首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of pentobarbital anesthesia on the energy metabolism of FSaII and MCaIV foot tumors in mice were studied by 31P MRS. Using an 8.5 T spectrometer, in vivo spectra were obtained in 15 animals before and after pentobarbital anesthesia (0.05 mg/g ip). The average phosphocreatine/inorganic phosphate ratios (PCr/Pi) with and without pentobarbital were similar for both tumor histologies. Effects on individual tumors, however, were greater than 20% in 9/15 animals and greater than 50% in 6/15 animals. Pentobarbital anesthesia increased the variability of tumor intracellular pH, and the phosphomonoester/nucleotide triphosphate (PME/NTP) and nucleotide triphosphate/inorganic phosphate ratios (NTP/Pi). When examining the average in a cohort, pentobarbital anesthesia had no significant effect on the PCr/Pi, PME/NTP, NTP/Pi ratios or the pH. However, approximately equal to 50% of individual tumors do have significant changes in these parameters. The anesthesia-induced variability of tumor energy metabolism may explain the decrease in TCD50 observed in previous studies using multifraction radiation.  相似文献   

2.
The mechanism of muscle fatigue was studied by 31P-MRS. During tetanic contraction for 2 minutes(min), the tension measured with a strain gauge and Phosphocreatine(PCr)/Inorganic phosphate(Pi)+ Phosphomonoester(PME) ratio decreased to 31.5 +/- 4.4% of the control value and 0.6 +/- 0.1, respectively. The intracellular pH(pH) also decreased to 6.62 +/- 0.04. Toward the end of the stimulation, the tension decreased to 25.3 +/- 1.9% of the control value. However, during 20min stimulation, the PCr/(Pi+PME) ratio increased to 2.5 +/- 0.5 and the pH to 6.91 +/- 0.04. These results show that muscular fatigue is ascribable not to a decreased level of high energy metabolites required for actomyosin ATPase, but to an increase in the threshold intensity of excitation in excitation-contraction coupling.  相似文献   

3.
The changes in pO2 caused by nicotinamide in the FSaII mouse tumor and three different xenografts of human tumors, HP-56, FaDu, and EO1, grown subcutaneously in the legs of mice were studied. The tumor pO2, as measured with microelectrodes, began to rise soon after the host mice were injected intraperitoneally with 500 mg/kg nicotinamide, and it increased continuously for 100-120 min. The rate and magnitude of the increase in tumor pO2 was dependent on the tumor line and also on the tumor size. In FSaII tumors, the increase in pO2 caused by nicotinamide was relatively small in the well-oxygenated small tumors (173 +/- 5 mm3) compared with that in the larger tumors (515 +/- 25 mm3). The blood perfusion in FSaII tumors as measured with the laser Doppler method was also increased by nicotinamide. The growth delay in FSaII tumors induced by X irradiation was enhanced significantly by nicotinamide. It was concluded that the enhancement of radiation damage in the experimental tumors in mice by nicotinamide, as observed in the present study and reported by others, is due to an increase in intratumor pO2, possibly as a result of an increase in blood perfusion.  相似文献   

4.
Cardiomyopathy is a frequent cause of morbidity and mortality in patients carrying the A3243G transition in the mitochondrial DNA (mtDNA) tRNALeu(UUR) gene, the most common heteroplasmic single mtDNA defect. We used phosphorus magnetic resonance spectroscopy (31P-MRS) to look for evidence of an in vivo bioenergetics defect in patients carrying the A3243G mtDNA mutation with and without echocardiographic signs of left ventricle hypertrophy (LVH). Eight patients, three with LVH, carrying the A3243G mtDNA mutation and 10 healthy subjects underwent one-dimensional chemical shift imaging 31P-MRS. In the patients, mean cardiac phosphocreatine to adenosine triphosphate ratio (PCr/ATP) (1.55 +/- 0.58) was significantly reduced compared to the control group (2.34 +/- 0.14; P < 0.001). Cardiac PCr/ATP was within the normal range only in one case that showed normal echocardiography. Our results point to a central role of bioenergetics deficit in the development of cardiac hypertrophy in patients with the A3243G mtDNA mutation. Impaired cardiac energy metabolism in patients with normal echocardiography suggests that the enhancement of mitochondrial function may be beneficial not only to patients with cardiac hypertrophy but also to those patients carrying the mutation in the absence of signs of cardiac hypertrophy and/or dysfunction but with cardiac bioenergetics deficit.  相似文献   

5.
磁共振波谱分析(magnetic resonance spectroscopy MRS)是目前唯一无创性定量研究人体组织细胞代谢、生理生化改变的方法。磁共振磷谱(31P-MRS)可对无机磷(Pi)、磷酸肌酸(PCr)、三磷酸腺苷(ATP)等含磷高能化合物进行定量分析,是在体研究骨骼肌能量代谢的有力工具。动态磷谱技术可测量肌肉在静息状态、收缩过程和恢复过程中细胞内高能磷酸化合物的变化,评价骨骼肌做功时的能量的转换效率,实现对线粒体功能的无创性评价。本文将对肌肉磷谱的研究进展做综述,尤其侧重于动态磷谱的应用,为以后利用磷谱客观研究肌肉相关疾病奠定良好的基础。  相似文献   

6.
The time dependence of Lactate (Lac), H+, Adenosine-triphosphate (ATP), Phosphocreatine (PCr), Hexose-monophosphate (PME), and Inorganic Phosphate (Pi) levels has been obtained for frog muscle at rest in anaerobic conditions by multinuclear NMR. All information has been collected on the same samples alternatively tuning the probehead on 1H- and 31P-NMR frequencies. ATP, PCr and H+ levels show the same time dependence for all the samples, while PME, Pi and Lac levels vary in time differently from one sample to another. No direct correlation between the Lac appearance and the H+ concentration has been found.  相似文献   

7.
秦斌  齐静 《生物磁学》2011,(1):176-179
磁共振波谱分析(magnetic resonance spectroscopy MRS)是目前唯一无创性定量研究人体组织细胞代谢、生理生化改变的方法。磁共振磷谱(31P-MRS)可对无机磷(Pi)、磷酸肌酸(PCr)、三磷酸腺苷(ATP)等含磷高能化合物进行定量分析,是在体研究骨骼肌能量代谢的有力工具。动态磷谱技术可测量肌肉在静息状态、收缩过程和恢复过程中细胞内高能磷酸化合物的变化,评价骨骼肌做功时的能量的转换效率,实现对线粒体功能的无创性评价。本文将对肌肉磷谱的研究进展做综述,尤其侧重于动态磷谱的应用,为以后利用磷谱客观研究肌肉相关疾病奠定良好的基础。  相似文献   

8.
Time-resolved 31-phosphorus nuclear magnetic resonance spectroscopy (31P-MRS) of the biceps femoris muscles was performed during exercise and recovery in six healthy sedentary male subjects (maximal oxygen uptake; 46.6 +/- 1.7 (SEM) ml.kg-1.min-1), 5 male sprinters (56.2 +/- 2.5), and 5 male long-distance runners (73.6 +/- 2.2). Each performed 4 min of knee flexion exercises at absolute values of 1.63 W and 4.90 W, followed by 5 min of recovery in a prone position in a 2.1 T superconducting magnet with a 67 cm bore. 31P-MRS spectra were recorded every 12.8 s during the rest-exercise-recovery sequence. Computer-aided contour analysis and pixel imaging of phosphocreatine peaks (PCr) and inorganic phosphate (Pi) were performed. The work loads in the present study were selected as mild exercise (1.63 W) and heavy exercise (4.90 W), corresponding to 18-23% and 54-70% of maximal exercise intensity. Long-distance runners showed a significantly smaller decrement in PCr and less acidification at a given exercise intensity compared to those shown by sedentary subjects. The transient responses of PCr and Pi during recovery were characterized by first-order kinetics. After exercise, the recovery rates of PCr and Pi were significantly faster in long-distance runners than in sedentary subjects (P < 0.05). Since it is postulated that PCr resynthesis is controlled by aerobic metabolism and mitochondrial creatine kinase, it is suggested that the faster PCr and Pi recovery rates and decreased acidification seen in long-distance runners during and after exercise might be attributed to their greater capacity for aerobic metabolism.  相似文献   

9.
Efaproxiral, an allosteric modifier of hemoglobin, reduces hemoglobin-oxygen binding affinity, facilitating oxygen release from hemoglobin, which is likely to increase tissue pO(2). The purpose of this study was to determine the effect of efaproxiral on tumor oxygenation and growth inhibition of RIF-1 tumors that received X radiation (4 Gy) plus oxygen breathing compared to radiation plus oxygen plus efaproxiral daily for 5 days. Two lithium phthalocyanine (LiPc) deposits were implanted in RIF-1 tumors in C3H mice for tumor pO(2) measurements using EPR oximetry. Efaproxiral significantly increased tumor oxygenation by 8.4 to 43.4 mmHg within 5 days, with maximum increases at 22-31 min after treatment. Oxygen breathing alone did not affect tumor pO(2). Radiation plus oxygen plus efaproxiral produced tumor growth inhibition throughout the treatment duration, and inhibition was significantly different from radiation plus oxygen from day 3 to day 5. The results of this study provide unambiguous quantitative information on the effectiveness of efaproxiral to consistently and reproducibly increase tumor oxygenation over the course of 5 days of treatment, modeling the clinical use of efaproxiral. Also, based on the tumor growth inhibition, the study shows the efaproxiral-enhanced tumor oxygenation was radiobiologically significant. This is the first study to demonstrate the ability of efaproxiral to increase tumor oxygenation and to increase the tumor growth inhibition of radiotherapy over 5 days of treatment.  相似文献   

10.
Friedreich ataxia (FRDA) is caused by a GAA repeat expansion in the FXN gene leading to reduced expression of the mitochondrial protein frataxin. Recombinant human erythropoietin (rhuEPO) is suggested to increase frataxin levels, alter mitochondrial function and improve clinical scores in FRDA patients. Aim of the present pilot study was to investigate mitochondrial metabolism of skeletal muscle tissue in FRDA patients and examine effects of rhuEPO administration by phosphorus 31 magnetic resonance spectroscopy (31P MRS). Seven genetically confirmed FRDA patients underwent 31P MRS of the calf muscles using a rest-exercise-recovery protocol before and after receiving 3000 IU of rhuEPO for eight weeks. FRDA patients showed more rapid phosphocreatine (PCr) depletion and increased accumulation of inorganic phosphate (Pi) during incremental exercise as compared to controls. After maximal exhaustive exercise prolonged regeneration of PCR and slowed decline in Pi can be seen in FRDA. PCr regeneration as hallmark of mitochondrial ATP production revealed correlation to activity of complex II/III of the respiratory chain and to demographic values. PCr and Pi kinetics were not influenced by rhuEPO administration. Our results confirm mitochondrial dysfunction and exercise intolerance due to impaired oxidative phosphorylation in skeletal muscle tissue of FRDA patients. MRS did not show improved mitochondrial bioenergetics after eight weeks of rhuEPO exposition in skeletal muscle tissue of FRDA patients.

Trial Registration

EU Clinical Trials Register 2008-000040-13  相似文献   

11.
In vivo 31P nuclear magnetic resonance (31P NMR) spectroscopy has been used to compare metabolic profiles with tumor radiosensitivity. A radioresistant mammary carcinoma (MCa) and a radiosensitive methylcholanthrene-induced fibrosarcoma (Meth-A) were studied by 31P NMR spectroscopy in the tumor volume range of approximately 100-1200 mm3. The MCa showed a constant pH in this volume range; the ratio of phosphocreatine to inorganic phosphate (PCr/Pi) for 160-300 mm3 tumors was 0.33 +/- 0.11 (mean +/- standard deviation) and did not change (0.29 +/- .09) for tumors in the volume range of 600-1200 mm3. In comparison, the Meth-A showed a decrease in tumor pH as volume increased from 160-300 mm3 (pH 7.16 +/- 0.4) to 600-1200 mm3 (pH 6.94 +/- .07). Tumor PCr/Pi decreased from 0.70 +/- .16 (160-300 mm3) to 0.33 +/- .16 (600-1200 mm3). The radiation doses for control of MCa-induced tumors in 50% of the treated tumors ranged from 65 (150-250 mm3) to 71 Gy (1000-1300 mm3) and for the Meth-A-induced tumors ranged from 35 (150-250 mm3) to 38 Gy (1000-1300 mm3). These results suggest that 31P NMR spectra may be a qualitative predictor of tumor hypoxia, although further studies of human and rodent tumors are necessary to support this hypothesis.  相似文献   

12.
We recently described a novel approach to measuring regional tumor oxygen tension using (19)F pulse burst saturation recovery (PBSR) nuclear magnetic resonance (NMR) echo planar imaging (EPI) relaxometry of hexafluorobenzene. We now compare oxygen tension measurements in a group of size-matched R3327-AT1 Dunning prostate rat tumors made using this new method with those using a traditional polarographic method: the Eppendorf histograph. Similar oxygen tension distributions were found using the two methods, and both techniques showed that tumors with volume greater than 3.5 cm(3) were significantly (P < 0.0001) less well oxygenated than smaller tumors (volume less than 2 cm(3)). Using the (19)F EPI approach, we also examined the response to respiratory challenge. Increasing the concentration of inspired oxygen from 33% to 100% O(2) produced a significant increase (P < 0.0001) in tumor oxygenation for a group of small tumors. In contrast, no change was observed in the mean pO(2) for a group of large tumors. Consideration of individual tumor regions irrespective of tumor size showed a strong correlation between the maximum pO(2) observed when breathing 100% O(2) compared with mean baseline pO(2). These results further demonstrate the usefulness of (19)F EPI to assess changes in regional tumor oxygenation.  相似文献   

13.
The effects of 17 beta-estradiol versus tamoxifen on the growth and metabolism of MCF7 human breast cancer cells, in culture and in tumors implanted in nude mice, were studied by 31P and 13C nuclear magnetic resonance spectroscopy and by proton magnetic resonance imaging. In culture, the content of the phosphate metabolites including nucleoside triphosphates (NTP), phosphomonoesters, phosphodiesters and inorganic phosphate (Pi) were not affected by tamoxifen treatment. However, in the presence of estrogen the rate of glucose consumption and lactate production via glycolysis (270 and 280 fmol/cell.h, respectively) were twice that of tamoxifen treated cells. Estrogen rescue of tamoxifen treated cells indicated that glycolysis induction occurs at the early stages of the hormonal response. The in vivo studies included recording of proton images that provided an accurate measure of tumor size and distribution of tumor cells, necrotic regions and stromal tissue. Tamoxifen caused enhanced necrosis extending from the center of the tumor during the first two days of treatment (12 h to 6 days). This was followed by growth of reparative tissue along with tumor regression. Tamoxifen also modified the content of the phosphate metabolites, increasing markedly (P less than 0.0002) the ratio of NTP to Pi from 0.41 before treatment to 1.75 9-19 days after treatment. This change was attributed to the enhanced growth of repair tissue. The results provide new information regarding the response of human breast cancer to hormonal treatment and suggest a mechanism for the induction of tumor regression by tamoxifen.  相似文献   

14.
Brain metabolism and intracellular pH were studied during and after episodes of ischaemia and hypoxia-ischaemia in lambs anaesthetised with sodium pentobarbitone. 31P and 1H magnetic resonance spectroscopy methods were used to monitor brain pHi and brain concentrations of Pi, phosphocreatine (PCr), beta--nucleoside triphosphate (beta NTP), and lactate. Simultaneous measurements were made of cerebral blood flow and cerebral oxygen and glucose consumption. Cerebral ischaemia sufficient to reduce oxygen delivery to 75% of control values was associated with a fall in brain pHi and increase in brain Pi. Progressively severe hypoxia-ischaemia was associated with a progressive fall in brain pHi, PCr, and beta NTP and increase in brain Pi. In two animals the increase in brain lactate during hypoxia-ischaemia measured by 1H nuclear magnetic resonance (NMR) could be quantitatively accounted for by the increased net uptake of glucose by the brain in relation to oxygen, but was insufficient to account for the concomitant acidosis according to previous estimates of brain buffering capacity. In four animals brain pHi, PCr, Pi, and beta NTP had returned to normal 1 h after the hypoxic-ischaemic episode. In one animal brain pHi had reverted to normal at a time when 1H NMR indicated persistent elevation of brain lactate.  相似文献   

15.
We measured cerebral phosphocreatine (PCr), inorganic phosphate (Pi), ATP, and intracellular pH (pHi) with in vivo phosphorus nuclear magnetic resonance (NMR) during 10- to 15-min periods of reversible hypoxic hypoxia in 20 newborn lambs (1-11 days). There was a significant correlation between arterial O2 partial pressure (PaO2) and the PCr/Pi ratio or pHi; however, between PaO2 130-33 mmHg, metabolite changes were not significant. PCr/Pi and pHi decreased significantly when PaO2 was lowered below 33 and 28 mmHg, respectively. After recovery, metabolite ratios and pHi returned to base-line values within 5 min. During the early phases of hypoxia and recovery, there were large fluctuations in metabolites and pHi, indicating that mitochondrial reactions were not in a steady state. After several minutes of hypoxia or recovery, PCr/Pi and pHi stabilized, suggesting steady state kinetics for mitochondrial respiration. NMR is extremely sensitive to changes in mitochondrial oxygenation, and stable PCr/Pi and pHi indicate that O2 tension in cerebral mitochondria of the newborn lamb is constant between PaO2 of 30 and 140 mmHg.  相似文献   

16.

Background

Although non-specific pain in the upper limb muscles of workers engaged in mild repetitive tasks is a common occupational health problem, much is unknown about the associated structural and biochemical changes. In this study, we compared the muscle energy metabolism of the extrinsic finger extensor musculature in instrumentalists suffering from work-related pain with that of healthy control instrumentalists using non-invasive phosphorus magnetic resonance spectroscopy (31P-MRS). We hypothesize that the affected muscles will show alterations related with an impaired energy metabolism.

Methodology/Principal Findings

We studied 19 volunteer instrumentalists (11 subjects with work-related pain affecting the extrinsic finger extensor musculature and 8 healthy controls). We used 31P-MRS to find deviations from the expected metabolic response to exercise in phosphocreatine (PCr), inorganic phosphate (Pi), Pi/PCr ratio and intracellular pH kinetics. We observed a reduced finger extensor exercise tolerance in instrumentalists with myalgia, an intracellular pH compartmentation in the form of neutral and acid compartments, as detected by Pi peak splitting in 31P-MRS spectra, predominantly in myalgic muscles, and a strong association of this pattern with the condition.

Conclusions/Significance

Work-related pain in the finger extrinsic extensor muscles is associated with intracellular pH compartmentation during exercise, non-invasively detectable by 31P-MRS and consistent with the simultaneous energy production by oxidative metabolism and glycolysis. We speculate that a deficit in energy production by oxidative pathways may exist in the affected muscles. Two possible explanations for this would be the partial and/or local reduction of blood supply and the reduction of the muscle oxidative capacity itself.  相似文献   

17.
We present direct experimental evidence of the fluence-rate-dependent, radiation-induced variations in intratumor oxygen partial pressure (pO(2)) in HT29 human colon adenocarcinoma xenografts subjected to meta-tetra(hydroxyphenyl)chlorin (mTHPC)-based photodynamic therapy (PDT). The data establish a correlation between tumor oxygenation and treatment outcome. Tumor-bearing mice were injected with 0.3 mg/kg photosensitizer and subjected 72 h later to a 12 J/cm(2) red light dose administered at fluence rates of 5, 30, 90 and 160 mW/cm(2). A significant decrease in mean and median pO(2) was registered at approximately half of the total radiation fluence was delivered in tumors treated at rates of 160 and 90 mW/cm(2). Conversely, with the two lower fluence rates, intratumor pO(2) was maintained at levels comparable to those measured before illumination. Tumor oxygenation values registered shortly after every treatment protocol were at least equal to baseline levels, thus excluding the possibility of significant acute vessel damage during illumination. The tumor regrowth profile correlated with the pO(2) values monitored during irradiation. Tumors treated with fluence rates of 5 and 30 mW/cm(2) exhibited significantly longer tumor quadrupling times than those treated at 160 and 90 mW/cm(2). Improved tumor destruction could be expected by reducing the rate and the extent of oxygen depletion during meta-tetra(hydroxyphenyl)chlorin photodynamic therapy using low fluence rates.  相似文献   

18.
To better understand the metabolic implications of a higher ATP cost of contraction in chronic obstructive pulmonary disease (COPD), we used (31)P-magnetic resonance spectroscopy ((31)P-MRS) to examine muscle energetics and pH in response to graded exercise. Specifically, in six patients and six well-matched healthy controls, we determined the intracellular threshold for pH (T(pH)) and inorganic phosphate-to-phosphocreatine ratio (T(Pi/PCr)) during progressive dynamic plantar flexion exercise with work rate expressed as both absolute and relative intensity. Patients with COPD displayed a lower peak power output (WRmax) compared with controls (controls 25 ± 4 W, COPD 15 ± 5 W, P = 0.01) while end-exercise pH (controls 6.79 ± 0.15, COPD 6.76 ± 0.21, P = 0.87) and PCr consumption (controls 82 ± 10%, COPD 70 ± 18%, P = 0.26) were similar between groups. Both T(pH) and T(Pi/PCr) occurred at a significantly lower absolute work rate in patients with COPD compared with controls (controls: 14.7 ± 2.4 W for T(pH) and 15.3 ± 2.4 W for T(Pi/PCr); COPD: 9.7 ± 4.5 W for T(pH) and 10.0 ± 4.6 W for T(Pi/PCr), P < 0.05), but these thresholds occurred at the same percentage of WRmax (controls: 63 ± 11% WRmax for T(pH) and 67 ± 18% WRmax for T(Pi/PCr); COPD: 59 ± 9% WRmax for T(pH) and 61 ± 12% WRmax for T(Pi/PCr), P > 0.05). Indexes of mitochondrial function, the PCr recovery time constant (controls 42 ± 7 s, COPD 45 ± 11 s, P = 0.66) and the PCr resynthesis rate (controls 105 ± 21%/min, COPD 91 ± 31%/min, P = 0.43) were similar between groups. In combination, these results reveal that when energy demand is normalized to WRmax, as a consequence of higher ATP cost of contraction, patients with COPD display the same metabolic pattern as healthy subjects, suggesting that skeletal muscle energy production is well preserved in these patients.  相似文献   

19.
Bioenergetics of rabbit skeletal muscle during hypoxemia and ischemia   总被引:4,自引:0,他引:4  
A blood-perfused rabbit hindlimb preparation was exposed to total ischemia (n = 4) or to severe hypoxemia (n = 4) where arterial PO2 was 5 +/- 2 (SE) Torr. O2 consumption (VO2), O2 transport (TO2), venous PO2 (PVO2), venous lactate concentration, and venous glucose concentration were measured. The relative concentration of ATP, phosphocreatine (PCr), inorganic phosphate (Pi), and intracellular pH (pHi) were monitored with 31P magnetic resonance spectroscopy. PCr/Pi decreased with the onset of ischemia or hypoxemia. The preparation was reoxygenated and allowed to recover for 30 min once PCr/Pi was less than 1.0. The periods of hypoxemia and ischemia lasted 56.0 +/- 10.0 and 63.8 +/- 2.5 min, respectively (NS). During ischemia PCr decreased and Pi increased compared with control (P less than 0.05) but returned to control with reperfusion. With hypoxemia PCr also decreased and Pi increased with respect to control (P less than 0.01) but did not recover with reoxygenation. VO2 and PVO2 in both groups returned to control during recovery. ATP did not change with ischemia but decreased with hypoxemia (P less than 0.05). Venous lactate concentration did not change with ischemia but increased with hypoxemia (P less than 0.05) and continued to rise during recovery. During recovery pHi decreased in the hypoxemic group (P less than 0.05) but not in the ischemic group. These data show that, under the conditions tested, rabbit skeletal muscle does not resynthesize PCr after a severe hypoxemic episode. Furthermore it appears that VO2 and PVO2 fail to portray the true state of cellular bioenergetics after a severe hypotemic insult.  相似文献   

20.
Brain energy disorders can be present in aged men and animals. To this respect, the mitochondrial and free radical theory of aging postulates that age‐associated brain energy disorders are caused by an imbalance between pro‐ and anti‐oxidants that can result in oxidative stress. Our study was designed to investigate brain energy metabolism and the activity of endogenous antioxidants during their lifespan in male Wistar rats. In vivo brain bioenergetics were measured using 31P nuclear magnetic resonance (NMR) spectroscopy and in vitro by polarographic analysis of mitochondrial oxidative phosphorylation. When compared to the young controls, a significant decrease of age‐dependent mitochondrial respiration and adenosine‐3‐phosphate (ATP) production measured in vitro correlated with significant reduction of forward creatine kinase reaction (kfor) and with an increase in phosphocreatine (PCr)/ATP, PCr/Pi and PME/ATP ratio measured in vivo. The levels of enzymatic antioxidants catalase, GPx and GST significantly decreased in the brain tissue as well as in the peripheral blood of aged rats. We suppose that mitochondrial dysfunction and oxidative inactivation of endogenous enzymes may participate in age‐related disorders of brain energy metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号