首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anderson N  Borlak J 《FEBS letters》2006,580(23):5533-5540
Drug-induced phospholipidosis is characterized by intracellular accumulation of phospholipids with lamellar bodies, most likely from an impaired phospholipid metabolism of the lysosome. Organs affected by phospholipidosis exhibit inflammatory reactions and histopathological changes. Despite significant advances in the understanding of drug-altered lipid metabolism, the relationship between impaired phospholipid metabolism and drug-induced toxicity remains enigmatic. Here we review molecular features of inheritable lysosomal storage disorders as a molecular mimicry of drug-induced phospholipidosis for an improved understanding of adverse drug reaction.  相似文献   

2.
A deficiency of lysosomal phospholipase A2 (LPLA2) causes macrophage-associated phospholipidosis, suggesting that the enzyme is important in the lipid catabolism. Because LPLA2 is secreted by macrophages, extracellular LPLA2 activity may potentially reflect a change in macrophage activation. In this report, the detection of LPLA2 activity in plasma was established by the measurement of the transacylase activity of LPLA2 under acidic conditions. No transacylase activity of LPLA2 was detected in normal human plasma when the plasma was incubated with liposomes consisting of 1,2-dioleoylphosphatidylcholine/sulfatide/N-acetylsphingosine (NAS) at pH 4.5. However, the transacylase activity in the plasma was detected when liposomes consisting of 1,2-dioleoylphosphatidylglycerol/NAS were used as a substrate. To establish the specificity of the assay, ceramide transacylase activity was detected in the plasma of wild-type mice. By contrast, the plasma obtained from LPLA2-knockout mice had no measurable transacylase activity under the same conditions. The enzymatic activity of recombinant LPLA2 was inhibited by treatment with methylarachidonylfluorophosphonate. The inhibitor also suppressed the transacylase activity observed in both normal human and wild-type mouse plasma, establishing that the transacylase activity observed in plasma is due to LPLA2. Plasma LPLA2 activity may be a useful bioassay marker for the identification of LPLA2-related disorders.  相似文献   

3.
Phospholipase A2 selectively hydrolyses the ester linkage at the sn-2 position of phospholipids forming lysocompounds. This bioconversion has importance in biotechnology since lysophospholipids are strong bioemulsifiers. The aim of the present work was to study the kinetic behaviour and properties of immobilized phospholipase A2 from bee venom adsorbed into an ion exchange support. The enzyme had high affinity for CM-Sephadex® support and the non-covalent interaction was optimum at pH 8. The activity of immobilized phospholipase A2 was comparatively evaluated with the soluble enzyme using a phospholipid/Triton X-100 mixed micelle as assay system. The immobilized enzyme showed high retention activity and excellent stability under storage. The activity of the immobilized system remained almost constant after several cycles of hydrolysis. Immobilized phospholipase A2 was less sensitive to pH changes compared to soluble form. The kinetic parameters obtained (Vmax 883.4 μmol mg−1 min−1 and a Km 12.9 mM for soluble form and Vmax = 306 μmol mg−1 min−1 and a Km = 3.9 for immobilized phospholipase A2) were in agreement with the immobilization effect. The results obtained with CM-Sephadex®-phospholipase A2 system give a good framework for the development of a continuous phospholipid bioconversion process.  相似文献   

4.
Melittin and phospholipase A2-activating protein (PLAP) are known as efficient activators of secretory phospholipase A2(sPLA2) types I, II, and III when phospholipid liposomes are used as substrate. The present study demonstrates that both peptides can either inhibit or activate sPLA2 depending on the peptide/phospholipid ratio when erythrocyte membranes serve as a biologically relevant substrate. Low concentrations of melittin and PLAP were observed to inhibit sPLA2-triggered release of fatty acids from erythrocyte membranes. The inhibition was reversed at melittin concentrations above 1 microM. PLAP-induced inhibition of sPLA2 persisted steadily throughout the used concentration range (0-150 nM). The two peptides induced a dose-dependent activation of sPLA2 at low concentrations, followed by inhibition when model membranes were used as substrate. This opposite modulatory effect on biological membranes and model membranes is discussed with respect to different mechanisms the interaction of the regulatory peptides with the enzyme molecules and the substrate vesicles.  相似文献   

5.
Summary Salla disease is an inherited lysosomal storage disorder caused by accumulation of free sialic acid in the lysosomes. Lamp genes, lamp A and lamp B (lysosome associated membrane proteins), are the first known genes encoding for human lysosomal membrane proteins. Absence of linkage in a large group of families shows that lamp genes are not involved in Salla disease. The lamp genes were localized, using Southern hybridization in hamster — human hybrid cell panels, to chromosomes 13 (lamp A) and X (lamp B).  相似文献   

6.
Critical developmental periods, such as fertilization, involve metabolic activation, membrane fusion events such as sperm-egg or plasma membrane-cortical granule merger, and production and hydrolysis of phospholipids. However, there has been no large-scale quantification of phospholipid changes during fertilization. Using an enzymatic assay, traditional FA analysis by TLC and gas chromatography, along with a new method of phospholipid measurement involving HPLC separation and evaporative light-scattering detection, we report lipid levels in eggs, sperm, and during fertilization in Xenopus laevis. Sperm were found to contain different amounts of phospholipids as compared with eggs. During fertilization, total phosphatidylinositol, lysophosphatidylcholine, sphingomyelin, and phosphatidylserine decreased, and ceramide increased, whereas there was no change in phosphatidylcholine, cardiolipin, or phosphatidylethanolamine. FA analysis of phospholipids found numerous changes during fertilization. Because there is an increase in sn-1,2-diacylglycerol at fertilization, the FAs associated with this increase and the source of the increase in this neutral lipid were examined. Finally, activation of phospholipase C, phospholipase D, phospholipase A2, autotoxin, and sphingomyelinase at fertilization is discussed.  相似文献   

7.
Amiodarone is used extensively for the chronic treatment of life-threatening arrhythmias caused by ischemic heart disease. However, chronic therapy with this agent results in phospholipidosis in various tissues and it has been suggested that the inhibition of lysosomal phospholipase A by this drug contributes to this abnormality. Exogenous amiodarone has been shown to inhibit purified rat liver lysosomal phospholipase A1, as well as acid phospholipase activities of alveolar macrophage homogenates and those of snake venom phospholipase A2 and bacterial phospholipase C. The effects of drug treatment on heart have not been explored. The results described here demonstrate that amiodarone also significantly increases (37%, p < 0.001) phospholipid content in cat hearts. This increase is proportionately distributed to all major phospholipid classes, with the exception of sphingomyelin which appears to increase more than the others. In addition, the data also show that following amiodarone treatment, the endogenous drug levels in the heart were sufficient to reduce in vitro losses of membrane phospholipid at 37°C by inhibiting a variety of endogenous phospholipases at physiological (7.4), ischemic (6.2) and acidic (5.0) pH values. This protection is more pronounced at acidic pH values than at physiological pH. Endogenous amiodarone also affects myocardial phospholipase activities towards exogenous phosphatidylcholine and again the extent of inhibition is more at acidic pH. These results suggest that amiodarone induces phospholipidosis in the heart by inhibiting phospholipid catabolism and that its antiarrhythmic properties may reside in its ability to modulate alkaline, neutral and acid phospholipase activities in ischemia. To what extent amiodarone metabolites (desethylamiodarone and bis-desethylamiodarone) are involved in these actions remains to be determined.  相似文献   

8.
Sphingolipidoses are inherited genetic diseases due to mutations in genes encoding proteins involved in the lysosomal catabolism of sphingolipids. Despite a low incidence of each individual disease, altogether, the number of patients involved is relatively high and resolutive approaches for treatment are still lacking. The chaperone therapy is one of the latest pharmacological approaches to these storage diseases. This therapy allows the mutated protein to escape its natural removal and to increase its quantity in lysosomes, thus partially restoring the metabolic functions. Sandhoff disease is an autosomal recessive inherited disorder resulting from β-hexosaminidase deficiency and characterized by large accumulation of GM2 ganglioside in brain. No enzymatic replacement therapy is currently available, and the use of inhibitors of glycosphingolipid biosynthesis for substrate reduction therapy, although very promising, is associated with serious side effects. The chaperone pyrimethamine has been proposed as a very promising drug in those cases characterized by a residual enzyme activity. In this review, we report the effect of pyrimethamine on the recovery of β-hexosaminidase activity in cultured fibroblasts from Sandhoff patients.  相似文献   

9.
Excess levels of secretory phospholipase A2 (sPLA2) is known to contribute to several inflammatory diseases including vascular inflammation correlating with coronary events in coronary artery disease. Thus a method to monitor sPLA2 activity in blood serum is urgently needed. Such method is still a challenge since existing fluorescent probes do not allow to monitor sPLA2 activity directly in blood serum. Here we analyze and overcome barriers in sPLA2 sensing methodology and report a fluorescent probe and a kinetic model of its hydrolysis by sPLA2. New probe is designed with a fluorophore and a quencher not interfering binding to the enzyme. At the same time phospholipid matrix bearing the probe promotes efficient initial quenching of the fluorophore. Kinetic model of probe hydrolysis takes into account signal change due to the side processes. The probe and the kinetic model applied together prove the concept that the activity of sPLA can be measured directly in blood serum.  相似文献   

10.
Lysosomal phospholipase A2 (LPLA2) is characterized by increased activity toward zwitterionic phospholipid liposomes containing negatively charged lipids under acidic conditions. The effect of anionic lipids on LPLA2 activity was investigated. Mouse LPLA2 activity was assayed as C2-ceramide transacylation. Sulfatide incorporated into liposomes enhanced LPLA2 activity under acidic conditions and was weakened by NaCl or increased pH. Amiodarone, a cationic amphiphilic drug, reduced LPLA2 activity. LPLA2 exhibited esterase activity when p-nitro-phenylbutyrate (pNPB) was used as a substrate. Unlike the phospholipase A2 activity, the esterase activity was detected over wide pH range and not inhibited by NaCl or amiodarone. Presteady-state kinetics using pNPB were consistent with the formation of an acyl-enzyme intermediate. C2-ceramide was an acceptor for the acyl group of the acyl-enzyme but was not available as the acyl group acceptor when dispersed in liposomes containing amiodarone. Cosedimentation of LPLA2 with liposomes was enhanced in the presence of sulfatide and was reduced by raising NaCl, amiodarone, or pH in the reaction mixture. LPLA2 adsorption to negatively charged lipid membrane surfaces through an electrostatic attraction, therefore, enhances LPLA2 enzyme activity toward insoluble substrates. Thus, anionic lipids present within lipid membranes enhance the rate of phospholipid hydrolysis by LPLA2 at lipid-water interfaces.—Abe, A., and J. A. Shayman. The role of negatively charged lipids in lysosomal phospholipase A2 function.  相似文献   

11.
Lysosomal impairment causes lysosomal storage disorders (LSD) and is involved in pathogenesis of neurodegenerative diseases, notably Parkinson disease (PD). Strategies enhancing or restoring lysosomal-mediated degradation thus appear as tantalizing disease-modifying therapeutics. Here we demonstrate that poly(DL-lactide-co-glycolide) (PLGA) acidic nanoparticles (aNP) restore impaired lysosomal function in a series of toxin and genetic cellular models of PD, i.e. ATP13A2-mutant or depleted cells or glucocerebrosidase (GBA)-mutant cells, as well as in a genetic model of lysosomal-related myopathy. We show that PLGA-aNP are transported to the lysosome within 24 h, lower lysosomal pH and rescue chloroquine (CQ)-induced toxicity. Re-acidification of defective lysosomes following PLGA-aNP treatment restores lysosomal function in different pathological contexts. Finally, our results show that PLGA-aNP may be detected after intracerebral injection in neurons and attenuate PD-related neurodegeneration in vivo by mechanisms involving a rescue of compromised lysosomes.  相似文献   

12.
Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated “cross correction”, gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT.  相似文献   

13.
1.1. Lysosome-enriched fractions were prepared by differential centrifugation of homogenates of luteinized rats ovaries. Acid phospholipase A activities were characterized with [U-14C]diacyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-[9,10-3H]- or [1-14C]oleoyl-sn-glycero-3-phosphocholine as substrates. Acid phospholipase A1 activity had properties similar to other hydrolases of lysosomal origin; subcellular distribution, latency and acidic pH optimum. Acid phospholipase A2 activity with similar characteristics was also tentatively identified. We were unable to exclude the possibility that the combined action of phospholipase A1 and lysophospholipase contributed to the release of acyl moieties from the 2-position of the synthetic substrates. 2. Lysophospholipase activity was present in the lysosome-enriched fractions. This activity had an alkaline pH optimum. 3. Phospholipase A1 and A2 activities solubilized from lysosome fractions by freeze-thawing were inhibited by Ca2+ and slightly activated by EDTA. A Ca2+- stimulated phospholipase A2 activity, with an alkaline pH optimum, remained in the particulate residue of freeze-thawed lysosome preparations. This activity is believed to represent mitochondrial contamination. 4. Activities of acid phospholipase A, as well as other acid hydrolases, increased approx. 1.5-fold between 1 and 4 days following induction of luteinizatin, suggesting a hormonal influence on lysosomal enzyme activities.  相似文献   

14.
Sphingolipid metabolism diseases   总被引:5,自引:0,他引:5  
Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated "cross correction", gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT.  相似文献   

15.
A phospholipase A2 was identified from MDCK cell homogenates with broad specificity toward glycerophospholipids including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol. The phospholipase has the unique ability to transacylate short chain ceramides. This phospholipase is calcium-independent, localized to lysosomes, and has an acidic pH optimum. The enzyme was purified from bovine brain and found to be a water-soluble glycoprotein consisting of a single peptide chain with a molecular weight of 45 kDa. The primary structure deduced from the DNA sequences is highly conserved between chordates. The enzyme was named lysosomal phospholipase A2 (LPLA2) and subsequently designated group XV phospholipase A2. LPLA2 has 49% of amino acid sequence identity to lecithin-cholesterol acyltransferase and is a member of the αβ-hydrolase superfamily. LPLA2 is highly expressed in alveolar macrophages. A marked accumulation of glycerophospholipids and extensive lamellar inclusion bodies, a hallmark of cellular phospholipidosis, is observed in alveolar macrophages in LPLA2−/− mice. This defect can also be reproduced in macrophages that are exposed to cationic amphiphilic drugs such as amiodarone. In addition, older LPLA2−/− mice develop a phenotype similar to human autoimmune disease. These observations indicate that LPLA2 may play a primary role in phospholipid homeostasis, drug toxicity, and host defense.  相似文献   

16.
Loss-of-function mutations in the gene encoding GBA (glucocerebrosidase, β, acid), the enzyme deficient in the lysosomal storage disorder Gaucher disease, elevate the risk of Parkinson disease (PD), which is characterized by the misprocessing of SNCA/α-synuclein. However, the mechanistic link between GBA deficiency and SNCA accumulation remains poorly understood. In this study, we found that loss of GBA function resulted in increased levels of SNCA via inhibition of the autophagic pathway in SK-N-SH neuroblastoma cells, primary rat cortical neurons, or the rat striatum. Furthermore, expression of the autophagy pathway component BECN1 was downregulated as a result of the GBA knockdown-induced decrease in glucocerebrosidase activity. Most importantly, inhibition of autophagy by loss of GBA function was associated with PPP2A (protein phosphatase 2A) inactivation via Tyr307 phosphorylation. C2-ceramide (C2), a PPP2A agonist, activated autophagy in GBA-silenced cells, while GBA knockdown-induced SNCA accumulation was reversed by C2 or rapamycin (an autophagy inducer), suggesting that PPP2A plays an important role in the GBA knockdown-mediated inhibition of autophagy. These findings demonstrate that loss of GBA function may contribute to SNCA accumulation through inhibition of autophagy via PPP2A inactivation, thereby providing a mechanistic basis for the increased PD risk associated with GBA deficiency.  相似文献   

17.
Levels of the superoxide radical (SOR) and lipid peroxides were measured and found to increase during aging in the short-lived rotifer, Asplanchna brightwelli. Life-span was altered by changes in environmental temperature, absence of light, diet restriction, exposure to ultraviolet radiation, and addition of vitamin E to the diet. Each of the conditions that lengthened life-span decreased SOR and lipid peroxide levels, and each condition that shortened life-span increased levels of SOR and lipid peroxides. Additional experiments indicated that on the third day of age, there was a significant increase in Ca2+ uptake and phospholipase A2 activity in membrane samples and an elevation in superoxide dismutase and catalase activity in rotifer homogenates. In addition, SOR concentration was inhibited by the addition of bromophenacyl bromide and indomethacin to membrane samples. By day 5 there was also a significant increase in the lysosomal enzyme, alpha-mannosidase. The results of this study indicate that levels of the SOR and lipid peroxides are coupled to rotifer life-span and that activation of phospholipase A2 may contribute to the elevation of these agents in older animals.  相似文献   

18.
The role of aspartic acid-49 (Asp-49) in the active site of porcine pancreatic phospholipase A2 was studied by recombinant DNA techniques: two mutant proteins were constructed containing either glutamic acid (Glu) or lysine (Lys) at position 49. Enzymatic characterization indicated that the presence of Asp-49 is essential for effective hydrolysis of phospholipids. Conversion of Asp-49 to either Glu or Lys strongly reduces the binding of Ca2+ ions, in particular for the lysine mutant, but the affinity for substrate analogues is hardly affected. Extensive purification of naturally occurring Lys-49 phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus yielded a protein that was nearly inactive. Inhibition studies showed that this residual activity was due to a small amount of contaminating enzyme and that the Lys-49 homologue itself has no enzymatic activity. Our results indicate that Asp-49 is essential for the catalytic action of phospholipase A2. The importance of Asp-49 was further evaluated by comparison of the primary sequences of 53 phospholipases A2 and phospholipase homologues showing that substitutions at position 49 are accompanied by structural variations of otherwise conserved residues. The occurrence of several nonconserved substitutions appeared to be a general characteristic of nonactive phospholipase A2 homologues.  相似文献   

19.
Lysosomal lipid storage diseases, or lipidoses, are inherited metabolic disorders in which typically lipids accumulate in cells and tissues. Complex lipids, such as glycosphingolipids, are constitutively degraded within the endolysosomal system by soluble hydrolytic enzymes with the help of lipid binding proteins in a sequential manner. Because of a functionally impaired hydrolase or auxiliary protein, their lipid substrates cannot be degraded, accumulate in the lysosome, and slowly spread to other intracellular membranes. In Niemann-Pick type C disease, cholesterol transport is impaired and unesterified cholesterol accumulates in the late endosome. In most lysosomal lipid storage diseases, the accumulation of one or few lipids leads to the coprecipitation of other hydrophobic substances in the endolysosomal system, such as lipids and proteins, causing a “traffic jam.” This can impair lysosomal function, such as delivery of nutrients through the endolysosomal system, leading to a state of cellular starvation. Therapeutic approaches are currently restricted to mild forms of diseases with significant residual catabolic activities and without brain involvement.Lysosomal lipid storage diseases are a group of inherited catabolic disorders in which typically large amounts of complex lipids accumulate in cells and tissues. Macromolecules such as complex lipids and oligosaccharides are constitutively degraded in the acidic compartments of the cell, the endosomes, and lysosomes, into their building blocks. The resulting catabolites are exported to the cytosol and reused in cellular metabolism. When lysosomal function is impaired because of a defect in a catabolic step, degradation cannot proceed normally and undegraded compounds accumulate. Lysosomal lipid storage diseases comprise mainly the sphingolipidoses, Niemann-Pick type C disease (NPC), and Wolman disease, including the less severe form of this disease, called cholesteryl ester storage. NPC is a complex lipid storage disease mainly characterized by the accumulation of unesterified cholesterol in the late endosomal/lysosomal compartment (Bi and Liao 2010). The sphingolipidoses are caused by defects in genes encoding proteins involved in the lysosomal degradation of sphingolipids (Kolter and Sandhoff 2006). First reports on these diseases were given more than a century ago. Already in 1881, Warren Tay described the clinical symptoms of a disease, which is today called Tay-Sachs disease (Tay 1881). After Christian de Duve discovered the lysosome in 1955 (de Duve 2005), Henri-Géry Hers established the first correlation between an enzyme deficiency and a lysosomal storage disorder (Pompe’s disease) in 1963 (Hers 1963). In the following decades, the enzymes and cofactors deficient in the sphingolipidoses have been identified. Though lysosomal lipid storage diseases have been known for a long time, treatment is only available for a few mild forms of the diseases, such as the adult forms of Gaucher disease (Barton et al. 1991). For several lysosomal storage diseases, therapies like enzyme replacement or bone marrow transplantation are in the clinical trial stage (Platt and Lachmann 2009). For a long time, lysosomal diseases have been considered a problem of superabundance (storage) in which the storage material can slowly spread to other cellular membranes, impairing their function. More recently, it came into focus that massive storage prevents lysosomal functions such as nutrition delivery through the endolysosomal system, leading to a state of cellular starvation. In mouse models of both GM1 and GM2 gangliosidoses iron is progressively depleted in brain tissue. Administration of iron prolonged survival in the diseased mice by up to 38% (Jeyakumar et al. 2009).  相似文献   

20.
Soluble, cation-dependent, lysosomal phospholipase A2 in bovine adrenal medulla has been biochemically characterized and partially purified, and its unique pH-dependent modulation by cations has been investigated. Chromatographically distinct activities with somewhat broad pI ranges centered at 7.8, 8.1, and 8.4 have been purified 83-, 1900- and 4400-fold, respectively, from the soluble fraction of tissue homogenates. With a specific activity of 4.2 mumol phospholipid hydrolyzed per mg protein per min, the fraction of pI 8.4 is the most highly purified lysosomal phospholipase A2 reported to date; yet silver staining of isoelectric focusing gels indicates that all three species are still only minor components of the protein mixtures with which they co-purify. Lysosomal phospholipase(s) A2 has an apparent molecular weight of 30,600, as determined by gel permeation chromatography; and is probably an oligomannose-containing glycoprotein as indicated by binding to concanavalin A-Sepharose and elution by methyl alpha-D-mannopyranoside. Cation concentrations modulate hydrolysis of biomembranous phospholipid, but not neat liposomal phospholipids, in a complex manner over a broad pH range (pH 4.0-8.0). Triton X-100 stabilizes the enzyme(s) but is inhibitory when present during assay; consequently, detergent-phospholipid mixed micelles are poor substrates. Thus, experimental results are dramatically dependent on the physicochemical nature of the substrate. The role of this phospholipase(s) A2 in the membrane fusion and lysis events of catecholamine secretion, as well as its regulation by cellular proteins, can now be investigated utilizing this partially purified enzyme(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号