首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Aquatic–terrestrial ecotones are vulnerable to climate change, and degradation of the emergent aquatic macrophyte zone would have severe ecological consequences for freshwater, wetland and terrestrial ecosystems. Our aim was to uncover future changes in boreal emergent aquatic macrophyte zones by modelling the occurrence and percentage cover of emergent aquatic vegetation under different climate scenarios in Finland by the 2050s. Location Finland, northern Europe. Methods Data derived from different GIS sources were used to estimate future emergent aquatic macrophyte distributions in all catchments in Finland (848 in total). We used generalized additive models (GAM) with a full stepwise selection algorithm and Akaike information criterion to explore the main environmental determinates (climate and geomorphology) of emergent aquatic macrophyte distributions, which were derived from the national subclass of CORINE land‐cover classification. The accuracy of the distribution models (GAMs) was cross‐validated, using percentage of explained deviance and the area under the curve derived from the receiver‐operating characteristic plots. Results Our results indicated that emergent aquatic macrophytes will expand their distributions northwards from the current catchments and percentage cover will increase in all of the catchments in all climate scenarios. Growing degree‐days was the primary determinant affecting distributions of emergent aquatic macrophytes. Inclusion of geomorphological variables clearly improved model performance in both model exercises compared with pure climate variables. Main conclusions Emergent aquatic macrophyte distributions will expand due to climate change. Many emergent aquatic plant species have already expanded their distributions during the past decades, and this process will continue in the years 2051–80. Emergent aquatic macrophytes pose an increasing overgrowth risk for sensitive macrophyte species in boreal freshwater ecosystems, which should be acknowledged in management and conservation actions. We conclude that predictions based on GIS data can provide useful ‘first‐filter’ estimates of changes in aquatic–terrestrial ecotones.  相似文献   

2.
This study investigates the use of aquatic macrophytes as indicators of stream condition in catchments with varied land use and levels of riparian disturbance in the Wet Tropics region of North Queensland (Australia), a region of global significance in terms of faunal and floral diversity. In a paired catchment design spatial variations in macrophyte assemblage structure were characterised using multivariate and univariate techniques. Seven metrics were trialled: total macrophyte cover, species richness, % alien taxa, % native taxa, % submerged taxa, % emergent taxa and % Poaceae. Forty-four macrophyte taxa were recorded from the study area. Poaceae, Cyperaceae and mosses were the most frequently recorded taxa. Upper catchment areas in all tributaries surveyed were dominated by mosses and Cladopus queenslandicus (Domin) C.D.K. Cook (Podestemaceae). This assemblage occurred in areas with intact riparian canopy cover and good overall riparian condition. Macrophyte assemblages in lower catchment areas were distributed along gradients of riparian disturbance. Simultaneous autoregression model coefficients indicated that riparian condition had a negative influence on macrophyte cover, species richness and the proportions of alien taxa, emergent taxa and Poaceae present at sites in the Wet Tropics. Macrophyte metrics were not strongly influenced by the types of land use or water quality. These findings suggest that a riparian condition assessment would provide an adequate first assessment of the state of aquatic macrophyte assemblages in Wet Tropics streams.  相似文献   

3.
西太湖水生植物时空变化   总被引:37,自引:3,他引:37  
水生植物在浅水湖泊生态系统中具有十分重要的作用。根据中国科学院太湖湖泊生态系统研究站1989年以来的常规监测资料,将西太湖(除东太湖以外的湖区)划分为9个区,采用点截法(point intercept method),于2002~2005年对各区水生植物的种类、生物量和空间分布情况进行了6次调查。结果表明:西太湖现有水生植物16种,分属于11科12属;水生植物总面积约10220hm^2,其中沉水植物分布面积约占64.58%;挺水植物约占0.29%;漂浮植物约占38.16%。各个种之间生物量差异显著,马来眼子菜、荇菜、芦苇的生物量在所有水生植物中居前3位。多样性分析表明,水生植物种类4a来未发生明显变化,但种类和生物量季节性差异较大。水生植物呈环状分布在距湖岸5km以内的水域和部分岛屿周围,东岸和南岸为水生植物的主要集中分布区域,分布区连续性好,且水草种类齐全。挺水植物种类单一,仅有芦苇(Phragmites communis)一种,分布区域多限于水深小于1.6m的湖岸;沉水植物共有8种,为水生植物的主要组成部分,马来眼子菜(Potamogeton malaianus)的分布频度最高,在西山岛周围水域逐年扩张,成为该区域的先锋种;漂浮植物3种,主要以荇菜(Nymphoides peltata)为主,在七都水域有逐渐扩张的趋势。马来眼子菜、芦苇、荇菜表现出对水环境较强的适应能力,目前为西太湖的3个优势种。20世纪50年代以来,西太湖水生植物种类减少了50种,其中水质下降是导致水生植物种类不断减少甚至消失的一个重要原因。围网养殖和不合理的捕捞方式也对局部水域的植物造成极大的破坏。水生植物生存环境日益严峻,种群单一化趋势日益明显。  相似文献   

4.
The main goal of this study was to determine how much variation in macrophyte richness and composition is explained by wetland area, altitude, water conductivity, and nitrate and total phosphorus concentrations in wetlands in southern Brazil, and to compare these variations in two wetland subsystems (palustrine and lacustrine). A total of 126 wetlands were sampled distributed in two subsystems: 87 palustrine and 39 lacustrine wetlands. A total of 153 species of aquatic macrophytes was found in wetlands of southern Brazil and the mean number of macrophyte species per site was 8.7 (range 1–23). From the variables tested, the altitude and area were the only predictor of macrophyte richness and explained 23.1% of variation in richness. The two first axes generated by CCA explained only 4.4% of the variation in the aquatic macrophytes distribution. The macrophyte richness was similar across lacustrine and palustrine subsystems. While altitude, area and conductivity explained 33.2% of variation in macrophyte richness in the palustrine subsystem, none of the variables were associated with macrophyte richness in the studied lacustrine wetlands.  相似文献   

5.
1. Aquatic macrophyte diversity and water quality of 55 ponds in western Japan were related to land use and morphometric variables to identify the environmental factors that sustain biodiversity and the spatial extent at which these factors operate. 2. The relevant spatial extent for floating‐leaved macrophyte richness (500 m from pond edge) was larger than that for submerged macrophyte occurrence (10, 75 and 100 m), whereas emergent macrophyte richness was best explained at much larger extents (1000 m). Total macrophyte richness was explained at the extent of 500, 750 and 1000 m. The extents relevant for explaining the physicochemical condition of pond water (100 and 250 m) were similar to those for submerged and floating‐leaved macrophytes, suggesting that these two growth forms are more sensitive to water quality compared to emergent macrophytes. 3. Diversity of all three growth forms and that of total macrophytes collectively were inversely related to turbidity and nutrient concentration; among the three growth forms, submerged macrophytes were most affected by water quality. 4. Negative relationships were found between the proportion of urban area and the diversity of the three growth forms and that of total macrophytes and water quality. Species richness of emergent, floating‐leaved and total macrophytes decreased with depth and increased with surface area up to about 5000 m2, above which it declined. 5. Urbanisation and enlargement of ponds were the two main factors that decreased aquatic macrophyte diversity in irrigation ponds. To alleviate the adverse effects of urban areas on aquatic macrophyte diversity, our results suggest that management efforts should focus on the creation of buffer zones within the relevant spatial extent from the pond edge.  相似文献   

6.
We collected quantitative data on macrophyte abundance and water quality in 319 mostly shallow, polymictic, Florida lakes to look for relationships between trophic state indicators and the biomasses of plankton algae, periphyton, and macrophytes. The lakes ranged from oligotrophic to hypereutrophic with total algal chlorophylls ranging from 1 to 241 mg m–3. There were strong positive correlations between planktonic chlorophylls and total phosphorus and total nitrogen, but there were weak inverse relationships between the densities of periphyton and the trophic state indicators total phosphorus, total nitrogen and algal chlorophyll and a positive relationship with Secchi depth. There was no predictable relationship between the abundance of emergent, floating-leaved, and submersed aquatic vegetation and the trophic state indicators. It was only at the highest levels of nutrient concentrations that submersed macrophytes were predictably absent and the lakes were algal dominated. Below these levels, macrophyte abundance could be high or low. The phosphorus–chlorophyll and phosphorus–Secchi depth relationships were not influenced by the amounts of aquatic vegetation present indicating that the role of macrophytes in clearing lakes may be primarily to reduce nutrient concentrations for a given level of loading. Rather than nutrient concentrations controlling macrophyte abundance, it seems that macrophytes acted to modify nutrient concentrations.  相似文献   

7.
In order to evaluate latitudinal differences in the relationship of phytoplankton biomass and diversity with environmental conditions in shallow lakes, we sampled 98 shallow lakes from three European regions: Denmark (DK), Belgium/The Netherlands (BNL) and southern Spain (SP). Phytoplankton biomass increased with total phosphorus (TP) concentrations and decreased with submerged macrophyte cover across the three regions. Generic richness was significantly negatively related to submerged macrophyte cover and related environmental variables. Zooplankton:phytoplankton biomass ratios were positively related to submerged macrophyte cover and negatively to phytoplankton generic richness in DK and BNL, suggesting that the low generic richness in lakes with submerged macrophytes was due to a higher zooplankton grazing pressure in these regions. In SP, phytoplankton generic richness was not influenced by zooplankton grazing pressure but related to conductivity. We observed no relationship between phytoplankton generic richness and TP concentration in any of the three regions. The three regions differed significantly with respect to mean local and regional generic richness, with BNL being more diverse than the other two regions. Our observations suggest that phytoplankton diversity in European shallow lakes is influenced by submerged macrophyte cover indirectly by modulating zooplankton grazing. This influence of submerged macrophytes and zooplankton grazing on phytoplankton diversity decreases from north to south.  相似文献   

8.
报道1991-1993年武汉东湖子湖后湖区水处植被和水体理化性质的调查结果。上前后湖水生植物较东湖其它湖区丰富,共记载了47种,3年间水生植物生物量和水生植被分布面积变动剧烈。1991年水生植被分布面积约为该湖区面积的8.4%;1992年高达381hm^2,覆盖面积达80%;而1993年水生植被面积不到1%。经分析,认为目前影响后湖水生植被的扩要因子是草食性鱼类,只要停止放养  相似文献   

9.
Assessment of the environmental factors that control species richness (S) is a central issue in ecology. In this study, aquatic macrophyte S was estimated in 235 sampling sites distributed in 8 arms of a large (1350 km2) subtropical reservoir (Itaipu Reservoir, Brazil). Morphometric variables (area, shoreline development and length of shoreline, all measured for each arm; n= 8) and environmental variables measured at each sampling site (extinction coefficient of light (k), electrical conductivity, fetch, distance from the main reservoir body; n = 235) were used to predict aquatic macrophyte S at two spatial scales. At arm scale, linear regression analysis indicated that length of shoreline was a better predictor of S than area. At sampling site scale, multiple regression analysis indicated that S was significantly predicted by electrical conductivity, fetch and distance from the main body. However, other relationships with predictive interest was demonstrated by using non-traditional regression approaches. This analysis started by the visual inspection of scatter plots. The bivariate relationship between S and fetch, for example, showed an envelope or a `left triangle' pattern. The relationship between the number of submerged species and k showed an asymmetrical left triangle pattern. Using randomization procedures, it was demonstrated that these patterns were not generated by chance alone. Beta diversity (estimated within the arms) was significantly and positively correlated with spatial environmental variability. Overall, these results indicate that the prediction of aquatic macrophytes assemblage variables in large waterbodies, specially S, is more complex than previous studies have suggested.  相似文献   

10.
  1. To test hypotheses concerning the applicability of the Rapoport effect (RE: “species that occur at higher latitudes tend to have greater geographical range-size than species which have ranges limited to latitudes closer to the equator”) to aquatic macrophytes at global scale, we analysed the world latitudinal distribution and range-size of 1,083 vascular aquatic macrophyte species, from 91 genera in 11 families. We targeted macrophyte families strongly associated with inland aquatic habitats (i.e. with a zero, or only very low, proportion of constituent species which occur also in non-aquatic habitats), and which are distributed across a substantial latitudinal gradient, a necessary condition to test our hypotheses.
  2. The macrophyte species present in these families include plants from all the normally accepted life form-defined functional groups of macrophytes, namely submerged, free-floating, floating-leaf rooted and emergent species, and represent the three major vascular taxonomic groups occurring as aquatic macrophytes (ferns/fern allies, monocots, and dicots). For the analysis, we used both latitude-only and areal measures of macrophyte species geographic range-size, within a 10 × 10° (latitude × longitude) grid of 238 grid cells, covering the six world ecozones (Palaearctic, Orient, Australasia, Nearctic, Neotropics, Afrotropics) that primarily contain inland freshwater and brackish macrophyte habitats.
  3. The results provide new insight into the relationships between global range-size of macrophytes, latitude, and other potential spatio-environmental and anthropogenic drivers acting upon these plants at world scale. In particular, the outcomes indicated that: (1) the range-size versus latitude distribution of macrophytes shows evidence of a strong RE influence, with significantly greater species range-size at higher latitudes; and (2) the β-diversity pattern of species distribution along this latitudinal gradient is poorly explained by nestedness organisation, and species turnover is a more likely explanation of the observed changes in species distribution with latitude.
  4. Spatio-environmental and anthropogenic variables other than latitude may also influence the observed global geographical pattern of macrophyte range-size, although their importance as predictors varies between individual families. Extent of agricultural land use, altitude, and historic (post-Quaternary) climate change velocity were all significant predictor variables for some families. However, interestingly, neither the area of land nor the area of waterbody present per grid cell were major influences on macrophyte range-size distribution.
  5. Our finding of evidence for an RE, acting at global scale in aquatic macrophytes, contributes to increasing the generality of conclusions so far reached about the large-scale factors that drive patterns of species range-size at global scale. The study also provides a baseline for future macroecological work on aquatic plants, and potentially other freshwater organisms, particularly in the context of predicting how the world ranges of freshwater biota will respond to ongoing global environmental change.
  相似文献   

11.
Introduced submerged macrophytes have come to dominate many shallow water bodies in New Zealand, and are a common component of many lowland streams. We investigated the seasonal variation of macrophyte abundance, its influence on flow and channel volume, and the implications of this on stream habitat and functioning in Whakapipi Stream, a typical lowland stream draining a predominantly agricultural catchment.Abundance of macrophytes over the summer was primarily controlled by the phenological cycles of the two dominant species. Mean minimum total macrophyte biomass (36 g m–2) and cover (7%) occurred in winter (June and August, respectively), and mean maximum biomass (324 g m–2), and cover (79%) occurred in late summer (March and February respectively). Egeria densa comprised the majority of both cover and biomass during the study period, except early summer (December) when Potamogeton crispus was prevalent in the shallow stream reaches.Macrophyte beds had a major impact on summer stream velocities, reducing average velocities by an estimated 41%. Stream cross-sectional area was maintained at relatively stable levels similar to that recorded over winter, when stream discharge was in the order of seven times greater. The mean velocity distribution coefficient (), and Manning's roughness coefficient (n) were dependent on and displayed a positive linear relationship with macrophyte abundance. The velocity distribution coefficient is recommended as a better indicator of macrophyte effects on velocity in natural streams, as it does not assume uniform velocity, channel depth and slope within the stream reach.Our study shows that submerged macrophytes play an important structuring role within the stream during the summer period, where macrophyte beds act as semi-permeable dams, retarding flow velocities and increasing stream depth and cross-sectional area. This promotes habitat heterogeneity by creating a greater range of flow velocity variation, and also provides large stable low-flow areas. Other likely ecosystem effects resulting from macrophyte/velocity interactions include increased sedimentation, potential for nutrient processing and increased primary production, both by macrophytes and attached epiphyton. The complex architecture of submerged macrophytes and their influence on stream flow may also provide an increased diversity of habitat for other aquatic biota. We propose that management of degraded lowland streams such as the Whakapipi Stream to maintain stretches with moderate quantities of submerged macrophytes interspersed with shaded areas would optimise stream health during low summer flows.  相似文献   

12.
Efforts to rehabilitate degraded urban streams generally focus on improving physical habitat and rarely include reestablishing biota such as macrophytes. Our objectives in this study were to propagate and transplant native macrophytes into a South Island, New Zealand, urban stream undergoing rehabilitation, assess macrophyte survival and growth, and determine whether native macrophytes suppress non-native macrophytes and/or enhance stream invertebrate communities. Effects of native macrophytes on invertebrates and non-native macrophytes were assessed after transplanting patches of native macrophytes into a 230-m-long stream section. A 100-m-long section upstream was left unplanted for subsequent comparisons. Following the study, a survey was conducted to gauge public opinion about the rehabilitation project and determine whether macrophytes were prominent in perceptions of stream health. In the first growing season, native macrophyte cover in the planted stream section increased from 1.5 to 20%, and then decreased during winter. Regrowth from rhizomes led to rapid aboveground growth during the second year, when cover reached 51%. Non-native macrophytes colonized the stream the first year, but native macrophytes appeared to limit the spread of non-natives, which were absent in the planted section by the second spring. Native macrophyte establishment did not enhance invertebrate communities as predicted; few invertebrate metrics differed significantly between the planted and unplanted sections. Pollution- and sediment-tolerant invertebrate taxa were abundant in both sections, suggesting that invertebrate colonization was limited by water quality or sedimentation, not macrophyte composition. Survey respondents considered the stream to be visually and ecologically improved after rehabilitation, and macrophyte establishment was generally considered positive or neutral.  相似文献   

13.
Abstract The goal of this research is to evaluate how the assemblages of aquatic macrophytes in marginal floodplain habitats, with different degrees of connectivity to the main river, respond to water level fluctuations. Samples were carried out quarterly (May 2000 to March 2002) in seven lagoons of the Upper Paraná River floodplain (22°30′ and 22°45′‐S and 53°15′ and 53°30′‐W) with different degrees of connectivity (connected and disconnected to the main river). In each lagoon, a shore‐pelagic zone transect was marked and at every 2 m the depth and the cover of each aquatic macrophyte species were recorded (Domin‐Krajina scale) in a quadrat of 0.25 m2. A total of 29 aquatic macrophyte species and an unusual decrease in water level were recorded in August 2001. Drawdown had a negative impact on species richness, only in connected lagoons, which was shown by a positive relationship between depth and species number (r‐Spearman = 0.86; P < 0.01). Depth affected Beta diversity positively (r‐Spearman = 0.79; P < 0.05). Drawdown affected the connected and disconnected lagoons differently, which can be attributed to their different morphometry. In this period, ‘habitat contraction’ was higher on connected lagoons. Positive correlation between mean species number and depth, and between beta diversity and depth, are factors that support this affirmation. Indicator species analysis showed that for disconnected lagoons, Oxycaryum cubense (Cyperaceae), Polygonum meissnerianum (Polygonaceae) and P. ferrugineum, with indicator values (IndVal) of 53, 30 and 25%, respectively, were indicator species. Salvinia spp. (Salvinaceae) (62%), P. acuminatum (44%) and the Ricciaceae Ricciocarpus natans (0%) were the indicator species of the connected lagoons.  相似文献   

14.
Generalized linear models were used to test the effect of fish, using ponds with and without fish and habitat features as covariates, on richness and abundance of amphibian species. Five fish species and six amphibian species were recorded in 60 permanent ponds located in central Italy. The choice of covariates (macrophyte cover and pond surface area) was made after studying the correlations. The richness of amphibian species was not significantly affected by fish presence or macrophyte cover, in line with previous studies, since almost all the fish species were non-predatory. However, abundance of urodeles (newts) was negatively affected by fish and positively affected by macrophyte cover. Although fish may strongly influence the abundance and composition of amphibian communities, the results indicate that the cover of aquatic macrophytes may increase the available habitat for amphibians and therefore their abundance. Anuran species preferred ponds where fish were present, since both groups preferred larger ponds. Concordance between fish and amphibian species composition was not found by the Mantel and Partial Mantel tests. This indicates that the fish assemblages do not predict which amphibian species occur in the pond.  相似文献   

15.
16.
Submerged macrophytes enhance water transparency and aquatic biodiversity in shallow water ecosystems. Therefore, the return of submerged macrophytes is the target of many lake restoration projects. However, at present, north-western European aquatic ecosystems are increasingly invaded by omnivorous exotic crayfish. We hypothesize that invasive crayfish pose a novel constraint on the regeneration of submerged macrophytes in restored lakes and may jeopardize restoration efforts. We experimentally investigated whether the invasive crayfish (Procambarus clarkii Girard) affects submerged macrophyte development in a Dutch peat lake where these crayfish are expanding rapidly. Seemingly favourable abiotic conditions for macrophyte growth existed in two 0.5 ha lake enclosures, which provided shelter and reduced turbidity, and in one lake enclosure iron was added to reduce internal nutrient loading, but macrophytes did not emerge. We transplanted three submerged macrophyte species in a full factorial exclosure experiment, where we separated the effect of crayfish from large vertebrates using different mesh sizes combined with a caging treatment stocked with crayfish only. The three transplanted macrophytes grew rapidly when protected from grazing in both lake enclosures, demonstrating that abiotic conditions for growth were suitable. Crayfish strongly reduced biomass and survival of all three macrophyte species while waterfowl and fish had no additive effects. Gut contents showed that crayfish were mostly carnivorous, but also consumed macrophytes. We show that P. clarkii strongly inhibit macrophyte development once favourable abiotic conditions for macrophyte growth are restored. Therefore, expansion of invasive crayfish poses a novel threat to the restoration of shallow water bodies in north-western Europe. Prevention of introduction and spread of crayfish is urgent, as management of invasive crayfish populations is very difficult.  相似文献   

17.
Macrophytes influence the physical, chemical, and biological characteristics of lowland streams, so may be critically important in stream management. We investigated the role of macrophytes in regulating metabolism and nutrient cycling in three lowland, agricultural streams. We measured stream metabolism over the growing season and following experimental macrophyte removal, and used short-term nutrient additions of phosphate (P) and ammonium to assess macrophyte influences on nutrient uptake. Primary production was closely correlated with macrophyte cover across all streams and dates, and decreased greatly with macrophyte removal, whereas ecosystem respiration was not correlated with macrophyte cover and was not altered by macrophyte removal. Phosphate uptake velocity was negatively related to primary production, suggesting that macrophyte activity actually slowed P uptake. Ammonium uptake was not correlated with macrophyte cover or metabolism metrics. Stream nitrate concentrations typically exceeded concentrations of incoming groundwater, suggesting little net nitrate retention in these macrophyte-dominated streams. Phosphorous demand by macrophytes was 10-fold lower than observed uptake rates, indicating that macrophyte P demand was much lower than that of other stream biota. Nitrogen demand by macrophytes was nearly equal to ammonium uptake and was not sufficient to affect the high nitrate flux. These results indicate that macrophytes drive ecosystem metabolism but have limited influence on water column nutrient concentrations because macrophyte demand is much lower than the supply available from the water column. Thus macrophytes in our streams had a large impact on stream trophic state, but offered little potential to influence nutrient removal via management.  相似文献   

18.
Low current velocities, high nutrient levels, the lack of riparian forest vegetation, and the development of dense and rich macrophyte communities characterize Pampean streams. The objective of this study was to describe the main physical, chemical, and biological characteristics of a headwater Pampean stream as well as to analyze the role of macrophytes and phytobenthos. The study was conducted in a stream considered to be not much disturbed by human activities. Samples of water and organisms (macrophytes, benthic algae and invertebrates) were taken monthly for 14 months in two sampling stations, in fast flow and slow flow sites. Macrophyte biomass and diversity increased in spring and summer, and they decreased in autumn, when the plant community was greatly affected by an important flood. Phytobenthos biomass was lower in late summer, possibly due to the establishment of a dense cover of the floating macrophyte Lemna gibba L. Density of amphipods and gastropods greatly increases in spring and summer, jointly with the macrophyte development. Analysis of correlation showed that current velocity is the most important factor influencing macrophyte biomass and phytobenthos structure, while depth, nutrients, and herbivores are linked factors. Pampean streams could be considered systems dynamically fragile, because habitat heterogeneity is generated by aquatic vegetation, a substratum that varies along time.  相似文献   

19.
Neotropical aquatic ecosystems have a rich aquatic flora. In this report, we have listed the aquatic flora of various habitats of the upper Paraná River floodplain by compiling data from literature and records of our own continuous collections conducted during the period 2007-2009. Our main purposes were to assess the macrophyte richness in the Paraná floodplain, to compare it with other South American wetlands and to assess whether the number of species recorded in South American inventories has already reached an asymptote. We recorded a total of 153 species of macrophytes in the Upper Paraná River floodplain, belonging to 100 genera and 47 families. In our comparative analysis, a clear floristic split from other South American wetlands was shown, except for the Pantanal, which is the closest wetland to the Paraná floodplain and, therefore, could be considered a floristic extension of the Pantanal. The species accumulation curve provides evidence that sampling efforts should be reinforced in order to compile a macrophyte flora census for South America. The high dissimilarity among South American wetlands, together with the lack of an asymptote in our species accumulation curve, indicates that the sampling effort needs to be increased to account for the actual species richness of macrophytes in this region.  相似文献   

20.
It has been suggested that shallow lakes in warm climates have a higher probability of being turbid, rather than macrophyte dominated, compared with lakes in cooler climates, but little field evidence exists to evaluate this hypothesis. We analyzed data from 782 lake years in different climate zones in North America, South America, and Europe. We tested if systematic differences exist in the relationship between the abundance of submerged macrophytes and environmental factors such as lake depth and nutrient levels. In the pooled dataset the proportion of lakes with substantial submerged macrophyte coverage (> 30% of the lake area) decreased in a sigmoidal way with increasing total phosphorus (TP) concentration, falling most steeply between 0.05 and 0.2 mg L−1. Substantial submerged macrophyte coverage was also rare in lakes with total nitrogen (TN) concentrations above 1–2 mg L−1, except for lakes with very low TP concentrations where macrophytes remain abundant until higher TN concentrations. The deviance reduction of logistic regression models predicting macrophyte coverage from nutrients and water depth was generally low, and notably lowest in tropical and subtropical regions (Brazil, Uruguay, and Florida), suggesting that macrophyte coverage was strongly influenced by other factors. The maximum TP concentration allowing substantial submerged macrophyte coverage was clearly higher in cold regions with more frost days. This is in agreement with other studies which found a large influence of ice cover duration on shallow lakes' ecology through partial fish kills that may improve light conditions for submerged macrophytes by cascading effects on periphyton and phytoplankton. Our findings suggest that, in regions where climatic warming is projected to lead to fewer frost days, macrophyte cover will decrease unless the nutrient levels are lowered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号