首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T cell responses against hapten-modified peptides play an important role in the pathogenesis of certain diseases, including contact dermatitis and allergy. However, the structural features of TCRs recognizing bulky, potentially mobile hapten groups remain poorly defined. To analyze the structural basis of TCR recognition of defined hapten-modified peptides, the immunodominant octapeptide derived from vesicular stomatitis virus nucleoprotein (VSV8) was modified with a trinitrophenyl (TNP) group at the primary TCR contact residues (position 4 or 6) and used for immunization of mice carrying either the TCR alpha- or beta-chain of a VSV8 (unmodified)/H-2K(b)-specific CTL clone as a transgene. Such mice allow independent analysis of one TCR chain by maintaining the other fixed. The TCR V gene usage of the responding T cell population was specifically altered depending upon the presence of the TNP group and its position on the peptide. The CDR3 sequences of the TNP-modified peptide-specific TCRs showed a preferential J region usage in both the CDR3alpha and beta loops, indicating that the J regions of both CDR3s are critical for recognition of TNP-modified peptides. In contrast to our previous observations showing the prime importance of CDR3beta residues encoded by D-segment or N-addition nucleotides for recognition of position 6 of unmodified VSV8, our studies of TNP-modified peptides demonstrate the importance of the Jbeta region, while the Jalpha region was crucial for recognizing both TNP-modified and unmodified peptides. These data suggest that different structural strategies are utilized by the CDR3alpha and beta loops to allow interaction with a haptenated peptide.  相似文献   

2.
Cytotoxic CD8+ T lymphocytes are activated upon the engagement of their Ag-specific receptors by MHC class I molecules loaded with peptides 8-11 amino acids long. T cell responses triggered by certain antigenic peptides are restricted to a limited number of TCR V beta elements. The precise role of the peptide in causing this restricted TCR V beta expansion in vivo remains unclear. To address this issue, we immunized C57BL/6 mice with the immunodominant peptide of the vesicular stomatitis virus (VSV) and several peptide variants carrying single substitutions at TCR-contact residues. We observed the expansion of a limited set of TCR V beta elements responding to each peptide variant. To focus our analysis solely on the TCR beta-chain, we created a transgenic mouse expressing exclusively the TCR alpha-chain from a VSV peptide-specific CD8+ T cell clone. These mice showed an even more restricted TCR V beta usage consequent to peptide immunization. However, in both C57BL/6 and TCR alpha transgenic mice, single amino acid replacements in TCR-contact residues of the VSV peptide could alter the TCR V beta usage of the responding CD8+ T lymphocytes. These results provide in vivo evidence for an interaction between the antigenic peptide and the germline-encoded complementarity-determining region-beta loops that can influence the selection of the responding TCR repertoire. Furthermore, only replacements at residues near the C terminus of the peptide were able to alter the TCR V beta usage, which is consistent with the notion that the TCR beta-chain interacts in vivo preferentially with this region of the MHC/peptide complex.  相似文献   

3.
Posttranslational modification of Ag is implicated in several autoimmune diseases. In celiac disease, a cereal gluten-induced enteropathy with several autoimmune features, T cell recognition of the gluten Ag is heavily dependent on the posttranslational conversion of Gln to Glu residues. Evidence suggests that the enhanced recognition of deamidated gluten peptides results from improved peptide binding to the MHC and TCR interaction with the peptide-MHC complex. In this study, we report that there is a biased usage of TCR Vβ6.7 chain among TCRs reactive to the immunodominant DQ2-α-II gliadin epitope. We isolated Vβ6.7 and DQ2-αII tetramer-positive CD4(+) T cells from peripheral blood of gluten-challenged celiac patients and sequenced the TCRs of a large number of single T cells. TCR sequence analysis revealed in vivo clonal expansion, convergent recombination, semipublic response, and the notable conservation of a non-germline-encoded Arg residue in the CDR3β loop. Functional testing of a prototype DQ2-α-II-reactive TCR by analysis of TCR transfectants and soluble single-chain TCRs indicate that the deamidated residue in the DQ2-α-II peptide poses constraints on the TCR structure in which the conserved Arg residue is a critical element. The findings have implications for understanding T cell responses to posttranslationally modified Ags.  相似文献   

4.
We describe here the structure of a murine T cell receptor (TCR) Valpha2.6Jalpha38 (TCRAV2S6J38) domain, derived from a T cell hybridoma with specificity for the H-2Ddmajor histocompatibility complex class I molecule bound to a decamer peptide, P18-I10, from the HIV envelope glycoprotein gp120, determined by X-ray crystallography at 2.5 A resolution. Unlike other TCR Valpha domains that have been studied in isolation, this one does not dimerize in solution at concentrations below 1 mM, and the crystal fails to show dimer contacts that are likely to be physiological. In comparison to other Valpha domains, this Valpha2.6 shows great similarity in the packing of its core residues, and exhibits the same immunoglobulin-like fold characteristic of other TCR Valpha domains. There is good electron density in all three complementarity-determining regions (CDRs), where the differences between this Valpha domain and others are most pronounced, in particular in CDR3. Examination of crystal contacts reveals an association of Valpha domains distinct from those previously seen. Comparison with other Valpha domain structures reveals variability in all loop regions, as well as in the first beta strand where placement and configuration of a proline residue at position 6, 7, 8, or 9 affects the backbone structure. The great variation in CDR3 conformations among TCR structures is consistent with an evolving view that CDR3 of TCR plays a plastic role in the interaction of the TCR with the MHC/peptide complex as well as with CDR3 of the paired TCR chain.  相似文献   

5.
T cells specific for the cytochrome c Ag are widely used to investigate many aspects of TCR specificity and interactions with peptide-MHC, but structural information has long been elusive. In this study, we present structures for the well-studied 2B4 TCR, as well as a naturally occurring variant of the 5c.c7 TCR, 226, which is cross-reactive with more than half of possible substitutions at all three TCR-sensitive residues on the peptide Ag. These structures alone and in complex with peptide-MHC ligands allow us to reassess many prior mutagenesis results. In addition, the structure of 226 bound to one peptide variant, p5E, shows major changes in the CDR3 contacts compared with wild-type, yet the TCR V-region contacts with MHC are conserved. These and other data illustrate the ability of TCRs to accommodate large variations in CDR3 structure and peptide contacts within the constraints of highly conserved TCR-MHC interactions.  相似文献   

6.
The specificity of recognition of pMHC complexes by T lymphocytes is determined by the V regions of the TCR alpha- and beta-chains. Recent experimental evidence has suggested that Ag-specific TCR repertoires may exhibit a more V alpha- than V beta-restricted usage. Whether V alpha usage is narrowed during immune responses to Ag or if, on the contrary, restricted V alpha usage is already defined at the early stages of TCR repertoire selection, however, has remained unexplored. Here, we analyzed V and CDR3 TCR regions of single circulating naive T cells specifically detected ex vivo and isolated with HLA-A2/melan-A peptide multimers. Similarly to what was previously observed for melan-A-specific Ag-experienced T cells, we found a relatively wide V beta usage, but a preferential V alpha 2.1 usage. Restricted V alpha 2.1 usage was also found among single CD8(+) A2/melan-A multimer(+) thymocytes, indicating that V alpha-restricted selection takes place in the thymus. V alpha 2.1 usage, however, was independent from functional avidity of Ag recognition. Thus, interaction of the pMHC complex with selected V alpha-chains contributes to set the broad Ag specificity, as underlined by preferential binding of A2/melan-A multimers to V alpha 2.1-bearing TCRs, whereas functional outcomes result from the sum of these with other interactions between pMHC complex and TCR.  相似文献   

7.
The TCR on CD4 T cells binds to and recognizes MHC class II:antigenic peptide complexes through molecular contacts with the peptide amino acid residues that face up and out of the peptide-binding groove. This interaction primarily involves the complementarity-determining regions (CDR) of the TCR alpha- and ss-chains contacting up to five residues of the peptide. We have used two TCRs that recognize the same antigenic peptide and have identical Vss8.2 chains, but differ in all three CDR of their related Valpha2 chains, to examine the fine specificity of the TCR:peptide contacts that lead to activation. By generating a peptide library containing all 20 aa residues in the five potential TCR contact sites, we were able to demonstrate that the two similar TCRs responded differentially when agonist, nonagonist, and antagonist peptide functions were examined. Dual substituted peptides containing an agonist residue at the N terminus, which interacts with CDR2alpha, and an antagonist residue at the C terminus, which interacts with the CDR3ss, were used to show that the nature of the overall signal through the TCR is determined by a combination of the type of signal received through both the TCR alpha- and ss-chains.  相似文献   

8.
Polymorphism within the MHC not only affects peptide specificity but also has a critical influence on the T cell repertoire; for example, the CD8 T cell response toward an immunodominant HSV glycoprotein B peptide is more diverse and of higher avidity in H-2(bm8) compared with H-2(b) mice. We have examined the basis for the selection of these distinct antiviral T cell repertoires by comparing the high-resolution structures of K(b) and K(bm8), in complex with cognate peptide Ag. Although K(b) and K(bm8) differ by four residues within the Ag-binding cleft, the most striking difference in the two structures was the disparate conformation adopted by the shared residue, Arg(62). The altered dynamics of Arg(62), coupled with a small rigid-body movement in the alpha(1) helix encompassing this residue, correlated with biased Valpha usage in the B6 mice. Moreover, an analysis of all known TCR/MHC complexes reveals that Arg(62) invariably interacts with the TCR CDR1alpha loop. Accordingly, Arg(62) appears to function as a conformational switch that may govern T cell selection and protective immunity.  相似文献   

9.
We examined TCR gene usage in a panel of beef insulin/I-Ad-restricted T cell hybrids obtained from BALB/c mice. These hybrids demonstrated several distinct patterns of reactivity defined by their ability to respond to species variants of insulin. Correlation of TCR-alpha and -beta-gene usage with these patterns of reactivity demonstrated that TCR gene usage was restricted within Ag reactivity groups. In particular, V-J junctional regions (CDR3 equivalent) were restricted with conserved junctional amino acid motifs present in both TCR-alpha- and -beta-chains. Comparison of TCR gene usage in hybrids expressing identical V alpha and V beta gene segments but demonstrating different patterns of reactivity revealed that changes in either J alpha and/or J beta gene segment usage could alter antigenic reactivity. Indeed, single or limited amino acid differences within the CDR3 region were sufficient to markedly alter fine specificity. These data demonstrate the critical role for CDR3 in determining antigenic reactivity in beef insulin-reactive hybrids and are compatible with the current model of TCR/peptide/MHC interaction.  相似文献   

10.
To define the relative contributions of HLA and peptide contacts with TCR complementarity-determining region (CDR) 3 residues in T cell recognition, systematic mutagenesis and domain swapping was conducted on two highly similar TCRs that both respond to the influenza hemagglutinin (HA) peptide, HA307-319, but with different HLA restrictions. Despite the primary sequence similarity of these TCRs, exchange of as little as two CDR3 residues between them completely abrogated responsiveness. At position 95 within CDR3alpha, various substitutions still allowed for some degree of recognition. One modest substitution, alanine for glycine (essentially the addition of a methyl group), significantly broadened the specificity of the TCR. Transfectants expressing this mutant TCR responded strongly in the context of multiple HLA-DR alleles and to HA peptide variants with substitutions at each TCR contact residue. These results suggest that the conformations of CDR3 loops are crucial to TCR specificity and that it may not be reliable to extrapolate from primary sequence similarities in TCRs to similarities in specificity. The ease with which a broad specificity is induced in this mutant TCR has implications for the mechanisms and frequency of alloreactivity and promiscuity in T cell responses.  相似文献   

11.
Single and dual amino acid substitution variants were generated in the TCR CDRs of three TCRs that recognize tumor-associated Ags. Substitutions that enhance the reactivity of TCR gene-modified T cells to the cognate Ag complex were identified using a rapid RNA-based transfection system. The screening of a panel of variants of the 1G4 TCR, that recognizes a peptide corresponding to amino acid residues 157-165 of the human cancer testis Ag NY-ESO-1 (SLLMWITQC) in the context of the HLA-A*02 class I allele, resulted in the identification of single and dual CDR3alpha and CDR2beta amino acid substitutions that dramatically enhanced the specific recognition of NY-ESO-1(+)/HLA-A*02(+) tumor cell lines by TCR gene-modified CD4(+) T cells. Within this group of improved TCRs, a dual substitution in the 1G4 TCR CDR3alpha chain was identified that enhanced Ag-specific reactivity in gene-modified CD4(+) and CD8(+) T cells. Separate experiments on two distinct TCRs that recognize the MART-1 27-35 (AAGIGILTV) peptide/HLA-A*02 Ag complex characterized single amino acid substitutions in both TCRs that enhanced CD4(+) T cell Ag-specific reactivity. These results indicate that simple TCR substitution variants that enhance T cell function can be identified by rapid transfection and assay techniques, providing the means for generating potent Ag complex-specific TCR genes for use in the study of T cell interactions and in T cell adoptive immunotherapy.  相似文献   

12.
13.
The methodology for generating a homology model of the T1 TCR-PbCS-K(d) class I major histocompatibility complex (MHC) class I complex is presented. The resulting model provides a qualitative explanation of the effect of over 50 different mutations in the region of the complementarity determining region (CDR) loops of the T cell receptor (TCR), the peptide and the MHC's alpha(1)/alpha(2) helices. The peptide is modified by an azido benzoic acid photoreactive group, which is part of the epitope recognized by the TCR. The construction of the model makes use of closely related homologs (the A6 TCR-Tax-HLA A2 complex, the 2C TCR, the 14.3.d TCR Vbeta chain, the 1934.4 TCR Valpha chain, and the H-2 K(b)-ovalbumine peptide), ab initio sampling of CDR loops conformations and experimental data to select from the set of possibilities. The model shows a complex arrangement of the CDR3alpha, CDR1beta, CDR2beta and CDR3beta loops that leads to the highly specific recognition of the photoreactive group. The protocol can be applied systematically to a series of related sequences, permitting the analysis at the structural level of the large TCR repertoire specific for a given peptide-MHC complex.  相似文献   

14.
alphabeta TCR can recognize peptides presented by MHC molecules or lipids and glycolipids presented by CD1 proteins. Whereas the structural basis for peptide/MHC recognition is now clearly understood, it is not known how the TCR can interact with such disparate molecules as lipids. Recently, we demonstrated that the alphabeta TCR confers specificity for both the lipid Ag and CD1 isoform restriction, indicating that the TCR is likely to recognize a lipid/CD1 complex. We hypothesized that lipids may bind to CD1 via their hydrophobic alkyl and acyl chains, exposing the hydrophilic sugar, phosphate, and other polar functions for interaction with the TCR complementarity-determining regions (CDRs). To test this model, we mutated the residues in the CDR3 region of the DN1 TCR beta-chain that were predicted to project between the CD1b alpha helices in a model of the TCR/CD1 complex. In addition, we tested the requirement for the negatively charged and polar functions of mycolic acid for Ag recognition. Our findings indicate that the CDR loops of the TCR form the Ag recognition domain of CD1-restricted TCRs and suggest that the hydrophilic domains of a lipid Ag can form a combinatorial epitope recognized by the TCR.  相似文献   

15.
We examined the specificity of positive and negative selection by using transgenic mice carrying a variant of the D10 TCR. We demonstrate that a point mutation at position 51 within the CDR2alpha segment significantly reduces the avidity of this TCR for its cognate ligand, but does not impact recognition of nonself MHC class II molecules. Although structural studies have suggested that this TCR site interacts with the MHC class II beta-chain, the avidity of this TCR for its ligand and the function of the T cell can be reconstituted by a point mutation in the bound antigenic peptide. These data demonstrate that the bound peptide can indirectly alter TCR interactions by influencing MHC structure. Remarkably, reducing the avidity of this TCR for a specific antigenic peptide-MHC ligand has a dramatic impact on thymic selection. Positive selection of thymocytes expressing this TCR is nearly completely blocked, whereas negative selection on allogenic MHC class II molecules remains intact. Therefore, the recognition of self that promotes positive selection of the D10 TCR is highly peptide-specific.  相似文献   

16.
CD1d-restricted NKT cells use structurally conserved TCRs and recognize both self and foreign glycolipids, but the TCR features that determine these Ag specificities remain unclear. We investigated the TCR structures and lipid Ag recognition properties of five novel Valpha24-negative and 13 canonical Valpha24-positive/Vbeta11-positive human NKT cell clones generated using alpha-galactosylceramide (alpha-GalCer)-loaded CD1d tetramers. The Valpha24-negative clones expressed Vbeta11 paired with Valpha10, Valpha2, or Valpha3. Strikingly, their Valpha-chains had highly conserved rearrangements to Jalpha18, resulting in CDR3alpha loop sequences that are nearly identical to those of canonical TCRs. Valpha24-positive and Valpha24-negative clones responded similarly to alpha-GalCer and a closely related bacterial analog, suggesting that conservation of the CDR3alpha loop is sufficient for recognition of alpha-GalCer despite CDR1alpha and CDR2alpha sequence variation. Unlike Valpha24-positive clones, the Valpha24-negative clones responded poorly to a glucose-linked glycolipid (alpha-glucosylceramide), which correlated with their lack of a conserved CDR1alpha amino acid motif, suggesting that fine specificity for alpha-linked glycosphingolipids is influenced by Valpha-encoded TCR regions. Valpha24-negative clones showed no response to isoglobotrihexosylceramide, indicating that recognition of this mammalian lipid is not required for selection of Jalpha18-positive TCRs that can recognize alpha-GalCer. One alpha-GalCer-reactive, Valpha24-positive clone differed from the others in responding specifically to mammalian phospholipids, demonstrating that semi-invariant NKT TCRs have a capacity for private Ag specificities that are likely conferred by individual TCR beta-chain rearrangements. These results highlight the variation in Ag recognition among CD1d-restricted TCRs and suggest that TCR alpha-chain elements contribute to alpha-linked glycosphingolipid specificity, whereas TCR beta-chains can confer heterogeneous additional reactivities.  相似文献   

17.
KRN T cells can recognize two self MHC alleles with differing biological consequences. They respond to the foreign peptide RN(42--56) bound to I-A(k) or alternatively initiate autoimmune arthritis by interacting with a self Ag, GPI(282--294), on I-A(g7). Five surface amino acid differences between the two MHC molecules collectively alter which peptide side chains are recognized by the KRN TCR. In this study, it is shown that mutation of only two of these residues, alpha 65 and beta 78, in I-A(k) to their I-A(g7) counterparts is sufficient to allow recognition of the TCR contacts from GPI(282--294). To provide a detailed mechanism for the specificity change, the distinct contributions of each of these two mutations to the global effect on peptide specificity were analyzed. The alpha65 mutation is shown to broaden the spectrum of amino acids permissible at P8 of the peptide. In contrast, the beta 78 mutation alone blocks KRN TCR interaction with I-A(k) and requires the simultaneous presence of the alpha 65 mutation to preserve recognition. In the presence of the alpha 65 mutation, the beta 78 residue broadens peptide recognition at P3 and prevents recognition of the P8 L in RN(42--56), thus producing the observed specificity shift. These results localize the functionally relevant differences between the surfaces of two self-restricted MHC molecules to two residues that have counterbalanced positive and negative contributions to interaction with a single TCR. They highlight how subtle structural distinctions attributable to single amino acids can stand at the interface between foreign Ag responsiveness and pathogenic autoreactivity.  相似文献   

18.
The Ag receptor of cytotoxic CD8+ T lymphocytes recognizes peptides of 8-10 aa bound to MHC class I molecules. This Ag recognition event leads to the activation of the CD8+ lymphocyte and subsequent lysis of the target cell. Altered peptide ligands are analogues derived from the original antigenic peptide that commonly carry amino acid substitutions at TCR contact residues. TCR engagement by these altered peptide ligands usually impairs normal T cell function. Some of these altered peptide ligands (antagonists) are able to specifically antagonize and inhibit T cell activation induced by the wild-type antigenic peptide. Despite significant advances made in understanding TCR antagonism, the molecular interactions between the TCR and the MHC/peptide complex responsible for the inhibitory activity of antagonist peptides remain elusive. To approach this question, we have identified altered peptide ligands derived from the vesicular stomatitis virus peptide (RGYVYQGL) that specifically antagonize an H-2Kb/vesicular stomatitis virus-specific TCR. Furthermore, by site-directed mutagenesis, we altered single amino acid residues of the complementarity-determining region 3 of the beta-chain of this TCR and tested the effect of these point mutations on Ag recognition and TCR antagonism. Here we show that a single amino acid change on the TCR CDR3 beta loop can modulate the TCR-antagonistic properties of an altered peptide ligand. Our results highlight the role of the TCR complementarity-determining region 3 loops for controlling the nature of the T cell response to TCR/altered peptide ligand interactions, including those leading to TCR antagonism.  相似文献   

19.
We have used T cells bearing TCRs that are closely related in sequence as probes to detect conformational variants of peptide-MHC complexes in murine experimental autoimmune encephalomyelitis in H-2(u) mice. The N-terminal epitope of myelin basic protein (MBP) is immunodominant in this model. Our studies have primarily focused on T cell recognition of a position 4 analog of this peptide (MBP1-9[4Y]) complexed with I-A(u). Using site-directed mutagenesis, we have mapped the functionally important complementarity determining region residues of the 1934.4 TCR Valpha domain. One of the resulting mutants (Tyr(95) to alanine in CDR3alpha, Y95A) has interesting properties: relative to the parent wild-type TCR, this mutant poorly recognizes Ag complexes generated by pulsing professional APCs (PL-8 cells) with MBP1-9[4Y] while retaining recognition of MBP1-9[4Y]-pulsed unconventional APCs or insect cell-expressed complexes of I-A(u) containing tethered MBP1-9[4Y]. Insect cell expression of recombinant I-A(u) with covalently tethered class II-associated invariant chain peptide or other peptides which bind relatively weakly, followed by proteolytic cleavage of the peptide linker and replacement by MBP1-9[4Y] in vitro, results in complexes that resemble peptide-pulsed PL-8 cells. Therefore, the distinct conformers can be produced in recombinant form. T cells that can distinguish these two conformers can also be generated by the immunization of H-2(u) mice, indicating that differential recognition of the conformers is observed for responding T cells in vivo. These studies have relevance to understanding the molecular details of T cell recognition in murine experimental autoimmune encephalomyelitis. They are also of particular importance for the effective use of multimeric peptide-MHC complexes to characterize the properties of Ag-specific T cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号