首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fat poetry: a kingdom for PPARγ   总被引:11,自引:0,他引:11  
Anghel SI  Wahli W 《Cell research》2007,17(6):486-511
  相似文献   

3.
Abstract Adipocytokines, bioactive molecules secreted from adipose tissues, play important roles in physiology, development, and disease. Recently, heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified as an adipocytokine whose expression correlates with obesity. However, the biological role of fat-secreted HB-EGF is still unclear. In this study, we investigated the effects of HB-EGF on the adipocyte differentiation of C3H10T1/2 pluripotent mesenchymal cells. Upon adipogenic conversion of C3H10T1/2 cells, HB-EGF displayed dynamic changes in expression where an initial decrease was followed by increased levels of expression at later stages. HB-EGF treatment during adipogenic induction inhibited lipid accumulation and decreased the expression of adipocyte molecular markers (fatty acid-binding protein, peroxisome proliferator-activated receptor γ, and CAAT enhancer-binding protein α) and lipogenic genes (glucose transporter, fatty acid synthetase, and lipoprotein lipase). Therefore, HB-EGF has an inhibitory effect on adipocyte differentiation. Administration of HB-EGF at various intervals during adipocyte differentiation revealed that HB-EGF acts during the early stages of adipocyte differentiation, but not at the later stages of differentiation. Furthermore, HB-EGF was able to block the commitment of pluripotent mesenchymal cells to the adipocyte lineage triggered by bone morphogenic protein 4 treatment. These data suggest that HB-EGF acts as a negative regulator of adipogenesis by inhibiting the commitment and early differentiation of the adipose lineage. The inhibitory role of HB-EGF on adipocyte differentiation of pluripotent mesenchymal cells sheds light on potential mechanisms that control adipose tissue homeostasis.  相似文献   

4.
5.
We have previously demonstrated promotion by growth differentiation factor-5 (GDF5) of brown adipogenesis for systemic energy expenditure through a mechanism relevant to activating the bone morphological protein (BMP) receptor/mothers against decapentaplegic homolog (Smad)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathway. Here, we show the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in brown adipogenesis mediated by GDF5. Overexpression of GDF5 in cells expressing adipocyte protein-2 markedly accelerated the phosphorylation of Smad1/5/8 and Akt in white and brown adipose tissues. In brown adipose tissue from heterozygous GDF5Rgsc451 mutant mice expressing a dominant-negative (DN) GDF5 under obesogenic conditions, the basal phosphorylation of Smad1/5/8 and Akt was significantly attenuated. Exposure to GDF5 not only promoted the phosphorylation of both Smad1/5/8 and Akt in cultured brown pre-adipocytes, but also up-regulated Pgc1a and uncoupling protein-1 expression in a manner sensitive to the PI3K/Akt inhibitor Ly294002 as well as retroviral infection with DN-Akt. GDF5 drastically promoted BMP-responsive luciferase reporter activity in a Ly294002-sensitive fashion. Both Ly294002 and DN-Akt markedly inhibited phosphorylation of Smad5 in the nuclei of brown pre-adipocytes. These results suggest that PI3K/Akt signals play a role in the GDF5-mediated brown adipogenesis through a mechanism related to activation of the Smad pathway.  相似文献   

6.
7.
Keratinocytes require abundant cholesterol for cutaneous permeability barrier function; hence, the regulation of cholesterol homeostasis is of great importance. ABCA1 is a membrane transporter responsible for cholesterol efflux and plays a pivotal role in regulating cellular cholesterol levels. We demonstrate that ABCA1 is expressed in cultured human keratinocytes (CHKs) and murine epidermis. Liver X receptor (LXR) activation markedly stimulates ABCA1 mRNA and protein levels in CHKs and mouse epidermis. In addition to LXR, activators of peroxisome proliferator-activated receptor (PPAR)alpha, PPARbeta/delta, and retinoid X receptor (RXR), but neither PPARgamma nor retinoic acid receptor, also increase ABCA1 expression in CHKs. Increases in cholesterol supply induced by LDL or mevalonate stimulate ABCA1 expression, whereas inhibiting cholesterol synthesis with statins or cholesterol sulfate decreases ABCA1 expression in CHKs. After acute permeability barrier disruption by either tape-stripping or acetone treatment, ABCA1 expression declines, and this attenuates cellular cholesterol efflux, making more cholesterol available for regeneration of the barrier. In addition, during fetal epidermal development, ABCA1 expression decreases at days 18-22 of gestation (term = 22 days), leaving more cholesterol available during the critical period of barrier formation. Together, our results show that ABCA1 is expressed in keratinocytes, where it is negatively regulated by a decrease in cellular cholesterol levels or altered permeability barrier requirements and positively regulated by activators of LXR, PPARs, and RXR or increases in cellular cholesterol levels.  相似文献   

8.
Contact inhibition is a crucial mechanism regulating proliferation in vitro and in vivo. Despite its generally accepted importance for maintaining tissue homeostasis knowledge about the underlying molecular mechanisms of contact inhibition is still scarce. Since the MAPK ERK1/2 plays a pivotal role in the control of proliferation, we investigated regulation of ERK1/2 phosphorylation which is downregulated in confluent NIH3T3 cultures. We found a decrease in upstream signaling including phosphorylation of the growth factor receptor adaptor protein ShcA and the MAPK kinase MEK1/2 in confluent compared to exponentially growing cultures whereas involvement of ERK1/2 phosphatases in ERK1/2 inactivation is unlikely. Treatment of confluent, serum-deprived cultures with PDGF-B resulted in similar phosphorylation of ERK1/2 and induction of DNA-synthesis as detected in sparse, serum-deprived cultures. In contrast, ERK1/2 phosphorylation and DNA-synthesis could not be stimulated in confluent, serum-deprived cultures exposed to EGF. Our data indicate that PDGFR- and EGFR signaling are differentially inhibited in confluent cultures of NIH3T3 cells.  相似文献   

9.
10.
11.
Noggin is an extracellular cysteine knot protein that plays a crucial role in vertebrate dorsoventral patterning. Noggin binds and inhibits the activity of bone morphogenetic proteins via a conserved N-terminal clip domain. Noncanonical orthologs of Noggin that lack a clip domain (“Noggin-like” proteins) are encoded in many arthropod genomes and are thought to have evolved into receptor tyrosine kinase ligands that promote Torso/receptor tyrosine kinase signaling rather than inhibiting bone morphogenic protein signaling. Here, we examined the molecular function of noggin/noggin-like genes (ApNL1 and ApNL2) from the arthropod pea aphid using the dorso-ventral patterning of Xenopus and the terminal patterning system of Drosophila to identify whether these proteins function as bone morphogenic protein or receptor tyrosine kinase signaling regulators. Our findings reveal that ApNL1 from the pea aphid can regulate both bone morphogenic protein and receptor tyrosine kinase signaling pathways, and unexpectedly, that the clip domain is not essential for its antagonism of bone morphogenic protein signaling. Our findings indicate that ancestral noggin/noggin-like genes were multifunctional regulators of signaling that have specialized to regulate multiple cell signaling pathways during the evolution of animals.  相似文献   

12.
Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a gatekeeper of adipogenesis by maintaining the preadipocyte state and preventing adipocyte differentiation. We hypothesized that the breed differences of adipogenic capacity in cattle could be explained by the expression level of pref-1. In this experiment, we studied the expression level of the pref-1 gene and adipocyte cellularity in subcutaneous and mesenteric adipose tissues of Japanese Black (Wagyu) and Holstein fattening cattle. In subcutaneous adipose tissue, there were no significant differences in the pref-1 gene expression levels and adipocyte sizes between the breeds. In contrast, the expression level of the pref-1 gene in mesenteric adipose tissue of Holsteins was significantly higher than that of Wagyu. In addition, the size of mesenteric adipocytes in Holsteins was significantly smaller than that of Wagyu. These results indicate that the breed differences of fattening cattle affect the expression pattern of the pref-1 gene and adipocyte cellularity in a fat depot-specific manner.  相似文献   

13.
There is currently a global epidemic of obesity as a result of recent changes in lifestyle. Excess body fat deposition is caused by an imbalance between energy intake and energy expenditure due to interactions between genetic and environmental factors. The signals and biological mechanisms that trigger fat accumulation by disrupting energy homeostasis are not well understood. There is considerable evidence now supporting a possible role of protein kinase C beta (PKCβ) in energy homeostasis. This review highlights recent findings on the role of PKCβ activation in the genesis and progression of obesity, and of PKCβ repression in mediating the beneficial effects of physical exercise. Available data support a model in which adipose PKCβ activation is among the initiating events that disrupt mitochondrial function through interaction with p66shc and amplify fat accumulation and adipose dysfunction, with systemic consequences. Manipulation of PKCβ levels, activity, or signaling could provide a therapeutic approach to combat obesity and associated metabolic disorders.  相似文献   

14.
《Biomarkers》2013,18(7):563-574
Follistatin is a monomeric glycoprotein, distributed in a wide range of tissues. Recent work has demonstrated that this protein is a pluripotential molecule that has no structural similarity but is functionally associated with members of the transforming growth factor (TGF)-β superfamily, which indicates its wide range of action. Members of the TGF-β superfamily, especially activins and bone morphogenetic proteins are involved in bone metabolism. They play an important role in bone physiology, influencing bone growth, turnover, bone formation and cartilage induction. As follistatin is considered to be the antagonist of the TGF-β superfamily members, it plays an important role in bone metabolism and development.  相似文献   

15.
The role of white and brown adipose tissues in energy metabolism is well established. However, the existence of brown fat in adult humans was until very recently a matter of debate, and the molecular mechanisms underlying brown adipocyte development remained largely unknown. In 2009, several studies brought direct evidence for functional brown adipose tissue in adults. New factors involved in brown fat cell differentiation have been identified. Moreover, work on the origin of fat cells took an unexpected path with the recognition of different populations of brown fat cell precursors according to the anatomical location of the fat depots: a precursor common to skeletal muscle cells and brown adipocytes from brown fat depots, and a progenitor cell common to white adipocytes and brown adipocytes that appear in certain conditions in white fat depots. There is also mounting evidence that mature white adipocytes, including human fat cells, can be converted into brown fat-like adipocytes, and that the typical fatty acid storage phenotype of white adipocyte can be altered towards a fat utilization phenotype. These data open up new opportunities for the development of drugs for obesity and its metabolic and cardiovascular complications.  相似文献   

16.
microRNAs (miRNAs) are non-coding small RNAs regulating gene expression, cell growth, and differentiation. Although several miRNAs have been implicated in cell growth and differentiation, it is barely understood their roles in adipocyte differentiation. In the present study, we reveal that miR-27a is involved in adipocyte differentiation by binding to the PPARγ 3′-UTR whose sequence motifs are highly conserved in mammals. During adipogenesis, the expression level of miR-27a was inversely correlated with that of adipogenic marker genes such as PPARγ and adiponectin. In white adipose tissue, miR-27a was more abundantly expressed in stromal vascular cell fraction than in mature adipocyte fraction. Ectopic expression of miR-27a in 3T3-L1 pre-adipocytes repressed adipocyte differentiation by reducing PPARγ expression. Interestingly, the level of miR-27a in mature adipocyte fraction of obese mice was down-regulated than that of lean mice. Together, these results suggest that miR-27a would suppress adipocyte differentiation through targeting PPARγ and thereby down-regulation of miR-27a might be associated with adipose tissue dysregulation in obesity.  相似文献   

17.
18.
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone that exerts insulinotropic and growth and survival effects on pancreatic β-cells. Additionally, there is increasing evidence supporting an important role for GIP in the regulation of adipocyte metabolism. In the current study we examined the molecular mechanisms involved in the regulation of GIP receptor (GIPR) expression in 3T3-L1 cells. GIP acted synergistically with insulin to increase neutral lipid accumulation during progression of 3T3-L1 preadipocytes to the adipocyte phenotype. Both GIPR protein and mRNA expression increased during 3T3-L1 cell differentiation, and this increase was associated with upregulation of nuclear levels of sterol response element binding protein 1c (SREBP-1c) and peroxisome proliferator-activated receptor γ (PPARγ), as well as acetylation of histones H3/H4. The PPARγ receptor agonists LY171883 and rosiglitazone increased GIPR expression in differentiated 3T3-L1 adipocytes, whereas the antagonist GW9662 ablated expression. Additionally, both PPARγ and acetylated histones H3/H4 were shown to bind to a region of the GIPR promoter containing the peroxisome proliferator response element (PPRE). Knockdown of PPARγ in differentiated 3T3-L1 adipocytes, using RNA interference, reduced GIPR expression, supporting a functional regulatory role. Taken together, these studies show that GIP and insulin act in a synergistic manner on 3T3-L1 cell development and that adipocyte GIPR expression is upregulated through a mechanism involving interactions between PPARγ and a GIPR promoter region containing an acetylated histone region.  相似文献   

19.
胡雨荣  陈勇  刘勇 《生理学报》2021,73(1):115-125
在真核细胞中,内质网是蛋白合成、加工及质量监控的关键细胞器,也是Ca2+储存及脂质合成的重要场所.细胞通过未折叠蛋白响应(unfolded protein response,UPR)感应外界不同刺激引发的内质网应激,在维持细胞功能稳态中发挥至关重要的作用.在哺乳动物中,三个位于内质网的跨膜蛋白——肌醇依赖酶la(ino...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号