共查询到20条相似文献,搜索用时 10 毫秒
1.
Kobayashi H Shimada J Nakazawa M Morozumi T Pohjanvirta T Pelkonen S Yamamoto K 《Applied and environmental microbiology》2001,67(1):484-489
The prevalence of Shiga toxin-producing Escherichia coli (STEC) in Japan was examined by using stool samples from 87 calves, 88 heifers, and 183 cows on 78 farms. As determined by screening with stx-PCR, the prevalence was 46% in calves, 66% in heifers, and 69% in cows; as determined by nested stx-PCR, the prevalence was 100% in all animal groups. Of the 962 isolates picked by colony stx hybridization, 92 isolates from 54 farms were characterized to determine their O serogroups, virulence factor genes, and antimicrobial resistance. Of these 92 isolates, 74 (80%) could be classified into O serogroups; 50% of these 74 isolates belonged to O serogroups O8, O26, O84, O113, and O116 and 1 isolate belonged to O serogroup O157. Locus of enterocyte effacement genes were detected in 24% of the isolates, and enterohemorrhagic E. coli (EHEC) hlyA genes were detected in 72% of the isolates. Neither the bundle-forming pilus gene nor the enteropathogenic E. coli adherence factor plasmid was found. STEC strains with characteristics typical of isolates from human EHEC infections, which were regarded as potential EHEC strains, were present on 11.5% of the farms. 相似文献
2.
Lepšanović Z Opačić D Lazić S Herpay M Tóth S Kostić M Kucsera I 《Acta microbiologica et immunologica Hungarica》2012,59(2):215-224
Shiga toxin-producing Escherichia coli (STEC) strains of O157:H7 serotype are a predominant cause of haemolytic uraemic syndrome (HUS) worldwide, but strains of non-O157 serotypes can also be associated with serious disease. Some of them are associated with outbreaks of HUS, others with sporadic cases of HUS, and some with diarrhoea but not with outbreaks or HUS. A large number of STEC serotypes isolated from ruminants and foods have never been associated with human disease. In this study we characterize a STEC strain belonging to serotype O171:H25 that is responsible for a case of HUS. This strain has a single Shiga toxin gene encoding Stx2 toxin, and hlyA gene, but is eae-negative. 相似文献
3.
Sobieszczańska B Gryko R Dobrowolska M Błaszkowska M Twardoń J 《Medycyna do?wiadczalna i mikrobiologia》2005,57(4):369-375
The aim of the study was to determine if cattle from the region of Lower Silesia is the reservoir of shiga toxin-producing E. coli strains (STEC) and the analysis of virulence factors of isolated STEC strains. The ability of tested animal strains to shiga toxin synthesis was analysed in cytotoxicity assay in vitro on Vero cell line and then confirmed by detection of shiga toxin-encoding genes by PCR. STEC strains were isolated from 12 (15,2%) of animals examined, 21,4% of these strains were obtained from 9 of 42 calves, and 8,1% from 3 of 37 cows. Most of STEC isolated (75%) was enterohemolysin-producing. The cattle from the region of Lower Silesia is the reservoir of pathogenic for humans sorbitol-fermenting non-O157 STEC strains. 相似文献
4.
Bono JL Smith TP Keen JE Harhay GP McDaneld TG Mandrell RE Jung WK Besser TE Gerner-Smidt P Bielaszewska M Karch H Clawson ML 《Molecular biology and evolution》2012,29(8):2047-2062
Cattle are a major reservoir for Shiga toxin-producing Escherichia coli O157 (STEC O157) and harbor multiple genetic subtypes that do not all associate with human disease. STEC O157 evolved from an E. coli O55:H7 progenitor; however, a lack of genome sequence has hindered investigations on the divergence of human- and/or cattle-associated subtypes. Our goals were to 1) identify nucleotide polymorphisms for STEC O157 genetic subtype detection, 2) determine the phylogeny of STEC O157 genetic subtypes using polymorphism-derived genotypes and a phage insertion typing system, and 3) compare polymorphism-derived genotypes identified in this study with pulsed field gel electrophoresis (PFGE), the current gold standard for evaluating STEC O157 diversity. Using 762 nucleotide polymorphisms that were originally identified through whole-genome sequencing of 189 STEC O157 human- and cattle-isolated strains, we genotyped a collection of 426 STEC O157 strains. Concatenated polymorphism alleles defined 175 genotypes that were tagged by a minimal set of 138 polymorphisms. Eight major lineages of STEC O157 were identified, of which cattle are a reservoir for seven. Two lineages regularly harbored by cattle accounted for the majority of human disease in this study, whereas another was rarely represented in humans and may have evolved toward reduced human virulence. Notably, cattle are not a known reservoir for E. coli O55:H7 or STEC O157:H(-) (the first lineage to diverge within the STEC O157 serogroup), which both cause human disease. This result calls into question how cattle may have originally acquired STEC O157. The polymorphism-derived genotypes identified in this study did not surpass PFGE diversity assessed by BlnI and XbaI digestions in a subset of 93 strains. However, our results show that they are highly effective in assessing the evolutionary relatedness of epidemiologically unrelated STEC O157 genetic subtypes, including those associated with the cattle reservoir and human disease. 相似文献
5.
Analysis of the Clonal Relationship of Shiga Toxin-Producing Escherichia coli Serogroup O165:H25 Isolated from Cattle 下载免费PDF全文
Lutz Geue Thomas Selhorst Christina Schnick Birgit Mintel Franz J. Conraths 《Applied microbiology》2006,72(3):2254-2259
Variations in time and space of a clonal group of Escherichia coli O165:H25 on a cattle farm were monitored. The virulence marker pattern (stx genes, eae gene, hlyEHEC gene, katP gene, espP gene, efa gene) suggests that E. coli O165:H25 of bovine origin may represent a risk for human infection. 相似文献
6.
Kaneko A Fujino T Sugawara C Kagami Y Miyadai H Kirikae T Kawahara K 《Microbiology and immunology》2001,45(6):433-438
Escherichia coli O25 strains that produce heat-stable toxin (ST) have been recently isolated in Japan, and epidemiological study of this type of enterotoxigenic E. coli is required. In this study the heterogeneity of 16 ST-producing and non-producing strains of E. coli O25 was investigated. All eight ST-producing strains were shown to have STIb gene, and seven of them had similar profiles of plasmids, ladder-banding of LPS in SDS-polyacrylamide gel electrophoresis, and chromosomal DNA digestions in pulsed-field gel electrophoresis (PFGE). In contrast, ST-non-producing strains were more heterogeneous in all parameters examined. PFGE of the digested chromosomal DNA with several restriction enzymes was proved to be an effective procedure to compare the closely related strains of E. coli O25. 相似文献
7.
The genetic relationship among the Escherichia coli pathotypes was investigated. We used random amplified polymorphic DNA (RAPD) data for constructing a dendrogram of 73 strains of diarrheagenic E. coli. A phylogenetic tree encompassing 15 serotypes from different pathotypes was constructed using multilocus sequence typing data. Phylogram clusters were used for validating RAPD data on the clonality of enteropathogenic E. coli (EPEC) O serogroup strains. Both analyses showed very similar topologies, characterized by the presence of two major groups: group A includes EPEC H6 and H34 strains and group B contains the other EPEC strains plus all serotypes belonging to atypical EPEC, enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC). These results confirm the existence of two evolutionary divergent groups in EPEC: one is genetically and serologically very homogeneous whereas the other harbors EPEC and non-EPEC serotypes. The same situation was found for EAEC and EHEC. 相似文献
8.
Shiga toxin-producing Escherichia coli (STEC) has been associated with food-borne diseases ranging from uncomplicated diarrhea to hemolytic-uremic syndrome (HUS). While most outbreaks are associated with E. coli O157:H7, about half of the sporadic cases may be due to non-O157:H7 serotypes. To assess the pathogenicity of STEC isolated from dairy foods in France, 40 strains isolated from 1,130 raw-milk and cheese samples were compared with 15 STEC strains isolated from patients suffering from severe disease. The presence of genes encoding Shiga toxins (stx(1), stx(2), and variants), intimin (eae and variants), adhesins (bfp, efa1), enterohemolysin (ehxA), serine protease (espP), and catalase-peroxidase (katP) was determined by PCR and/or hybridization. Plasmid profiling, ribotyping, and pulsed-field gel electrophoresis (PFGE) were used to further compare the strains at the molecular level. A new stx(2) variant, stx(2-CH013), associated with an O91:H10 clinical isolate was identified. The presence of the stx(2), eae, and katP genes, together with a combination of several stx(2) variants, was clearly associated with human-pathogenic strains. In contrast, dairy food STEC strains were characterized by a predominance of stx(1), with a minority of isolates harboring eae, espP, and/or katP. These associations may help to differentiate less virulent STEC strains from those more likely to cause disease in humans. Only one dairy O5 isolate had a virulence gene panel identical to that of an HUS-associated strain. However, the ribotype and PFGE profiles were not identical. In conclusion, most STEC strains isolated from dairy products in France showed characteristics different from those of strains isolated from patients. 相似文献
9.
We examined the effects of Eimeria pragensis infection on intestinal peristalsis, goblet cell proliferation and intestinal flora in C57BL/6 mice. Intestinal peristalsis was evaluated by radiography using barium at 7 days post-infection (p.i.). The intestinal peristalsis of E. pragensis-infected mice was significantly suppressed compared with uninfected control mice. Twenty-three mice were divided into 5 groups of 4 or 5 mice each; 2 groups of mice were infected with E. pragensis and the others were kept uninfected. At 7 days p.i., E. pragensis-infected and -uninfected mice were sacrificed to examine goblet cell numbers in the intestines, and significant decreases were observed only in the infected mice. Shiga toxin-producing Escherichia coli (STEC) O157:H7 was inoculated orally in mice both infected and uninfected with E. pragensis at 7 days p.i., with the remaining mice used as uninoculated controls. When mice were sacrificed at 2 days after STEC inoculation, STEC was only detected in the intestines of E. pragensis-infected mice. Colonization of STEC was also confirmed by immunohistochemistry on the surface of epithelial cells in concurrently infected/inoculated mice. Also, an overgrowth of residential E. coli was observed only in E. pragensis-infected mice. These results suggest that E. pragensis induces the suppression of intestinal peristalsis and modifies the intestinal environment to facilitate artificially introduced STEC colonization and multiplication, in addition to residential E. coli overgrowth. 相似文献
10.
AIMS: To investigate the presence or absence of shiga toxin-producing Escherichia coli (STEC) in avian species in India. METHODS AND RESULTS: Faecal samples originating from 500 chicken and 25 free flying pigeons were screened for the presence of E. coli. A total of 426 (chicken, 401; pigeons, 25) E. coli strains were isolated. Of 426 E. coli strains, 387 were grouped into 77 serogroups, while 70 and 59 strains were untypable and rough, respectively. All isolates were subjected to multiplex polymerase chain reaction (m-PCR) for the detection of stx(1), stx(2), eaeA, hlyA and saa genes. None of the E. coli strains studied showed the presence of stx(1), stx(2) or their variants and saa genes. Overall 11 (2.74%) and seven (1.74%) strains from chickens possessed eaeA and hlyA genes, respectively, while as only six (1.49%) strains from chickens possessed both eaeA and hlyA genes. O9, O8, O60 and O25 serogroups were most predominant of which there were 24 (5.63%), 23 (5.39%), 23 (5.39%) and 20 (4.69%) strains, respectively. None of the isolates from pigeons showed the presence of any of the virulence genes studied. CONCLUSIONS: STEC are absent in chickens and pigeons. However, further studies are required in this direction to confirm or contradict our findings. E. coli strains originating from birds are carrying a low percentage eaeA or hlyA genes. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study is the first attempt to investigate STEC in chickens and free flying pigeons in India. The chickens and pigeons cannot be considered as important carrier of STEC in India. 相似文献
11.
Isolation of shiga toxin-producing Escherichia coli (STEC) from foods using EHEC agar 总被引:1,自引:0,他引:1
Enterohaemorrhagic Escherichia coli (EHEC) agar was evaluated for its ability to recover one isolate of each of three serotypes (O157:H7, O26 and O113:H21) of shiga toxin-producing E. coli (STEC) from raw mince, pasteurized milk and salami after enrichment. The method detected around one colony-forming unit (cfu) in 25 ml in milk, but was less sensitive with salami, requiring 10-1000 cfu 25 g-1 (depending on serotype) for detection. In raw minced beef any enterohaemolysin-producing colonies were outnumbered by other colonies and only one of 12 enrichments yielded the inoculum serotype. Additional tests were conducted on 15 retail meat products. One 25-g sample of each product was processed as purchased, while another was inoculated with 157-185 cfu of a cocktail of E. coli O157, O113 and O26 cultures. Recovery was easily achieved with cooked meat products and salami. Recovery from raw minced meat was again difficult, but sometimes possible. Testing more suspect colonies than were tested in this study would presumably increase the sensitivity of the method. 相似文献
12.
Cattle are an important reservoir of Shiga toxin-producing Escherichia coli (STEC) O26, O111, and O157. The fate of these pathogens in bovine feces at 5, 15, and 25 degrees C was examined. The feces of a cow naturally infected with STEC O26:H11 and two STEC-free cows were studied. STEC O26, O111, and O157 were inoculated into bovine feces at 10(1), 10(3), and 10(5) CFU/g. All three pathogens survived at 5 and 25 degrees C for 1 to 4 weeks and at 15 degrees C for 1 to 8 weeks when inoculated at the low concentration. On samples inoculated with the middle and high concentrations, O26, O111, and O157 survived at 25 degrees C for 3 to 12 weeks, at 15 degrees C for 1 to 18 weeks, and at 5 degrees C for 2 to 14 weeks, respectively. Therefore, these pathogens can survive in feces for a long time, especially at 15 degrees C. The surprising long-term survival of STEC O26, O111, and O157 in bovine feces shows that such feces are a potential vehicle for transmitting not only O157 but also O26 and O111 to cattle, food, and the environment. Appropriate handling of bovine feces is emphasized. 相似文献
13.
Okitsu T Kusumoto M Suzuki R Sata S Nishiya Y Kawamura Y Yamai S 《Microbiology and immunology》2001,45(4):319-322
We have investigated the Shiga toxin genes of Shiga toxin-producing Escherichia coli (STEC) strains, using polymerase chain reaction (PCR) amplifying the full lengths of these genes. As a result, we found the Shiga toxin 2 gene which was insertionally inactivated by an insertion sequence (IS). This IS element was identical to IS1203v which has been also found in inactivated Shiga toxin 2 genes, and was inserted at the same site as in the previous paper. On the other hand, both Shiga toxin 2 genes were different (98.3% identity). These suggested that IS1203v independently inserted into each Shiga toxin 2 genes, and STEC strains possessing the insertionally inactivated Shiga toxin genes are most likely to have a wide distribution. Amplification of the full length of the Shiga toxin gene is one of the effective methods to detect the gene no matter where the IS element is included, i.e., the insertion can be reflected in the size of amplicon. 相似文献
14.
Pathogenic strains of Escherichia coli, such as E. coli O157:H7, have a low infectious dose and an ability to survive in acidic foods. These bacteria have evolved at least three distinct mechanisms of acid resistance (AR), including two amino acid decarboxylase-dependent systems (arginine and glutamate) and a glucose catabolite-repressed system. We quantified the survival rates for each AR mechanism separately in clinical isolates representing three groups of Shiga toxin-producing E. coli (STEC) clones (O157:H7, O26:H11/O111:H8, and O121:H19) and six commensal strains from ECOR group A. Members of the STEC clones were not significantly more acid resistant than the commensal strains when analyzed using any individual AR mechanism. The glutamate system provided the best protection in a highly acidic environment for all groups of isolates (<0.1 log reduction in CFU/ml per hour at pH 2.0). Under these conditions, there was notable variation in survival rates among the 30 O157:H7 strains, which depended in part on Mg(2+) concentration. The arginine system provided better protection at pH 2.5, with a range of 0.03 to 0.41 log reduction per hour, compared to the oxidative system, with a range of 0.13 to 0.64 log reduction per hour. The average survival rate for the O157:H7 clonal group was significantly less than that of the other STEC clones in the glutamate and arginine systems and significantly less than that of the O26/O111 clone in the oxidative system, indicating that this clonal group is not exceptionally acid resistant with these specific mechanisms. 相似文献
15.
Vernozy-Rozand C Montet MP Bertin Y Trably F Girardeau JP Martin C Livrelli V Beutin L 《Applied and environmental microbiology》2004,70(4):2556-2559
Twenty-seven Shiga toxin-producing Escherichia coli (STEC) strains were isolated from 207 stx-positive French environmental samples. Ten of these strains were positive for stx(1), and 24 were positive for stx(2) (10 were positive for stx(2vh-a) or stx(2vh-b), 19 were positive for stx(2d), and 15 were positive for stx(2e)). One strain belonged to serotype O157:H7, and the others belonged to serogroups O2, O8, O11, O26, O76, O103, O113, O121, O141, O166, and O174. The environment is a reservoir in which new clones of STEC that are pathogenic for humans can emerge. 相似文献
16.
García-Aljaro C Muniesa M Blanco JE Blanco M Blanco J Jofre J Blanch AR 《FEMS microbiology letters》2005,246(1):55-65
This study reports the phenotypic and genotypic characterization of 144 Shiga toxin-producing Escherichia coli (STEC) strains isolated from urban sewage and animal wastewaters using a Shiga toxin 2 gene variant (stx(2))-specific DNA colony hybridization method. All the strains were classified as E. coli and belonged to 34 different serotypes, some of which had not been previously reported to carry the stx(2) genes (O8:H31, O89:H19, O166:H21 and O181:H20). Five stx(2) subtypes (stx(2), stx(2c), stx(2d), stx(2e) and stx(2g)) were detected. The stx(2), stx(2c), stx(2d) and stx(2e) subtypes were present in urban sewage and stx(2e) was the only stx(2) subtype found in pig wastewater samples. The stx(2c) and stx(2g) were more associated with cattle wastewater. One strain was positive for the intimin gene (eae) and five strains of serotypes were positive for the adhesin encoded by the saa gene. A total of 41 different seropathotypes were found. On the basis of occurrence of virulence genes, most non-O157 STEC strains are assumed to be low-virulence serotypes. 相似文献
17.
Abstract 15 Escherichia coli strains of the serogroup O139, isolated from oedema disease of swine, were examined for their ability to interact with 125 I-labelled fibronectin. All strains were positive, and all except one showed higher fibronectin binding than Staphylococcus aureus strain Cowan 1 cells (to which fibronectin bound in the order of 15% of total protein added). 7 E. coli strains isolated from diarrhoea in young piglets were also tested, and 3 were positive. 2 of these strains showed higher binding than S. aureus Cowan 1 cells. E. coli strains expressing either K99 or K88 antigen were poor binders, comparable to cells of S. aureus strain Wood 46. There was no correlation between cell surface hydrophobicity, as determined by chromatography on Octyl-Sepharose, and the fibronectin-binding property. 相似文献
18.
A. íek P. Alexa I. Literák J. Hamík P. Novák J. Smola 《Letters in applied microbiology》1999,28(6):435-439
A total of 365 faecal samples from different categories of cattle, 12 samples of untreated slurry, 50 samples of fresh droppings of feral domestic pigeons, 20 samples of fresh droppings of domestic sparrows and stool samples of 19 synanthropic rodents were examined for the presence of Escherichia coli by broth enrichment culture and a subsequent immunomagnetic separation. Escherichia coli O157 was found in 72 (20%) bovine samples, six (50%) samples of untreated slurry and four (40%) of 10 rats (Rattus norvegicus). Significant differences were found in the E. coli O157 shedding frequency between different age categories of bulls. Genes stx2 and eaeA were detected in all isolates, and the stx1 gene in all but 10 isolates. 相似文献
19.
Fraser ME Fujinaga M Cherney MM Melton-Celsa AR Twiddy EM O'Brien AD James MN 《The Journal of biological chemistry》2004,279(26):27511-27517
Several serotypes of Escherichia coli produce protein toxins closely related to Shiga toxin (Stx) from Shigella dysenteriae serotype 1. These Stx-producing E. coli cause outbreaks of hemorrhagic colitis and hemolytic uremic syndrome in humans, with the latter being more likely if the E. coli produce Stx2 than if they only produce Stx1. To investigate the differences among the Stxs, which are all AB(5) toxins, the crystal structure of Stx2 from E. coli O157:H7 was determined at 1.8-A resolution and compared with the known structure of Stx. Our major finding was that, in contrast to Stx, the active site of the A-subunit of Stx2 is accessible in the holotoxin, and a molecule of formic acid and a water molecule mimic the binding of the adenine base of the substrate. Further, the A-subunit adopts a different orientation with respect to the B-subunits in Stx2 than in Stx, due to interactions between the carboxyl termini of the B-subunits and neighboring regions of the A-subunit. Of the three types of receptor-binding sites in the B-pentamer, one has a different conformation in Stx2 than in Stx, and the carboxyl terminus of the A-subunit binds at another. Any of these structural differences might result in different mechanisms of action of the two toxins and the development of hemolytic uremic syndrome upon exposure to Stx2. 相似文献
20.
Gabriela Merker Breyer Sílvia de Carli Natã Vieira Inácio Vânia Maria França Ribeiro Flavio Roberto Chaves da Silva Cíntia Daudt Franciele Maboni Siqueira 《Letters in applied microbiology》2022,75(1):10-16
Capybaras are rodent widely distributed in South America, which inhabit lakeside areas including ecological parks and urban sites. Due to anthropological interaction, monitoring zoonotic pathogens in wildlife is essential for One Health. We investigated faecal samples from capybaras living in an urban area in Rio Branco (Acre, Brazil) for the presence diarrhoeagenic E. coli. Virulence factors from shiga toxin-producing E. coli (STEC), enterohaemorrhagic E. coli (EHEC), and enteropathogenic E. coli (EPEC) were screened by PCR. We detected at least one virulence factor in 81% of the animals, being classified as STEC and EHEC pathotypes. The presence of zoonotic E. coli in capybaras is a warning due to the highly frequent anthropological interactions with wild animals in this area. Our findings highlight the importance of investigating wild animals as carriers of zoonotic E. coli, requiring further investigations into wildlife surveillance and epidemiological monitoring. 相似文献