that cytokinesis could occur in the absence of invagination of the entire cell envelope. Finally, deletion of penicillin-binding protein 5 from amidase mutants exacerbated the formation of twisted chains, producing numerous cells having septa with abnormal placements and geometries. The results suggest that the amidases are necessary for continued peptidoglycan synthesis during cell division, that their activities help create a septum having the appropriate geometry, and that they may contribute to the development of inert peptidoglycan.  相似文献   

2.
It previously has been shown that lkyD mutants of Salmonella typhimurium form large blebs of outer membrane over the septal and polar regions of dividing cells. To determine whether the outer membrane blebs are formed over potential sites of division even in the absence of septal ingrowth, lkyD strains were studied under conditions in which ingrowth of inner membrane and murein was prevented by inactivation of the envA gene product. In aseptate filaments of the LkyD EnvA strain, outer membrane blebs occurred with the usual frequency and were preferentially located over regions where new septa were formed when cell division was subsequently permitted to resume. The results indicate that the outer membrane blebs of the LkyD strain are markers for potential sites of cell division, implying that an alteration in association of outer membrane and murein exists in these sites before the initiation of septal ingrowth. This localized change in cell envelope organization is independent of the septation-inducing effects of the envA gene product.  相似文献   

3.
The essential cell division protein FtsZ forms a dynamic ring structure at the future division site. This Z-ring contracts during cell division while maintaining a position at the leading edge of the invaginating septum. Using immunofluorescence microscopy we have characterized two situations in which non-ring FtsZ structures are formed. In ftsZ26 (temperature sensitive, Ts) mutant cells, FtsZ-spirals are formed and lead to formation of spirally invaginating septa, which in turn cause morphological abnormalities. In rodA sui mutant cells, which grow as spheres instead of rods, FtsZ-arcs are formed where asymmetric septal invaginations are initiated. The FtsZ-arcs later mature into complete FtsZ-rings. Our data show that Z-spirals and Z-arcs can contract and that in doing so, they determine the shape of the invaginating septa. These results also strongly suggest that in normal cell division, FtsZ is positioned to a single nucleation site on the inner membrane, from which it polymerizes bidirectionally around the cell circumference to form the Z-ring.  相似文献   

4.
Demarcation of the cortical division zone in dividing plant cells   总被引:2,自引:0,他引:2  
Somatic cytokinesis in higher plants involves, besides the actual construction of a new cell wall, also the determination of a division zone. Several proteins have been shown to play a part in the mechanism that somatic plant cells use to control the positioning of the new cell wall. Plant cells determine the division zone at an early stage of cell division and use a transient microtubular structure, the preprophase band (PPB), during this process. The PPB is formed at the division zone, leaving behind a mark that during cytokinesis is utilized by the phragmoplast to guide the expanding cell plate toward the correct cortical insertion site. This review discusses old and new observations with regard to mechanisms implicated in the orientation of cell division and determination of a cortical division zone.  相似文献   

5.
The mechanism used by Escherichia coli to determine the correct site for cell division is unknown. In this report, we have attempted to distinguish between a model in which septal position is determined by the position of the nucleoids and a model in which septal position is predetermined by a mechanism that does not involve nucleoid position. To do this, filaments with extended nucleoid-free regions adjacent to the cell poles were produced by simultaneous inactivation of cell division and DNA replication. The positions of septa that formed within the nucleoid-free zones after division was allowed to resume were then analyzed. The results showed that septa were formed at a uniform distance from cell poles when division was restored, with no relation to the distance from the nearest nucleoid. In some cells, septa were formed directly over nucleoids. These results are inconsistent with models that invoke nucleoid positioning as the mechanism for determining the site of division site formation.  相似文献   

6.
One of the main virulence factors of the pathogenic bacterium Streptococcus pneumoniae is the capsule, present at the bacterial surface, surrounding the entire cell. Virtually all the 90 different capsular serotypes of S. pneumoniae, which vary in their chemical composition, express two conserved proteins, Wzd and Wze, which regulate the rate of the synthesis of capsule. In this work, we show that Wzd, a membrane protein, and Wze, a cytoplasmic tyrosine kinase, localize at the bacterial division septum, when expressed together in pneumococcal cells, without requiring the presence of additional proteins encoded in the capsule operon. The interaction between the two proteins and their consequent septal localization was dependent on a functional ATP binding domain of Wze. In the absence of either Wzd or Wze, capsule was still produced, linked to the cell surface, but it was absent from the division septum. We propose that Wzd and Wze are spatial regulators of capsular polysaccharide synthesis and, in the presence of ATP, localize at the division site, ensuring that capsule is produced in co‐ordination with cell wall synthesis, resulting in full encapsulation of the pneumococcal cells.  相似文献   

7.
Li Z  Trimble MJ  Brun YV  Jensen GJ 《The EMBO journal》2007,26(22):4694-4708
In prokaryotes, FtsZ (the filamentous temperature sensitive protein Z) is a nearly ubiquitous GTPase that localizes in a ring at the leading edge of constricting plasma membranes during cell division. Here we report electron cryotomographic reconstructions of dividing Caulobacter crescentus cells wherein individual arc-like filaments were resolved just underneath the inner membrane at constriction sites. The filaments' position, orientation, time of appearance, and resistance to A22 all suggested that they were FtsZ. Predictable changes in the number, length, and distribution of filaments in cells where the expression levels and stability of FtsZ were altered supported that conclusion. In contrast to the thick, closed-ring-like structure suggested by fluorescence light microscopy, throughout the constriction process the Z-ring was seen here to consist of just a few short (approximately 100 nm) filaments spaced erratically near the division site. Additional densities connecting filaments to the cell wall, occasional straight segments, and abrupt kinks were also seen. An 'iterative pinching' model is proposed wherein FtsZ itself generates the force that constricts the membrane in a GTP-hydrolysis-driven cycle of polymerization, membrane attachment, conformational change, depolymerization, and nucleotide exchange.  相似文献   

8.
Summary Two types of filamentous mutants were derived from the unicellular blue-green alga,Agmenellum, by brief exposure to nitrosoguanidine. The parent exhibits constrictive division analogous to that of the enteric bacteria. The septate mutant exhibits septal division which is almost identical to that observed in all filamentous blue-green algae thus far described. In this mutant, the two outer wall layers fail to invaginate, leaving the daughter cells connected. The coenocytic filamentous mutant divides sporadically by both of these methods. The nuclear region of this mutant appears continuous throughout the length of the filament. It is suggested that the non-septate mutant is impaired in the coordination of cytological events leading to cell division.  相似文献   

9.
Bacterial cell division and the septal ring   总被引:16,自引:0,他引:16  
Cell division in bacteria is mediated by the septal ring, a collection of about a dozen (known) proteins that localize to the division site, where they direct assembly of the division septum. The foundation of the septal ring is a polymer of the tubulin-like protein FtsZ. Recently, experiments using fluorescence recovery after photobleaching have revealed that the Z ring is extremely dynamic. FtsZ subunits exchange in and out of the ring on a time scale of seconds even while the overall morphology of the ring appears static. These findings, together with in vitro studies of purified FtsZ, suggest that the rate-limiting step in turnover of FtsZ polymers is GTP hydrolysis. Another component of the septal ring, FtsK, is involved in coordinating chromosome segregation with cell division. Recent studies have revealed that FtsK is a DNA translocase that facilitates decatenation of sister chromosomes by TopIV and resolution of chromosome dimers by the XerCD recombinase. Finally, two murein hydrolases, AmiC and EnvC, have been shown to localize to the septal ring of Escherichia coli, where they play an important role in separation of daughter cells.  相似文献   

10.
The rate at which the peptidoglycan of Escherichia coli is synthesized during the division cycle was studied with two methods. One method involved synchronization of E. coli MC4100 lysA cultures by centrifugal elutriation and subsequent pulse-labeling of the synchronously growing cultures with [meso-3H]diaminopimelic acid ([3H]Dap). The second method was autoradiography of cells pulse-labeled with [3H]Dap. It was found that the peptidoglycan is synthesized at a more or less exponentially increasing rate during the division cycle with a slight acceleration in this rate as the cells start to constrict. Apparently, polar cap formation requires synthesis of extra surface components, presumably to accommodate for a change in the surface-to-volume ratio. Furthermore, it was found that the pool size of Dap was constant during the division cycle. Close analysis of the topography of [3H]Dap incorporation at the constriction site revealed that constriction proceeded by synthesis of peptidoglycan at the leading edge of the invaginating cell envelope. During constriction, no reallocation of incorporation occurred, i.e., the incorporation at the leading edge remained high throughout the process of constriction. Impairment of penicillin-binding protein 3 by mutation or by the specific beta-lactam antibiotic furazlocillin did not affect [3H]Dap incorporation during initiation of constriction. However, the incorporation at the constriction site was inhibited in later stages of the constriction process. It is concluded that during division at least two peptidoglycan-synthesizing systems are operating sequentially.  相似文献   

11.
Bacterial division requires the co-ordination of membrane invagination, driven by the constriction of the FtsZ-ring, and concomitant cell wall synthesis, performed by the high-molecular-weight penicillin-binding proteins (HMW PBPs). Using immunofluorescence techniques, we show in Streptococcus pneumoniae that this co-ordination requires PBP3, a D,D-carboxypeptidase that degrades the substrate of the HMW PBPs. In a mutant deprived of PBP3, the apparent rings of HMW PBPs and that of FtsZ are no longer co-localized. In wild-type cells, PBP3 is absent at the future division site and present over the rest of the cell surface, implying that the localization of the HMW PBPs at mid-cell depends on the availability of their substrate. FtsW, a putative translocase of the substrate of the PBPs, forms an apparent ring that is co-localized with the septal HMW PBPs throughout the cell cycle of wild-type cells. In particular, the constriction of the FtsW-ring occurs after that of the FtsZ-ring, with the same delay as the constriction of the septal PBP-rings. However, in the absence of PBP3, FtsW remains co-localized with FtsZ in contrast to the HMW PBPs. Our work reveals an unexpected complexity in the relationships between the division proteins. The consequences of the absence of PBP3 indicate that the peptidoglycan composition is central to the co-ordination of the division process.  相似文献   

12.
In Escherichia coli, cell division is mediated by the concerted action of about 12 proteins that assemble at the division site to presumably form a complex called the divisome. Among these essential division proteins, the multimodular class B penicillin-binding protein 3 (PBP3), which is specifically involved in septal peptidoglycan synthesis, consists of a short intracellular M1-R23 peptide fused to a F24-L39 membrane anchor that is linked via a G40-S70 peptide to an R71-I236 noncatalytic module itself linked to a D237-V577 catalytic penicillin-binding module. On the basis of localization analyses of PBP3 mutants fused to green fluorescent protein by fluorescence microscopy, it appears that the first 56 amino acid residues of PBP3 containing the membrane anchor and the G40-E56 peptide contain the structural determinants required to target the protein to the cell division site and that none of the putative protein interaction sites present in the noncatalytic module are essential for the positioning of the protein to the division site. Based on the effects of increasing production of FtsQ or FtsW on the division of cells expressing PBP3 mutants, it is suggested that these proteins could interact. We postulate that FtsQ could play a role in regulating the assembly of these division proteins at the division site and the activity of the peptidoglycan assembly machineries within the divisome.  相似文献   

13.
Phase-contrast and serial-section electron microscopy were used to study the patterns of localized plasmolysis that occur when cells of Salmonella typhimurium and Escherichia coli are exposed to hypertonic solutions of sucrose. In dividing cells the nascent septum was flanked by localized regions of periseptal plasmolysis. In randomly growing populations, plasmolysis bays that were not associated with septal ingrowth were clustered at the midpoint of the cell and at 1/4 and 3/4 cell lengths. The localized regions of plasmolysis were limited by continuous zones of adhesion that resembled the periseptal annular adhesion zones described previously in lkyD mutants of S. typhimurium (T. J. MacAlister, B. MacDonald, and L. I. Rothfield, Proc. Natl. Acad. Sci. USA 80:1372-1376, 1983). When cell division was blocked by growing divC(Ts) cells at elevated temperatures, the localized regions of plasmolysis were clustered along the aseptate filaments at positions that corresponded to sites where septum formation occurred when cell division was permitted to resume by a shift back to the permissive temperature. Taken together the results are consistent with a model in which extended zones of adhesion define localized compartments within the periplasmic space, predominantly located at future sites of cell division.  相似文献   

14.
Research on bacterial cell division has recently gained renewed impetus because of new information about peptidoglycan assembly and about specific cell-division genes and their products. This paper concerns aspects of cell division that specifically concern the peptidoglycan. It is shown that upon division, peptidoglycan assembly switches from lateral wall location to the cell centre, that assembly takes place at the leading edge of the invaginating constriction, that the mode of glycan strand insertion changes from a single-stranded mode to a multi-stranded mode, and that the initiation of division (in contrast to its continuation) requires penicillin-insensitive peptidoglycan synthesis (PIPS). A membrane component X (possibly FtsQ) is proposed to coordinate PIPS with the cell division-initiating protein FtsZ. It is suggested that a largely proteinaceous macromolecular complex (divisome) at the leading edge of constriction encompasses three compartments (cytoplasm, membrane and periplasm). The composition of this complex is proposed to vary depending on whether division is being initiated or completed.  相似文献   

15.
Strap-shaped prothalli of CERATOPTERIS: richardii grown in the dark have an apical meristem, a subapical elongation zone and a basal growth cessation zone [Murata et al. (1997) Plant Cell Physiol. 38: 201]. When the dark-grown prothalli were irradiated with continuous white light, marginal cells of the elongation zone divided asymmetrically, and the resulting smaller cells developed into rhizoids. The asymmetric division was also induced by brief irradiation of red light. The effect of red light was cancelled by subsequent irradiation of far-red light, indicating that the asymmetric division was regulated by phytochrome. Since the response to red light was not observed at 10(1) J m(-2) and saturated at 10(2) J m(-2) and the response is photoreversible by far-red light, the photoresponse was classified as a low-fluence response of phytochrome. Although the asymmetric division was induced by brief irradiation of red light, continuous irradiation of white, blue or red light was necessary to induce rhizoid growth. These results indicate that asymmetric division and subsequent cell growth are independently regulated by light in CERATOPTERIS: prothalli.  相似文献   

16.
Mycobacterium spp., rod‐shaped cells belonging to the phylum Actinomycetes, lack the Min‐ and Noc/Slm systems responsible for preventing the placement of division sites at the poles or over the nucleoids to ensure septal assembly at mid‐cell. We show that the position for establishment of the FtsZ‐ring in exponentially growing Mycobacterium marinum and Mycobacterium smegmatis cells is nearly random, and that the cells often divide non‐medially, producing two unequal but viable daughters. Septal sites and cellular growth disclosed by staining with the membrane‐specific dye FM4‐64 and fluorescent antibiotic vancomycin (FL‐Vanco), respectively, showed that many division sites were off‐centre, often over the nucleoids, and that apical cell growth was frequently unequal at the two poles. DNA transfer through the division septum was detected, and translocation activity was supported by the presence of a putative mycobacterial DNA translocase (MSMEG2690) at the majority of the division sites. Time‐lapse imaging of single live cells through several generations confirmed both acentric division site placement and unequal polar growth in mycobacteria. Our evidence suggests that post‐septal DNA transport and unequal polar growth may compensate for the non‐medial division site placement in Mycobacterium spp.  相似文献   

17.
Leaf growth in monocotyledons results from the flux of newly born cells out of the division zone and into the adjacent elongation-only zone, where cells reach their final length. We used a kinematic method to analyze the effect of phosphorus nutrition status on cell division and elongation parameters in the epidermis of Lolium perenne. Phosphorus deficiency reduced the leaf elongation rate by 39% due to decreases in the cell production rate (-19%) and final cell length (-20%). The former was solely due to a lower average cell division rate (0.028 versus 0.046 cell cell(-1) h(-1)) and, thus, a lengthened average cell cycle duration (25 versus 15 h). The number of division cycles of the initial cell progeny (five to six) and, as a result, the number of meristematic cells (32-64) and division zone length were independent of phosphorus status. Accordingly, low-phosphorus cells maintained meristematic activity longer. Lack of effect of phosphorus deficiency on meristematic cell length implies that a lower division rate was matched to a lower elongation rate. Phosphorus deficiency did not affect the elongation-only zone length, thus leading to longer cell elongation duration (99 versus 75 h). However, the substantially reduced postmitotic average relative elongation rate (0.045 versus 0.064 mm mm(-1) h(-1)) resulted in shorter mature cells. In summary, phosphorus deficiency did not affect the general controls of cell morphogenesis, but, by slowing down the rates of cell division and expansion, it slowed down its pace.  相似文献   

18.
Geometry of cell division in Staphylococcus aureus.   总被引:4,自引:0,他引:4       下载免费PDF全文
The process of division in Staphylococcus aureus was examined by phase-contrast microscopy. The organisms appeared to divide in three alternating perpendicular planes, with sister cells remaining attached to each other after division. The resulting point of attachment was usually not exactly at the point corresponding to the center of the previous septal disk. Moreover, sister cells often changed position with respect to one another while still remaining attached. These factors are apparently responsible for the irregularity of staphylococcal clumps. Studies with penicillin and the examination of thin sections in the electron microscope confirm the conclusion, based upon light microscopy, that successive divisions in S. aureus occur in perpendicular planes.  相似文献   

19.
We have characterized the role of the penicillin-binding protein PBP 2B in cell division of Bacillus subtilis. We have shown that depletion of the protein results in an arrest in division, but that this arrest is slow, probably because the protein is relatively stable. PBP 2B-depleted filaments contained, at about their mid-points, structures resembling partially formed septa, into which most, if not all, of the division proteins had assembled. Although clearly deficient in wall material, membrane invagination seemed to continue, indicating that membrane and wall ingrowth can be uncoupled. At other potential division sites along the filaments, no visible ingrowths were observed, although FtsZ rings assembled at regular intervals. Thus, PBP 2B is apparently required for both the initiation of division and continued septal ingrowth. Immunofluorescence microscopy showed that the protein is recruited to the division site. The pattern of localization suggested that this recruitment occurs continually during septal ingrowth. During sporulation, PBP 2B was present transiently in the asymmetrical septum of sporulating cells, and its availability may play a role in the regulation of sporulation septation.  相似文献   

20.
At the heart of bacterial cell division is a dynamic ring-like structure of polymers of the tubulin homologue FtsZ. This ring forms a scaffold for assembly of at least ten additional proteins at midcell, the majority of which are likely to be involved in remodeling the peptidoglycan cell wall at the division site. Together with FtsZ, these proteins are thought to form a cell division complex, or divisome. In Escherichia coli, the components of the divisome are recruited to midcell according to a strikingly linear hierarchy that predicts a step-wise assembly pathway. However, recent studies have revealed unexpected complexity in the assembly steps, indicating that the apparent linearity does not necessarily reflect a temporal order. The signals used to recruit cell division proteins to midcell are diverse and include regulated self-assembly, protein-protein interactions, and the recognition of specific septal peptidoglycan substrates. There is also evidence for a complex web of interactions among these proteins and at least one distinct subcomplex of cell division proteins has been defined, which is conserved among E. coli, Bacillus subtilis and Streptococcus pneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号