首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
2.
The injection of 8-hydroxy-2-(di-n-propylamino)-tetralin [8-OH-DPAT]reduced 5-hydroxytryptophan accumulation in vivo in rat cerebral cortex, hypothalamus and brainstem. Brain tryptophan levels were unaffected. Dose-related increases in 5-hydroxytryptophan accumulation produced by single injections of L-tryptophan (0, 25, 75 mg/kg ip) were substantially diminished by pretreatment with 8-OH-DPAT. The drug did not affect the tryptophan-induced increments in brain tryptophan level. Since 8-OH-DPAT is known to reduce the activity of serotonin neurons in vivo, these results suggest that when serotonin neurons are relatively inactive, the ability of an injection of tryptophan to stimulate serotonin synthesis is greatly attenuated.  相似文献   

3.
Summary Immunoreactive vasoactive intestinal polypeptide (VIP) was detected in a population of amacrine cells in the retina of the rat. Processes of these cells reach both the inner and outer half of the inner plexiform layer where they form sublayers. The VIP neurons are different from previously known amacrine cell types.  相似文献   

4.
Summary The presence and distribution of CRF-immunoreactive cells and nerve fibers were studied in the mammillary body of the rat, 12 days after placing various types of lesions within the hypothalamus. Anterior and anteriolateral cuts, placed in the midhypothalamus immediately behind the paraventricular nuclei resulted in an almost complete disappearance of CRF-immunoreactive fibers from the median eminence and simultaneous appearance of CRF-containing neurons in the mammillary body. Posterior or postero-lateral hypothalamic cuts carried out in front of the mammillary body caused the accumulation of CRF-immunoreactive material in neurons and neural processes located behind the cut-line. This type of intervention had no effect on the quantity of CRF fibers in the median eminence. A cut running through the central part of the mammillary body in the frontal plane resulted in appearance of CRF neurons only in the posterior half of the mammillary region. Placing a cut behind and over the mammillary body, CRF-immunoreactive neurons became detectable below the superior cut-line. No immunoreactive neurons were observed in the mammillary body when the frontal cut reached the base of the brain at the posterior border of the nucleus, leaving intact its anterior and superior connections. In all these cases when the mammillo-thalamic tract was transected, CRF neurons became detectable in the mammillary body.  相似文献   

5.
6.
The effect of 5-hydroxytryptophan (5-HTP)—the precursor of serotonin (5-hydroxytryptamine, 5-HT)—and of an inhibitor,N-(dl-seryl)-N-(2,3,4-trihydroxybenzyl)hydrazine (Ro4-4602), ofl-aromatic amino acid decarboxylase on the metabolism of glucose to amino acids in brain tissue was investigated. Labeled glucose (20 Ci, 0.24 mg in 0.2 ml 0.9% saline) was injected intravenously into fed rats pretreated with Ro4-4602 (50 mg/kg intraperitoneally) either alone or in combination with 5-HTP (30 mg/kg intravenously) or with the appropriate vehicle. After the injection of Ro4-4602 plus 5-HTP, the concentrations of 5-HT and 5-HTP in brain were increased, but the increase of 5-HTP that Ro4-4602 slightly inhibits the reaction of decarboxylation in the brain, although at the dose used the drug is usually considered to act only peripherally. After administration of Ro4-4602 alone or combined with 5-HTP, the concentration of glucose in plasma was not significantly increased. However, the concentration of glucose in brain was markedly increased with such treatments. The administration of Ro4-4602 alone or combined with 5-HTP reduced the flux of14C from labeled glucose to amino acids in brain. The concentrations of amino acids in brain were little changed by these treatments.  相似文献   

7.
Reserpine (0.1 mg/kg/day) was administered to rats from 11 through 30 days of age. During and after administration of reserpine, concentrations of catecholamines, epinephrine and norepinephrine, in the brain were estimated. Levels of catecholamines were about 30 per cent of normal during the period of reserpine administration. Approximately 3 weeks were required for these levels to return to normal. When animals were 95-100 days of age, they were deprived of food and were trained to press a bar for food. When the rate of responding became stable, the animals were subjected to three successive extinctions at daily intervals and the increase in response rate after the onset of each extinction was determined. This extinction-induced increase in response rate was greater for previously reserpinized animals than controls during the second and third extinctions, but not the first. These findings are interpreted as a decreased ability of the animals, reserpinized during infancy, to learn to respond discriminatively during non-reinforcement (extinction). Thus, an effect of reserpine administration during infancy on a type of behaviour in the adult has been demonstrated. This occurs after the catecholamine-depleting effect of the reserpine has been fully dissipated.  相似文献   

8.
Intravenous injections of varying doses of 5-HTP (1, 3 and 5 mg/100 g body wt), a precursor of serotonin, caused a significant and dose-related increase in plasma prolactin concentrations in urethane-anesthetized rats. Increases in plasma prolactin concentrations caused by 5-HTP (1 mg/100 g body wt iv) were abolished by the concomitant administration of L-DOPA (2 mg/100 g body wt iv). Plasma prolactin levels were also significantly elevated following the injection of 5-HTP in rats with complete hypothalamic deafferentation, whereas 5-HTP had no significant effect on plasma prolactin levels in rats with extensive hypothalamic ablation. These results suggest that 5-HTP causes prolactin secretion by stimulating the serotoninergic mechanism in the hypothalamus.  相似文献   

9.
The effects of 5-hydroxytryptophan (5-HTP) and serotonin (5-HT) on dopamine synthesis and release in rat brain striatal synaptosomes have been examined and compared to the effects of tyramine and dopamine. Serotonin inhibited dopamine synthesis from tyrosine, with 25% inhibition occurring at 3 μM-5-HT and 60% inhibition at 200 μM. Dopamine synthesis from DOPA was also inhibited by 5-HT, with 30% inhibition occurring at 200 μ. At 200 μM-5-HTP, dopamine synthesis from both tyrosine and DOPA was inhibited about 70%. When just the tyrosine hydroxylation step was measured in the intact synaptosome, 5-HT, 5-HTP, tyramine and dopamine all caused significant inhibition, but only dopamine inhibited soluble tyrosine hydroxylase [L-tyrosine 3-monooxygenase; L-tyrosine, tetrahydropteridine oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2] prepared from lysed synaptosomes. Particulate tyrosine hydroxylase was not inhibited by 10 μM-5-HT, but was about 20% inhibited by 200 μM-5-HT and 5-HTP. At 200 μM both 5-HT and 5-HTP stimulated endogenous dopamine release. These experiments suggest that exposure of dopaminergic neurons to 5-HT or 5-HTP leads to an inhibition of dopamine synthesis, mediated in part by an intraneuronal displacement of dopamine from vesicle storage sites, leading to an increase in dopamine-induced feedback inhibition of tyrosine hydroxylase, and in part by a direct inhibition of DOPA decarboxylation.  相似文献   

10.
Summary The distribution of immunoreactive thyrotropin-releasing hormone (TRH) in the central nervous system of the domestic mallard was studied by means of the peroxidase-antiperoxidase technique. After colchicine pretreatment, the highest number of TRH-immunoreactive perikarya was found in the parvocellular subdivision of the paraventricular nucleus and in the preoptic region; a smaller number of immunostained perikarya was observed in the lateral hypothalamic area and in the posterior medial hypothalamic nucleus. TRH-immunoreactive nerve fibers were detected throughout the hypothalamus, forming a dense network in the periventricular area, paraventricular nucleus, preoptic-suprachiasmatic region, and baso-lateral hypothalamic area. TRH-containing nerve fibers and terminals occurred in the organon vasculosum of the lamina terminalis and in the external zone of the median eminence in juxtaposition with hypophyseal portal vessels. Scattered fibers were also seen in the internal zone of the median eminence and in the rostral portion of the neural lobe. Numerous TRH-immunoreactive fibers were detected in extra-hypothalamic brain regions: the highest number of immunoreactive nerve fibers was found in the lateral septum, nucleus accumbens, olfactory tubercle, and parolfactory lobe. Moderate numbers of fibers were located in the basal forebrain, dorsomedial thalamic nuclei, hippocampus, interpeduncular nucleus, and the central gray of the mesencephalon. The present findings suggest that TRH may be involved in hypophysiotropic regulatory mechanisms and, in addition, may also act as neuromodulator or neurotransmitter in other regions of the avian brain.  相似文献   

11.
Gonadotropin-releasing hormone (GnRH) neurons and pathways in the rat brain   总被引:8,自引:0,他引:8  
Merchenthaler  I.  Göres  T.  Sétáló  G.  Petrusz  P.  Flerkó  B. 《Cell and tissue research》1984,237(1):15-29
Summary Gonadotropin-releasing hormone (GnRH) neurons and their pathways in the rat brain were localized by immunocytochemistry in 6-to 18-day-old female animals, by use of thick frozen or vibratome sections, and silver-gold intensification of the diaminobenzidine reaction product. GnRH-immunoreactive perikarya were observed in the following regions: olfactory bulb and tubercle, vertical and horizontal limbs of the diagonal band of Broca, medial septum, medial preoptic and suprachiasmatic areas, anterior and lateral hypothalamus, and different regions of the hippocampus (indusium griseum, Ammon's horn). In addition to the known GnRH-pathways (preoptico-terminal, preoptico-infundibular, periventricular), we also observed GnRH-immunopositive processes in several major tracts and areas of the brain, including the medial and cortical amygdaloid complex, stria terminalis, stria medullaris thalami, fasciculus retroflexus, medial forebrain bundle, indusium griseum, stria longitudinalis medialis and lateralis, hippocampus, periaqueductal gray of the mesencephalon, and extracerebral regions, such as the lamina cribrosa, nervus terminalis and its associated ganglia. By use of the silver-gold intensification method we present Golgi-like images of GnRH perikarya and their pathways. The possible distribution of efferents from each GnRH cell group is discussed.  相似文献   

12.
13.
14.
Summary The adrenergic innervation of somatostatin synthesizing neurons located in the anterior region of the rat hypothalamic periventricular nucleus was studied by means of a light and electron microscopic immunocytochemical double labelling technique. This region which is the source of hypophysiotrophic somatostatin immunoreactive (IR) neurons also receives a dense plexus of adrenergic axons as determined by immunocytochemistry of phenylethanolamine-N-methyltransferase (PNMT), the marker enzyme for the central adrenergic system. The simultaneous detection of PNMT and somatostatin antigens in hypothalamic sections of colchicine pretreated animals revealed a congruency in the distribution of the labelled elements and also close juxtaposition of PNMT-IR axons to somatostatin producing neurons. At the ultrastructural level, axo-somatic and axo-dendritic synaptic connections were found between PNMT-containing axons and somatostatin expressing neurons. These morphological findings support the view that the central adrenergic system might influence the production and secretion of growth hormone in the pituitary gland by a direct monosynaptic interaction with somatostatin synthesizing neurons.  相似文献   

15.
16.
The adrenergic innervation of somatostatin synthesizing neurons located in the anterior region of the rat hypothalamic periventricular nucleus was studied by means of a light and electron microscopic immunocytochemical double labelling technique. This region which is the source of hypophysiotrophic somatostatin immunoreactive (IR) neurons also receives a dense plexus of adrenergic axons as determined by immunocytochemistry of phenylethanolamine-N-methyltransferase (PNMT), the marker enzyme for the central adrenergic system. The simultaneous detection of PNMT and somatostatin antigens in hypothalamic sections of colchicine pretreated animals revealed a congruency in the distribution of the labelled elements and also close juxtaposition of PNMT-IR axons to somatostatin producing neurons. At the ultrastructural level, axo-somatic and axo-dendritic synaptic connections were found between PNMT-containing axons and somatostatin expressing neurons. These morphological findings support the view that the central adrenergic system might influence the production and secretion of growth hormone in the pituitary gland by a direct monosynaptic interaction with somatostatin synthesizing neurons.  相似文献   

17.
18.
A new peptidergic paraventriculo-infundibular system has been revealed using anti-corticoliberin (CRF) antibodies. The localization of its perikarya in the paraventricular nuclei as well as the distribution of its fibres and perivascular nerve-endings within the median eminence are different from those of other systems stained with antibodies directed against gonadoliberin, somatostatin, vasopressin or oxytocin.  相似文献   

19.
20.
Transection (axotomy) of the dorsal tegmental noradrenaline bundle in the neonatal stage leads to a permanent degeneration of noradrenaline nerve terminal projections distal to the lesion (e.g. in the neocortex), while projections proximal to the lesion increase their nerve terminal density (e.g. in the cerebellum). These structural changes are reflected by marked reductions and elevations respectively of the endogenous noradrenaline levels, [3H]-noradrenaline uptake in vitro and nerve density as demonstrated by fluorescence histochemistry. Intracisternal administration of substance P after the transection did not alter these noradrenaline parameters in the neocortex, whereas dose-dependent and significant increases were found in the cerebellum and pons-medulla. The results indicate that substance P may have a growth-stimulatory effect on damaged locus coeruleus noradrenaline neurons in the CNS during ontogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号