首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ATP-binding cassette protein A1 (ABCA1) plays a pivotal role in cholesterol homeostasis by generating high-density lipoprotein (HDL). Apolipoprotein A-I (apoA-I), a lipid acceptor for ABCA1, reportedly interacts with ABCA1. However, it has also been proposed that apoA-I interacts with ABCA1-generated special domains on the plasma membrane, but apart from ABCA1, and solubilizes membrane lipids. To determine the importance of the apoA-I-ABCA1 interaction in HDL formation, the electrostatic interaction between apoA-I and ABCA1, which mediates the interaction between apoB100 in low-density lipoprotein particles (LDL) and LDL receptor, was analyzed. The apoA-I binding to ABCA1 and the cross-linking between them were inhibited by the highly charged molecules heparin and poly-L-lysine. Treating cells with membrane impermeable reagents that specifically react with primary amino groups abolished the interaction between apoA-I and ABCA1. However, these reagents did not affect the characteristic tight ATP binding to ABCA1. These results suggest that lysine residues in the extracellular domains of ABCA1 contribute to the interaction with apoA-I. The electrostatic interaction between ABCA1 and apoA-I is predicted to be the first step in HDL formation. This article is part of a Special Issue entitled Advances in high density lipoprotein formation and metabolism: a tribute to John F. Oram (1945-2010).  相似文献   

2.
T cell immunoglobulin and mucin domain 1 and 4 (TIM-1 and -4) proteins serve as phosphatidylserine receptors to engulf apoptotic cells. Here we show that human TIM-1 and TIM-4 proteins are targets of A Disintegrin And Metalloprotease (ADAM)-mediated ectodomain shedding resulting in soluble forms of TIM-1 and TIM-4. We identified ADAM10 and ADAM17 as major sheddases of TIM-1 and TIM-4 as shown by protease-specific inhibitors, the ADAM10 prodomain, siRNA and ADAM10/ADAM17 deficient murine embryonic fibroblasts (MEFs). TIM-1 and TIM-4 lacking the intracellular domain were efficiently cleaved after ionomycin- and PMA-treatment, indicating that the intracellular domain was not necessary for ectodomain shedding. Soluble TIM-1 and -4 were able to bind to phosphatidylserine, suggesting that soluble TIM-1 and -4 might act as negative regulators of cellular TIM-1 and -4. In summary, we describe TIM-1 and TIM-4 as novel targets for ADAM10- and ADAM17-mediated ectodomain shedding.  相似文献   

3.
Although human MDR1 and MDR3 share 86% similarity in their amino acid sequences and are predicted to share conserved domains for drug recognition, their physiological transport substrates are quite different: MDR1 transports xenobiotics and confers multidrug resistance, while MDR3 exports phosphatidylcholine into bile. Although MDR1 shows high ATPase activity, attempts to demonstrate the ATPase activity of human MDR3 have not succeeded. Therefore, it is possible that the difference in the functions of these proteins is caused by their different ATPase activities. To test this hypothesis, a chimera protein containing the transmembrane domains (TMDs) of MDR1 and the nucleotide binding domains (NBDs) of MDR3 was constructed and analyzed. The chimera protein was expressed on the plasma membrane and conferred resistance against vinblastine and paclitaxel, indicating that MDR3 NBDs can support drug transport. Vanadate-induced ADP trapping of MDR3 NBDs in the chimera protein was stimulated by verapamil as was MDR1 NBDs. The purified chimera protein showed drug-stimulated ATPase activity like MDR1, while its Vmax was more than 10-times lower than MDR1. These results demonstrate that the low ATPase activity of human MDR3 cannot account for the difference in the functions of these proteins, and furthermore, that TMDs determine the features of NBDs. To our knowledge, this is the first study analyzing the features of human MDR3 NBDs.  相似文献   

4.
Both G-quadruplex and Z-DNA can be formed in G-rich and repetitive sequences on genome, and their formation and biological functions are controlled by specific proteins. Z-DNA binding proteins, such as human ADAR1, have a highly conserved Z-DNA binding domain having selective affinity to Z-DNA. Here, our study identifies the Z-DNA binding domain of human ADAR1 (hZαADAR1) as a novel G-quadruplex binding protein that recognizes c-myc promoter G-quadruplex formed in NHEIII1 region and represses the gene expression. An electrophoretic migration shift assay shows the binding of hZαADAR1 to the intramolecular c-myc promoter G-quadruplex-forming DNA oligomer. To corroborate the binding of hZαADAR1 to the G-quadruplex, we conducted CD and NMR chemical shift perturbation analyses. CD results indicate that hZαADAR1 stabilizes the parallel-stranded conformation of the c-myc G-quadruplex. The NMR chemical shift perturbation data reveal that the G-quadruplex binding region in hZαADAR1 was almost identical with the Z-DNA binding region. Finally, promoter assay and Western blot analysis show that hZαADAR1 suppresses the c-myc expression promoted by NHEIII1 region containing the G-quadruplex-forming sequence. This finding suggests a novel function of Z-DNA binding protein as a regulator of G-quadruplex-mediated gene expression.  相似文献   

5.
Apolipoprotein A-I (apoA-I) accepts cholesterol and phospholipids from ATP-binding cassette transporter A1 (ABCA1)-expressing cells to form high-density lipoprotein (HDL). Human apoA-I has two tertiary structural domains and the C-terminal domain (approximately amino acids 190–243) plays a key role in lipid binding. Although the high lipid affinity region of the C-terminal domain of apoA-I (residues 223–243) is essential for the HDL formation, the function of low lipid affinity region (residues 191–220) remains unclear. To evaluate the role of residues 191–220, we analyzed the structure, lipid binding properties, and HDL formation activity of Δ191–220 apoA-I, in comparison to wild-type and Δ223–243 apoA-I. Although deletion of residues 191–220 has a slight effect on the tertiary structure of apoA-I, the Δ191–220 variant showed intermediate behavior between wild-type and Δ223–243 regarding the formation of hydrophobic sites and lipid interaction through the C-terminal domain. Physicochemical analysis demonstrated that defective lipid binding of Δ191–220 apoA-I is due to the decreased ability to form α-helix structure which provides the energetic source for lipid binding. In addition, the ability to form HDL particles in vitro and induce cholesterol efflux from ABCA1-expressing cells of Δ191–220 apoA-I was also intermediate between wild-type and Δ223–243 apoA-I. These results suggest that despite possessing low lipid affinity, residues 191–220 play a role in enhancing the ability of apoA-I to bind to and solubilize lipids by forming α-helix upon lipid interaction. Our results demonstrate that the combination of low lipid affinity region and high lipid affinity region of apoA-I is required for efficient ABCA1-dependent HDL formation.  相似文献   

6.
Doxorubicin, a highly effective anticancer drug, produces severe side effect such as cardiotoxicity, which is mainly caused by its metabolite, doxorubicinol. While in vitro studies by measuring cellular concentration of doxorubicin have been reported, there have been no reports on measuring cellular concentration of the metabolites. In this report, we developed a sensitive and high-throughput method for measuring cellular concentrations of doxorubicin and its metabolites by ultra-high-performance liquid chromatography. The method achieved more than 96% recovery of doxorubicin and its metabolites from cell homogenates. Using simple separation conditions, doxorubicin and its three main metabolites, and the internal standard, were separated within 3 min. The method has a limit of quantification of 17.4 pg (32.0 fmol) injected doxorubicin. This high sensitivity enables the detection and intracellular quantification of doxorubicin and its metabolite, doxorubicinol, in cell homogenates, and its use will facilitate studies of the relationship between doxorubicin pharmacokinetics and therapeutic outcome.  相似文献   

7.
Recent studies indicate that rat Pneumocystis carinii can be propagated in the A549 cell line, an alveolar epithelioid cell line derived from human lung carcinoma. In the present study, growth of P. carinii was compared in the A549 cell line and the WI-38 VA13 subline 2RA, an SV40 transformed derivative of the human fetal fibroblast cell line with epithelioid morphology. Similar P. carinii growth occurred in both cell lines under optimal conditions, but the WI-38 VA13 cell line was usually more sensitive to changes in the culture system. Growth of P. carinii was affected by temperature, environmental gas mixture, motion of the cultures, and source and concentration of serum additives, but not by the presence of antibodies in the medium. A technique was developed for quantitating P. carinii in the lung inoculum which permitted analysis of P. carinii growth during the first 24 hr of culture. Inverted microscope and oil immersion phase-contrast microscopy were very helpful in monitoring the organism's stages of development and viability. Thus, this culture system should be helpful in establishing standard methodology for in vitro work with P. carinii.  相似文献   

8.
ATP-binding cassette transporter G1 (ABCG1) plays an important role in macrophage reverse cholesterol transport in vivo by promoting cholesterol efflux onto lipidated apoA-I. However, the underlying mechanism is unclear. Here, we found that ABCG1 co-immunoprecipitated with caveolin-1 (CAV1) but not with flotillin-1 and -2. Knockdown of CAV1 expression using siRNAs significantly reduced ABCG1-mediated cholesterol efflux without detectable effect on ABCA1-mediated cholesterol efflux. Disruption of the putative CAV1 binding site in ABCG1, through replacement of tyrosine residues at positions 487 and 489 or at positions 494 and 495 with alanine (Y487AY489A and Y494AY495A), impaired the interaction of ABCG1 with CAV1 and significantly decreased ABCG1-mediated cholesterol efflux. The substitution of Tyr494 and Tyr495 with Phe or Trp that resulted in an intact CAV1 binding site had no effect. Furthermore, Y494AY495A affected trafficking of ABCG1 to the cell surface. The mutant protein is mainly located intracellularly. Finally, we found that CAV1 co-immunoprecipitated with ABCG1 and regulated cholesterol efflux to reconstituted HDL in THP-1-derived macrophages upon the liver X receptor agonist treatment. These findings indicate that CAV1 interacts with ABCG1 and regulates ABCG1-mediated cholesterol efflux.  相似文献   

9.
Versican is an extracellular chondroitin sulfate proteoglycan which functions as a structural molecule but can also regulate a variety of cellular activities. This study was designed to explore the roles of versican in the process of dermal wound repair. To elevate levels of versican, we ectopically expressed the versican 3′-untranslated region (3′UTR) as a competitive endogenous RNA to modulate expression of versican. We demonstrated that wounds closed faster in transgenic mice expressing the versican 3′UTR, as compared to those in wildtype mice. We stably expressed versican 3′UTR in NIH3T3 fibroblasts and found that the 3′UTR-transfected cells showed increased migratory capacity relative to vector-transfected cells. Interestingly, we found that the 3′UTRs of versican and β-catenin shared common microRNAs (miRNAs) including miR-185, miR-203*, miR-690, miR-680, and miR-434-3p. Luciferase assays showed that all of these miRNAs could target the 3′UTRs of both versican and β-catenin, when the luciferase constructs contained fragments harboring the miRNA binding sites. As a consequence, expression of both versican and β-catenin was up-regulated, which was confirmed in vitro and in vivo. Transfection with small interfering RNAs (siRNAs) targeting the versican 3′UTR abolished the 3′UTR's effects on cell migration and invasion. Taken together, these results demonstrate that versican plays important roles in wound repair and that versican messenger RNAs (mRNAs) could compete with endogenous RNAs for regulating miRNA functions.  相似文献   

10.

Background

Neuraminidase-1 (NEU1) catabolizes the hydrolysis of sialic acids from sialo-glycoconjugates. NEU1 depends on its interaction with the protective protein/cathepsin A (PPCA) for lysosomal compartmentalization and catalytic activation. Murine NEU1 contains 4 N-glycosylation sites, 3 of which are conserved in the human enzyme. The expression of NEU1 gives rise to differentially glycosylated proteins.

Methods

We generated single-point mutations in mouse NEU1 at each of the 4 N-glycosylation sites. Mutant enzymes were expressed in NEU1-deficient cells in the presence and absence of PPCA.

Results

All 4 N-glycosylation variants were targeted to the lysosomal/endosomal compartment. All N-glycans, with the exception of the most C-terminal glycan, were important for maintaining stability or catalytic activity. The loss of catalytic activity caused by the deletion of the second N-glycan was rescued by increasing PPCA expression. Similar results were obtained with a human NEU1 N-glycosylation mutant identified in a sialidosis patient. The N-terminal N-glycan of NEU1 is indispensable for its function, whereas the C-terminal N-glycan appears to be non-essential. The omission of the second N-glycan can be compensated for by upregulating the expression of PPCA.

General significance

These findings could be relevant for the design of target therapies for patients carrying specific NEU1 mutations.  相似文献   

11.
The effect of human SCD1 heterologous expression on cellular fatty acid synthesis was investigated in the current study. The SCD1 gene expression cassette and PGK-neomycin-selectable marker cassette were co-introduced into HEK 293 cells by electroporation, and subsequently, SCD1 expression was evaluated by fatty acid analysis. RT-PCR analysis indicated that the foreign SCD1 gene could be expressed in transformed cell lines. Total lipid analysis of the transformed cells fed with vaccenic acid (t11-18:1) as a substrate showed that SCD1 expression resulted in an increase in c9t11-CLA from 0.73-1.03% to 2.69-2.86% (< 0.05) and that the conversion efficiency was elevated from 5.11-6.88% to 16.49-20.06% (< 0.05). Surprisingly, the concentration of t10c12-CLA was also increased, from 0.10-0.41% to 1.35-1.69% in SCD1 cells (< 0.05). SCD1 expression also resulted in a significant (< 0.05) increase in palmitoleic acid (16:1 n-7) from 1.56-2.26% to 3.47-4.04% and cis-vaccenic acid (18:1 n-7) from 2.42-3.97% to 6.20-7.22%, and the corresponding conversion ratio of n-7 fatty acid was elevated from 12.01-16.70% to 22.62-24.13% (< 0.05). This study demonstrates that the foreign SCD1 gene was expressed with high efficiency and induced elevated c9t11-CLA, t10c12-CLA, and n-7 fatty acid levels in mammalian cells.  相似文献   

12.
Recent models of lipid-free apolipoprotein A-I, including a cross-link/homology model and an X-ray crystal structure have identified two potential functionally relevant “patches” on the protein surface. The first is a hydrophobic surface patch composed of leucine residues 42, 44, 46, and 47 and the second a negatively charged patch composed of glutamic acid residues 179, 191, and 198. To determine if these domains play a functional role, these surface patches were disrupted by site-directed mutagenesis and the bacterially expressed mutants were compared with respect to their ability to bind lipid and stimulate ABCA1-mediated cholesterol efflux. It was found that neither patch plays a significant functional role in the ability of apoA-I to accept cholesterol in an ABCA1-dependent manner, but that the hydrophobic patch did affect the ability of apoA-I to clear DMPC liposomes. Interestingly, contrary to previous predictions, disruption of the hydrophobic surface patch enhanced the lipid binding ability of apoA-I. The hydrophobic surface patch may be important to the structural stability of lipid-free apoA-I or may be a necessary permissive structural element for lipid binding.  相似文献   

13.
Diagnosis of mild to moderate traumatic brain injury is challenging because brain tissue damage progresses slowly and is not readily detectable by conventional imaging techniques. We have developed a novel in vitro model to study primary blast loading on dissociated neurons using nitroamine explosives such as those used on the battlefield. Human neuroblastoma cells were exposed to single and triple 50-psi explosive blasts and single 100-psi blasts. Changes in membrane permeability and oxidative stress showed a significant increase for the single and triple 100-psi blast conditions compared with single 50-psi blast and controls.  相似文献   

14.

Background

Choline kinase has three isoforms encoded by the genes Chka and Chkb. Inactivation of Chka in mice results in embryonic lethality, whereas Chkb−/− mice display neonatal forelimb bone deformations.

Methods

To understand the mechanisms underlying the bone deformations, we compared the biology and biochemistry of bone formation from embryonic to young adult wild-type (WT) and Chkb−/− mice.

Results

The deformations are specific to the radius and ulna during the late embryonic stage. The radius and ulna of Chkb−/− mice display expanded hypertrophic zones, unorganized proliferative columns in their growth plates, and delayed formation of primary ossification centers. The differentiation of chondrocytes of Chkb−/− mice was impaired, as was chondrocyte proliferation and expression of matrix metalloproteinases 9 and 13. In chondrocytes from Chkb−/− mice, phosphatidylcholine was slightly lower than in WT mice whereas the amount of phosphocholine was decreased by approximately 75%. In addition, the radius and ulna from Chkb−/− mice contained fewer osteoclasts along the cartilage/bone interface.

Conclusions

Chkb has a critical role in the normal embryogenic formation of the radius and ulna in mice.

General Significance

Our data indicate that choline kinase beta plays an important role in endochondral bone formation by modulating growth plate physiology.  相似文献   

15.
16.
The mechanisms that deprive HDL of its cardioprotective properties are poorly understood. One potential pathway involves oxidative damage of HDL proteins by myeloperoxidase (MPO) a heme enzyme secreted by human artery wall macrophages. Mass spectrometric analysis demonstrated that levels of 3-chlorotyrosine and 3-nitrotyrosine - two characteristic products of MPO - are elevated in HDL isolated from patients with established cardiovascular disease. When apolipoprotein A-I (apoA-I), the major HDL protein, is oxidized by MPO, its ability to promote cellular cholesterol efflux by the membrane-associated ATP-binding cassette transporter A1 (ABCA1) pathway is diminished. Biochemical studies revealed that oxidation of specific tyrosine and methionine residues in apoA-I contributes to this loss of ABCA1 activity. Another potential mechanism for generating dysfunctional HDL involves covalent modification of apoA-I by reactive carbonyls, which have been implicated in atherogenesis and diabetic vascular disease. Indeed, modification of apoA-I by malondialdehyde (MDA) or acrolein also markedly impaired the lipoprotein's ability to promote cellular cholesterol efflux by the ABCA1 pathway. Tandem mass spectrometric analyses revealed that these reactive carbonyls target specific Lys residues in the C-terminus of apoA-I. Importantly, immunochemical analyses showed that levels of MDA-protein adducts are elevated in HDL isolated from human atherosclerotic lesions. Also, apoA-I co-localized with acrolein adducts in such lesions. Thus, lipid peroxidation products might specifically modify HDL in vivo. Our observations support the hypotheses that MPO and reactive carbonyls might generate dysfunctional HDL in humans. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

17.
The ATP-binding cassette transporter G1 (ABCG1) mediates free cholesterol efflux onto lipidated apolipoprotein A-I (apoA-I) and plays an important role in macrophage reverse cholesterol transport thereby reducing atherosclerosis. However, how ABCG1 mediates the efflux of cholesterol onto lipidated apoA-I is unclear. Since the crystal structure of ABCG family is not available, other approaches such as site-directed mutagenesis have been widely used to identify amino acid residues important for protein functions. We noticed that ABCG1 contains a single cysteine residue in its putative transmembrane domains. This cysteine residue locates at position 514 (Cys514) within the third putative transmembrane domain and is highly conserved. Replacement of Cys514 with Ala (C514A) essentially abolished ABCG1-mediated cholesterol efflux onto lipidated apoA-I. Substitution of Cys514 with more conserved amino acid residues, Ser or Thr, also significantly decreased cholesterol efflux. However, mutation C514A had no detectable effect on protein stability and trafficking. Mutation C514A also did not affect the dimerization of ABCG1. Our findings demonstrated that the sulfhydryl group of Cys residue located at position 514 plays a critical role in ABCG1-mediated cholesterol efflux. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

18.
Unbalanced levels of caveolin-3 (Cav3) are involved in muscular disorders. In the present study we show that differentiation of immortalized myoblasts is affected by either lack or overexpression of Cav3. Nevertheless, depletion of Cav3 induced by delivery of the dominant-negative Cav3 (P104L) form elicited a more severe phenotype, characterized by the simultaneous attenuation of the Akt and p38 signalling networks, leading to an immature cell and molecular signature. Accordingly, differentiation of myoblasts harbouring Cav3 (P104L) was improved by countering the reduced Akt and p38 signalling network via administration of IGF-1 or trichostatin A. Furthermore, loss of Cav3 correlated with a deregulation of the TGF-β-induced Smad2 and Erk1/2 pathways, confirming that Cav3 controls TGF-β signalling at the plasma membrane. Overall, these data suggest that loss of Cav3, primarily causing attenuation of both Akt and p38 pathways, contributes to impair myoblast fusion.  相似文献   

19.
Herein, we investigate the differential D1 dopaminergic receptor (D1R) regulation by G protein-coupled receptor kinase (GRK) 2 and 3 using two truncated receptors lacking the distal (Δ425) and distal-central (Δ379) cytoplasmic tail (CT) regions. We first show the association between D1R and GRKs in co-transfected cells and rat striatum. Our studies further indicate that deletion of distal CT region of D1R does not alter the association between receptor and GRK2. Meanwhile, removal of both distal and central CT regions culminates in a drastic increase in the basal association between Δ379 and GRK2 relative to D1R and Δ425. Interestingly, CT truncations have no effect on the basal and DA-induced association of receptors with GRK3. Furthermore, we demonstrate that desensitization of D1R is considerably more robust in cells expressing GRK3. Notably, the robust GRK3-induced D1R desensitization is not attenuated by CT deletions. However, GRK2-induced Δ425 desensitization is not detectable whereas we unexpectedly find that Δ379 desensitization is similar to GRK2-induced D1R desensitization. GRK2 and GRK3-dependent desensitization of wild type D1R is not linked to differences in the extent of DA-induced receptor phosphorylation. Moreover, our studies show that GRK2-induced D1R phosphorylation is only modulated by deletion of distal CT region while distal and central CT regions control GRK3-induced D1R phosphorylation. Intriguingly, dopamine-induced Δ379 phosphorylation by GRK3 was significantly lower than receptor phosphorylation in cells harboring Δ379 alone or Δ379 and GRK2. Overall, our study suggests an intricate interplay between CT regions of D1R in differentially regulating receptor responsiveness by GRK2 and GRK3.  相似文献   

20.
High-density lipoprotein (HDL)-associated sphingosine 1-phosphate mediates a variety of lipoprotein-induced actions in vascular cell systems. However, it remains unknown whether extracellular S1P is associated with lipoproteins to exert biological actions in central nervous system. Human cerebrospinal fluid (CSF) induced rat astrocyte migration in a manner sensitive to S1P receptor antagonist VPC23019 and the migration activity was recovered in S1P fraction by thin-layer chromatography. Density-gradient separation of CSF revealed that the major S1P activity was detected in the HDL fraction. In conditioned medium of rat astrocytes cultured with sphingosine, the S1P activity was recovered again in the HDL fraction. The HDL fraction also induced migration of astrocytes and process retraction of oligodendrocytes in a manner similar to S1P. We concluded that S1P is accumulated in HDL-like lipoproteins in CSF and mediates some of lipoprotein-induced neural cell functions in central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号