首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
鞘氨醇-1-磷酸(sphingosine-1 phosphate,S1P)是来源于鞘脂代谢途径的多效性信号分子,其代谢受到多种因素调控。S1P由细胞内的鞘氨醇激酶(sphingosine kinases,SphKs)催化鞘氨醇的磷酸化而合成,可通过转运蛋白释放至细胞外。S1P可通过在胞外结合其特异性G蛋白偶联受体及胞内作用而调节多种重要生物学效应。作为细胞外介质和细胞内信使,S1P在免疫系统中也发挥重要的调节作用。S1P参与免疫细胞的迁移、增殖、分化及死亡细胞清除等过程。本文对S1P的代谢以及其对于免疫细胞的调节作用进行综述。  相似文献   

2.
Sphingosine-1-phosphate (S1P) is a lipid that functions as a metabolic intermediate and a cellular signaling molecule. These roles are integrated when compartments with differing extracellular S1P concentrations are formed that serve to regulate functions within the immune and vascular systems, as well as during pathologic conditions. Gradients of S1P concentration are achieved by the organization of cells with specialized expression of S1P metabolic pathways within tissues. S1P concentration gradients underpin the ability of S1P signaling to regulate in vivo physiology. This review will discuss the mechanisms that are necessary for the formation and maintenance of S1P gradients, with the aim of understanding how a simple lipid controls complex physiology. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

3.
鞘磷脂是哺乳动物细胞质膜的主要成分之一,在其代谢过程中,鞘氨醇激酶(sphingosine kinase, SPHK)是一个关键性的调节酶.鞘磷脂代谢产物鞘鞍醇经SPHK磷酸化作用产生的鞘氨醇-1-磷酸(S1P)是一种具有生物活性的脂类,参与调节骨骼、神经、免疫、血液系统等多种组织细胞的生物学过程.本文阐述了SPHK/S1P信号途径相关分子,并综述了SPHK/S1P通过调节骨组织细胞的形态结构、增殖、迁移、分化形成及凋亡等功能,进而调节骨重建平衡过程的生物学效应及其机制.  相似文献   

4.
Fibrotic disorders are typified by excessive connective tissue and extracellular matrix (ECM) deposition that precludes normal healing processes in different tissues. Angiotensin-II (Ang-II) is involved in the fibrotic response. Several muscular dystrophies are characterized by extensive fibrosis. However, the exact role of Ang-II in skeletal muscle fibrosis is unknown. Here we show that myoblasts responded to Ang-II by increasing protein levels of connective tissue growth factor (CTGF/CCN2), collagen-III and fibronectin. These Ang-II-induced pro-fibrotic effects were mediated by AT-1 receptors. Remarkably, Ang-II induced reactive oxygen species (ROS) via a NAD(P)H oxidase-dependent mechanism, as shown by inhibition of ROS production via the NAD(P)H oxidase inhibitors diphenylene iodonium (DPI) and apocynin. This increase in ROS is critical for Ang-II-induced fibrotic effects, as indicated by the decrease in Ang-II-induced CTGF and fibronectin levels by DPI and apocynin. We also show that Ang-II-induced ROS production and fibrosis require PKC activity as indicated by the generic PKC inhibitor chelerythrine.These results strongly suggest that the fibrotic response induced by Ang-II is mediated by AT-1 receptor and requires NAD(P)H-induced ROS in skeletal muscle cells.  相似文献   

5.
Lysophospholipids are bioactive molecules that are implicated in the control of fundamental biological processes such as proliferation, differentiation, survival and motility in different cell types. Here we review the role of sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) in the regulation of skeletal muscle biology. Indeed, a wealth of experimental data indicate that these molecules are crucial players in the skeletal muscle regeneration process, acting by controllers of activation, proliferation and differentiation not only of muscle-resident satellite cells but also of mesenchymal progenitors that originate outside the skeletal muscle. Moreover, S1P and LPA are clearly involved in the regulation of skeletal muscle metabolism, muscle adaptation to different physiological needs and resistance to muscle fatigue. Notably, studies accomplished so far, have highlighted the complexity of S1P and LPA signaling in skeletal muscle cells that appears to be further complicated by their close dependence on functional cross-talks with growth factors, hormones and cytokines. Our increasing understanding of bioactive lipid signaling can individuate novel molecular targets aimed at enhancing skeletal muscle regeneration and reducing the fibrotic process that impairs full functional recovery of the tissue during aging, after a trauma or skeletal muscle diseases. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

6.
Sphingosine-1-phosphate (S1P) is a potent biomediator that can act as either an intracellular or an intercellular messenger. In the nervous system it exerts a wide range of actions, and specific membrane receptors for it have been identified in various regions. However, the physiological origin of extracellular S1P in the nervous system is largely unknown. We investigated cerebellar granule cells at different stages of differentiation and astrocytes in primary cultures as possible origins of extracellular S1P. Although these cells show marked differences in S1P metabolism, we found that they can all release S1P and express mRNAs for S1P specific receptors. Extracellular S1P derives from the export of newly synthesized intracellular S1P, and not from the action of a released sphingosine kinase. S1P release is rapid, efficient, and can be regulated by exogenous stimuli. Phorbol ester treatment resulted in an increase in sphingosine kinase 1 activity in the membranes, accompanied by a significant increase in extracellular S1P. S1P release in cells from the cerebellum emerges as a regulated mechanism, possibly related to a specific pool of newly synthesized S1P. To our knowledge, this is the first evidence of the extracellular release of S1P by primary cells from the CNS, which supports a role of S1P as autocrine/paracrine physiological messenger in the cerebellum.  相似文献   

7.
Sphingosine-1-phosphate signaling is emerging as a critical regulator of cellular processes that is initiated by the intracellular production of bioactive lipid molecule, sphingosine-1-phosphate. Binding of sphingosine-1-phosphate to its extracellular receptors activates diverse downstream signaling that play a critical role in governing physiological processes. Increasing evidence suggests that this signaling pathway often gets impaired during pathophysiological and diseased conditions and hence manipulation of this signaling pathway may be beneficial in providing treatment. In this review, we summarized the recent findings of S1P signaling pathway and the versatile role of the participating candidates in context with several disease conditions. Finally, we discussed its possible role as a novel drug target in different diseases.  相似文献   

8.
Fibrosis is a pathological process characterized by massive deposition of extracellular matrix (ECM) such as type I/III collagens and fibronectin that are secreted by an expanded pool of myofibroblasts, which are phenotypically altered fibroblasts with more contractile, proliferative, migratory and secretory activities. Fibrosis occurs in various organs including the lung, heart, liver and kidney, resulting in loss of normal tissue architecture and functions. Myofibroblasts could originate from multiple sources including tissue-resident fibroblasts, epithelial and endothelial cells through mechanisms of epithelial/endothelial-mesenchymal transition (EMT/EndMT), and bone marrow-derived circulating progenitors called fibrocytes. Emerging evidence in recent years shows that sphingosine-1-phosphate (S1P) acts on several types of target cells and is engaged in pro-fibrotic inflammatory process and fibrogenic process through multiple mechanisms, which include vascular permeability change, leukocyte infiltration, and migration, proliferation and myofibroblast differentiation of fibroblasts. Many of these S1P actions are receptor subtype-specific. In these actions, S1P has multiple cross-talks with other cytokines, particularly transforming growth factor-β (TGFβ), which plays a major role in fibrosis. The cross-talks include the regulation of S1P production through altered expression and activity of sphingosine kinases in fibrotic lesions, altered expression of S1P receptors, and S1P receptor-mediated transactivation of TGFβ signaling pathway. These cross-talks may give rise to a feed-forward, amplifying loop between S1P and TGFβ, and possibly with other cytokines in stimulating fibrogenesis. Another lysophospholipid mediator lysophosphatidic acid has also been recently implicated in fibrosis. The lysophospholipid signaling pathways represent novel, promising therapeutic targets for treating refractory fibrotic diseases. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

9.
The role of protein kinase C (PKC) isozymes in phorbol myristate acetate (PMA)-induced sphingosine 1-phosphate (S1P) receptor 1 (S1P1) phosphorylation was studied. Activation of S1P1 receptors induced an immediate increase in intracellular calcium, which was blocked by preincubation with PMA. Both S1P and PMA were able to increase S1P1 phosphorylation in a concentration- and time-dependent fashion. Down-regulation of PKC (overnight incubation with PMA) blocked the subsequent effect of the phorbol ester on S1P1 phosphorylation, without decreasing that of the natural agonist. Pharmacological inhibition of PKC α prevented the effects of PMA on S1P-triggered intracellular calcium increase and on S1P1 phosphorylation; no such effect was observed on the effects of the sphingolipid agonist. The presence of PKC α and β isoforms in S1P1 immunoprecipitates was evidenced by Western blotting. Additionally, expression of dominant-negative mutants of PKC α or β and knockdown of these isozymes using short hairpin RNA, markedly attenuated PMA-induced S1P1 phosphorylation. Our results indicate that the classical isoforms, mainly PKC α, mediate PMA-induced phosphorylation and desensitization of S1P1.  相似文献   

10.
Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR1). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR1-deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR1-specific agonists and inhibitors were used to demonstrate that PAR1 mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR1 and not PAR2. These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis.  相似文献   

11.
12.
This review highlights an emerging role for sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) in many different types of fibrosis. Indeed, both LPA and S1P are involved in the multi-process pathogenesis of fibrosis, being implicated in promoting the well-established process of differentiation of fibroblasts to myofibroblasts and the more controversial epithelial–mesenchymal transition and homing of fibrocytes to fibrotic lesions. Therefore, targeting the production of these bioactive lysolipids or blocking their sites/mechanisms of action has therapeutic potential. Indeed, LPA receptor 1 (LPA1) selective antagonists are currently being developed for the treatment of fibrosis of the lung as well as a neutralising anti-S1P antibody that is currently in Phase 1 clinical trials for treatment of age related macular degeneration. Thus, LPA- and S1P-directed therapeutics may not be too far from the clinic. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

13.
1- 磷酸鞘氨醇是一种有生物活性的脂质代谢产物,具有调节细胞增殖、再生、迁移,细胞内钙离子移动,黏附分子表达以及激活单核细胞黏附内皮细胞等功效,在血管生理性再生及动脉粥样硬化斑块发生发展中发挥重要作用。1- 磷酸鞘氨醇在高密度脂蛋白中含量在所有脂蛋白中最高,其参与调节高密度脂蛋白的抗氧化、抗血栓、抗炎等效应,而这些反应与1- 磷酸鞘氨醇的生物学功能如血管发生、内皮保护、抑制平滑肌细胞迁移、心肌缺血再灌注损伤的保护等密切相关。对1- 磷酸鞘氨醇信号通路在心血管系统中的作用及以该通路为靶点的相关药物研究进展进行综述,为今后研究提供参考。  相似文献   

14.
Sphingosine-1-phosphate: dual messenger functions   总被引:8,自引:0,他引:8  
The sphingolipid metabolite sphingosine-1-phosphate (S1P) is a serum-borne lipid that regulates many vital cellular processes. S1P is the ligand of a family of five specific G protein-coupled receptors that are differentially expressed in different tissues and regulate diverse cellular actions. Much less is known of the intracellular actions of S1P. It has been suggested that S1P may also function as an intracellular second messenger to regulate calcium mobilization, cell growth and suppression of apoptosis in response to a variety of extracellular stimuli. Dissecting the dual actions and identification of intracellular targets of S1P has been challenging, but there is ample evidence to suggest that the balance between S1P and ceramide and/or sphingosine levels in cells is an important determinant of cell fate.  相似文献   

15.
Sphingolipids were discovered more than a century ago and were simply considered as a class of cell membrane lipids for a long time. However, after the discovery of several intracellular functions and their role in the control of many physiological and pathophysiological conditions, these molecules have gained much attention. For instance, the sphingosine-1-phosphate (S1P) is a circulating bioactive sphingolipid capable of triggering strong intracellular reactions through the family of S1P receptors (S1PRs) spread in several cell types and tissues. Recently, the role of S1P in the control of skeletal muscle metabolism, atrophy, regeneration, and metabolic disorders has been widely investigated. In this review, we summarized the knowledge of S1P and its effects in skeletal muscle metabolism, highlighting the role of S1P/S1PRs axis in skeletal muscle regeneration, fatigue, ceramide accumulation, and insulin resistance. Finally, we discussed the physical exercise role in S1P/S1PRs signaling in skeletal muscle cells, and how this nonpharmacological strategy may be prospective for future investigations due to its ability to increase S1P levels.  相似文献   

16.
The enforcement of sphingosine-1-phosphate (S1P) signaling network protects from radiation-induced pneumonitis. We now demonstrate that, in contrast to early postirradiation period, late postirradiation sphingosine kinase-1 (SphK1) and sphingoid base-1-phosphates are associated with radiation-induced pulmonary fibrosis (RIF). Using the mouse model, we demonstrate that RIF is characterized by a marked upregulation of S1P and dihydrosphingosine-1-phosphate (DHS1P) levels in the lung tissue and in circulation accompanied by increased lung SphK1 expression and activity. Inhibition of sphingolipid de novo biosynthesis by targeting serine palmitoyltransferase (SPT) with myriocin reduced radiation-induced pulmonary inflammation and delayed the onset of RIF as evidenced by increased animal lifespan and decreased expression of markers of fibrogenesis, such as collagen and α-smooth muscle actin (α-SMA), in the lung. Long-term inhibition of SPT also decreased radiation-induced SphK activity in the lung and the levels of S1P-DHS1P in the lung tissue and in circulation. In vitro, inhibition or silencing of serine palmitoyltransferase attenuated transforming growth factor-β1 (TGF-β)-induced upregulation of α-SMA through the negative regulation of SphK1 expression in normal human lung fibroblasts. These data demonstrate a novel role for SPT in regulating TGF-β signaling and fibrogenesis that is linked to the regulation of SphK1 expression and S1P-DHS1P formation.  相似文献   

17.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that regulates diverse biological processes by binding to a family of G protein-coupled receptors or as an intracellular second messenger. Mammalian S1P phosphatase (SPP-1), which degrades S1P to terminate its actions, was recently cloned based on homology to a lipid phosphohydrolase that regulates the levels of phosphorylated sphingoid bases in yeast. Confocal microscopy surprisingly revealed that epitope-tagged SPP-1 is intracellular and colocalized with the ER marker calnexin. Moreover, SPP-1 activity and protein appeared to be mainly enriched in the intracellular membranes with lower expression in the plasma membrane. Treatment of SPP-1 transfectants with S1P markedly increased ceramide levels, predominantly in the intracellular membranes, diminished survival, and enhanced apoptosis. Remarkably, dihydro-S1P, although a good substrate for SPP-1 in situ, did not cause significant ceramide accumulation or increase apoptosis. Ceramide accumulation induced by S1P was completely blocked by fumonisin B1, an inhibitor of ceramide synthase, but only partially reduced by myriocin, an inhibitor of serine palmitoyltransferase, the first committed step in de novo synthesis of ceramide. Furthermore, S1P, but not dihydro-S1P, stimulated incorporation of [3H]palmitate, a substrate for both serine palmitoyltransferase and ceramide synthase, into C16-ceramide. Collectively, our results suggest that SPP-1 functions in an unprecedented manner to regulate sphingolipid biosynthesis and is poised to influence cell fate.  相似文献   

18.
Sphingosine kinase 1 (SK1) produces sphingosine-1-phosphate (S1P), a potent signaling lipid. The subcellular localization of SK1 can dictate its signaling function. Here, we use artificial targeting of SK1 to either the plasma membrane (PM) or the endoplasmic reticulum (ER) to test the effects of compartmentalization of SK1 on substrate utilization and downstream metabolism of S1P. Expression of untargeted or ER-targeted SK1, but surprisingly not PM-targeted SK1, results in a dramatic increase in the phosphorylation of dihydrosphingosine, a metabolic precursor in de novo ceramide synthesis. Conversely, knockdown of endogenous SK1 diminishes both dihydrosphingosine-1-phosphate and S1P levels. We tested the effects of SK1 localization on degradation of S1P by depletion of the ER-localized S1P phosphatases and lyase. Remarkably, S1P produced at the PM was degraded to the same extent as that produced in the ER. This indicates that there is an efficient mechanism for the transport of S1P from the PM to the ER. In acute labeling experiments, we find that S1P degradation is primarily driven by lyase cleavage of S1P. Counterintuitively, when S1P-specific phosphatases are depleted, acute labeling of S1P is significantly reduced, indicative of a phosphatase-dependent recycling process. We conclude that the localization of SK1 influences the substrate pools that it has access to and that S1P can rapidly translocate from the site where it is synthesized to other intracellular sites.51: 2546–2559.  相似文献   

19.
The sphingolipid metabolite, sphingosine-1-phosphate (S1P), has emerged as a critical player in a number of fundamental biological processes and is important in cancer, angiogenesis, wound healing, cardiovascular function, atherosclerosis, immunity and asthma, among others. Activation of sphingosine kinases, enzymes that catalyze the phosphorylation of sphingosine to S1P, by a variety of agonists, including growth factors, cytokines, hormones, and antigen, increases intracellular S1P. Many of the biological effects of S1P are mediated by its binding to five specific G protein-coupled receptors located on the cell surface in an autocrine and/or paracrine manner. Therefore, understanding the mechanism by which intracellularly generated S1P is released out of cells is both interesting and important. In this review, we will discuss how S1P is formed and released. We will focus particularly on the current knowledge of how the S1P gradient between tissues and blood is maintained, and the role of ABC transporters in S1P release.  相似文献   

20.
血管生成是指在原有血管的基础上形成新血管的过程.病理性血管生成是癌症、心血管类疾病和视网膜病变等一系列疾病的标志.1-磷酸鞘氨醇(sphingosine-1-phosphate,S1P)是一种信号脂质,由鞘氨醇激酶(sphingosine kinases,SPHK)合成,通过5种G蛋白偶联受体(sphingosine-...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号