首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A proteomics approach was used to search for novel phospholipid binding proteins in Saccharomyces cerevisiae. Phospholipids were immobilized on a solid support and the lipids were probed with soluble yeast protein extracts. From this, the phosphatidic acid binding proteins were eluted and identified by mass spectrometry. Thirteen proteins were identified and 11 of these were previously unknown lipid binding proteins. The protein-lipid interactions identified would not have been predicted using bioinformatics approaches as none possessed a known lipid binding motif. A subset of the identified proteins was purified to homogeneity and determined to directly bind phospholipids immobilized on a solid support or organized into liposomes. This simple approach could be systematically applied to perform an exhaustive screen for soluble lipid binding proteins in S. cerevisiae or other organisms.  相似文献   

3.
The activity of phospholipase C/sphingomyelinase HR2 (PlcHR2) from Pseudomonas aeruginosa was characterized on a variety of substrates. The enzyme was assayed on liposomes (large unilamellar vesicles) composed of PC:SM:Ch:X (1:1:1:1; mol ratio) where X could be PE, PS, PG, or CL. Activity was measured directly as disappearance of substrate after TLC lipid separation. Previous studies had suggested that PlcHR2 was active only on PC or SM. However we found that, of the various phospholipids tested, only PS was not a substrate for PlcHR2. All others were degraded, in an order of preference PC > SM > CL > PE > PG. PlcHR2 activity was sensitive to the overall lipid composition of the bilayer, including non-substrate lipids.  相似文献   

4.
5.
The alveolar type II epithelial (ATII) cell is highly specialised for the synthesis and storage, in intracellular lamellar bodies, of phospholipid destined for secretion as pulmonary surfactant into the alveolus. Regulation of the enzymology of surfactant phospholipid synthesis and metabolism has been extensively characterised at both molecular and functional levels, but understanding of surfactant phospholipid metabolism in vivo in either healthy or, especially, diseased lungs is still relatively poorly understood. This review will integrate recent advances in the enzymology of surfactant phospholipid metabolism with metabolic studies in vivo in both experimental animals and human subjects. It will highlight developments in the application of stable isotope-labelled precursor substrates and mass spectrometry to probe lung phospholipid metabolism in terms of individual molecular lipid species and identify areas where a more comprehensive metabolic model would have considerable potential for direct application to disease states.  相似文献   

6.
7.
Delphine Milhas 《FEBS letters》2010,584(9):1887-19574
The plasma membrane (PM) is a major resource for production of bioactive lipids and contains a large proportion of the cellular sphingomyelin (SM) content. Consequently, the regulation of SM levels at the PM by enzymes such as sphingomyelinase (SMase) and SM synthase 2 (SMS2) can have profound effects - both on biophysical properties of the membrane, but also on cellular signaling. Over the past 20 years, there has been considerable research into the physiological and cellular functions associated with regulation of SM levels, notably with regards to the production of ceramide. In this review, we will summarize this research with particular focus on the SMases and SMS2. We will outline what biological functions are associated with SM metabolism/production at the PM, and discuss what we believe are major challenges that need to be addressed in future studies.  相似文献   

8.
Tumor necrosis factor alpha (TNFalpha), a pleiotropic cytokine, activates both apoptotic and pro-survival signals depending on the cell model. Using ECV304 cells, which can be made TNFalpha-sensitive by cycloheximide (CHX) co-treatment, we evaluated the potential roles of ceramide and phospholipase D (PLD) in TNFalpha-induced apoptosis. TNFalpha/CHX induced a robust increase in ceramide levels after 16 h of treatment when cell death was maximal. PLD activity was increased at early time point (1h) whereas both PLD activity and PLD1 protein were strongly decreased after 24h. TNFalpha/CHX-induced cell death was significantly lowered by exogenous bacterial PLD and phoshatidic acid, and in cells overexpressing PLD1. Conversely, cells depleted in PLD proteins by small interference RNA (siRNA) treatment exhibited higher susceptibility to apoptosis. These results show that PLD exerts a protective role against TNFalpha-induced cell death.  相似文献   

9.
Mammalian and arthropod cells acquire phospholipids by protein-mediated pathways that comprise selective and whole particle uptake routes. Phospholipid uptake critically supports cellular incorporation of nutrition-derived polyunsaturated fatty acids. It can occur jointly with cholesterol uptake, but intracellular processing of phospholipids is distinctively different from sterol processing. The newly imported phospholipids are utilized for production of bioactive lipids, such as thromboxane A2 and lyso phosphatidic acid, and for synthesis of triacylglycerol. Class B scavenger receptor BI (SR-BI) represents a major mediator of the uptake of various phospholipids. The related scavenger receptor CD36, as shown here, also facilitates cellular phospholipid uptake. CD36 supports import of the choline phospholipids phosphatidylcholine (PC) and sphingomyelin (SM), but not of phosphatidylethanolamine (PE). Other transferases trigger cellular uptake of selective phospholipids, such as phosphatidic acid (PA) phosphatases that facilitate PA import and thereby modify cell survival and synaptic transmission. Phospholipid uptake depends on the activation status of cells. Activation of blood platelets indeed increases PE uptake. This is mediated by the serpin protein C inhibitor (PCI) and enhances thrombin formation. Exchange of phospholipids between blood cells and lipoproteins partially adjusts the lipid distribution pattern of blood cells to the one of lipoprotein particles. This in turn modifies the activities of cell membrane sodium transporters and could thereby contribute to sodium flux alterations in the metabolic syndrome. The in vivo relevance of phospholipid uptake in humans is indicated by comparable and reversible changes in the same phospholipid species in both lipoproteins and cells after rapid removal of low-density lipoproteins. Finally, cells also incorporate oxidized (pathogenic) phospholipids using partially overlapping entry pathways as native phospholipids which might support the ability of oxidized lipids to promote atherothrombosis.  相似文献   

10.
Ceramide is a well-characterized sphingolipid metabolite and second messenger that participates in numerous biological processes. In addition to serving as a precursor to complex sphingolipids, ceramide is a potent signaling molecule capable of regulating vital cellular functions. Perhaps its major role in signal transduction is to induce cell cycle arrest, and promote apoptosis. In contrast, little is known about the metabolic or signaling pathways that are regulated by the phosphorylated form of ceramide. It was first demonstrated that ceramide-1-phosphate (C1P) had mitogenic properties, and more recently it has been described as potent inhibitor of apoptosis and inducer of cell survival. C1P and ceramide are antagonistic molecules that can be interconverted in cells by kinase and phosphatase activities. An appropriate balance between the levels of these two metabolites seems to be crucial for cell and tissue homeostasis. Switching this balance towards accumulation of one or the other may result in metabolic dysfunction, or disease. Therefore, the activity of the enzymes that are involved in C1P and ceramide metabolism must be efficiently coordinated to ensure normal cell functioning.  相似文献   

11.
Phospholipids play important roles in nuclear function as dynamic building blocks for the biogenesis of the nuclear membrane, as well as signals by which the nucleus communicates with other organelles, and regulate a variety of nuclear events. The mechanisms underlying the nuclear roles of phospholipids remain poorly understood. Lipins represent a family of phosphatidic acid (PA) phosphatases that are conserved from yeasts to humans and perform essential functions in lipid metabolism. Several studies have identified key roles for lipins and their regulators in nuclear envelope organization, gene expression and the maintenance of lipid homeostasis in yeast and metazoans. This review discusses recent advances in understanding the roles of lipins in nuclear structure and function. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

12.
G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP2 by phospholipase C (PLC) into the second messengers IP3 and DAG. Many receptors also stimulate phospholipase D (PLD), leading to the generation of the versatile lipid, phosphatidic acid. Particular PLC and PLD isoforms take differential positions in receptor signaling and are additionally regulated by small GTPases of the Ras, Rho and ARF families. It is now recognized that the PLC substrate, PIP2, has signaling capacity by itself and can, by direct interaction, affect the activity and subcellular localization of PLD and several other proteins. As expected, the synthesis of PIP2 by phosphoinositide 5-kinases is tightly regulated as well. In this review, we present an overview of how these signaling pathways are governed by GPCRs, explain the molecular basis for the spatially and temporally organized, highly dynamic quality of phospholipid signaling, and point to the functional connection of the pathways.  相似文献   

13.
An enhancement of glutamate release from hippocampal neurons has been implicated in long-term potentiation, which is thought to be a cellular correlate of learning and memory. This phenomenom appears to be involved the activation of protein kinase C and lipid second messengers have been implicated in this process. The purpose of this study was to examine how lipid-derived second messengers, which are known to potentiate glutamate release, influence the accumulation of intraterminal free Ca2+, since exocytosis requires Ca2+ and a potentiation of Ca2+ accumulation may provide a molecular mechanism for enhancing glutamate release. The activation of protein kinase C with phorbol esters potentiates the depolarization-evoked release of glutamate from mossy fiber and other hippocampal nerve terminals. Here we show that the activation of protein kinase C also enhances evoked presynaptic Ca2+ accumulation and this effect is attenuated by the protein kinase C inhibitor staurosporine. In addition, the protein kinase C-dependent increase in evoked Ca2+ accumulation was reduced by inhibitors of phospholipase A2 and voltage-sensitive Ca2+ channels, as well as by a lipoxygenase product of arachidonic acid metabolism. That some of the effects of protein kinase C activation were mediated through phospholipase A2 was also indicated by the ability of staurosporine to reduce the Ca2+ accumulation induced by arachidonic acid or the phospholipase A2 activator melittin. Similarly, the synergistic facilitation of evoked Ca2+ accumulation induced by a combination of arachidonic acid and diacylglycerol analogs was attenuated by staurosporine. We suggest, therefore, that the protein kinase C-dependent potentiation of evoked glutamate release is reflected by increases in presynaptic Ca2+ and that the lipid second messengers play a central role in this enhancement of chemical transmission processes.  相似文献   

14.
Choline kinase in mammals is encoded by two genes, Chka and Chkb. Disruption of murine Chka leads to embryonic lethality, whereas a spontaneous genomic deletion in murine Chkb results in neonatal forelimb bone deformity and hindlimb muscular dystrophy. Surprisingly, muscular dystrophy isn't significantly developed in the forelimb. We have investigated the mechanism by which a lack of choline kinase β, encoded by Chkb, results in minimal muscular dystrophy in forelimbs. We have found that choline kinase β is the major isoform in hindlimb muscle and contributes more to choline kinase activity, while choline kinase α is predominant in forelimb muscle and contributes more to choline kinase activity. Although choline kinase activity is decreased in forelimb muscles of Chkb−/− mice, the activity of CTP:phosphocholine cytidylyltransferase is increased, resulting in enhanced phosphatidylcholine biosynthesis. The activity of phosphatidylcholine phospholipase C is up-regulated while the activity of phospholipase A2 in forelimb muscle is not altered. Regeneration of forelimb muscles of Chkb−/− mice is normal when challenged with cardiotoxin. In contrast to hindlimb muscle, mega-mitochondria are not significantly formed in forelimb muscle of Chkb−/− mice. We conclude that the relative lack of muscle degeneration in forelimbs of Chkb−/− mice is due to abundant choline kinase α and the stable homeostasis of phosphatidylcholine.  相似文献   

15.
Choline kinase in mice is encoded by two genes, Chka and Chkb. Disruption of murine Chka leads to embryonic lethality, whereas a spontaneously occurring genomic deletion in murine Chkb results in neonatal bone deformity and hindlimb muscular dystrophy. We have investigated the mechanism by which a lack of choline kinase β, encoded by Chkb, causes hindlimb muscular dystrophy. The biosynthesis of phosphatidylcholine (PC) is impaired in the hindlimbs of Chkb−/− mice, with an accumulation of choline and decreased amount of phosphocholine. The activity of CTP:phosphocholine cytidylyltransferase is also decreased in the hindlimb muscle of mutant mice. Concomitantly, the activities of PC phospholipase C and phospholipase A2 are increased. The mitochondria in Chkb−/− mice are abnormally large and exhibit decreased inner membrane potential. Despite the muscular dystrophy in Chkb−/− mice, we observed increased expression of insulin like growth factor 1 and proliferating cell nuclear antigen. However, regeneration of hindlimb muscles of Chkb−/− mice was impaired when challenged with cardiotoxin. Injection of CDP-choline increased PC content of hindlimb muscle and decreased creatine kinase activity in plasma of Chkb−/− mice. We conclude that the hindlimb muscular dystrophy in Chkb−/− mice is due to attenuated PC biosynthesis and enhanced catabolism of PC.  相似文献   

16.
There are ten isozymes of diacylglycerol kinase (DGK), and they regulate diverse patho-physiological functions. Here, we investigated the lipid-binding properties of DGK isozymes using protein–lipid overlay and liposome-binding assays. DGKγ showed a strong binding activity compared with other DGK isozymes for phosphatidic acid (PA) among the various glycerophospholipids tested. However, DGKγ failed to interact with DG and lyso-PA. Moreover, the isozyme was capable of binding to ceramide-1-phosphate but not to ceramide or sphingosine-1-phosphate. The isozyme bound more strongly to PA containing unsaturated fatty acid than to PA having only saturated fatty acid. An analysis using a series of deletion mutants of DGKγ revealed that the N-terminal region, which contains a recoverin homology domain and EF-hand motifs, is responsible for the PA binding activity of DGKγ. Taken together, these results indicate that DGKγ is an anionic phospholipid binding protein that preferably interacts with a small highly charged head group that is very close to the glycerol or sphingosine backbone.  相似文献   

17.
Many breast cancer cells express aberrantly activated receptor tyrosine kinases and are associated with deregulated phosphorylation of Akt (PKB). They are also often associated with a high level of free monounsaturated (MUFA) and saturated (SFA) fatty acids. We studied the effect of DHA and other polyunsaturated fatty acids (PUFAs) on these anomalies in a human breast cancer cell line, MDA-MB-453. Inhibitors of the Akt T308 kinase (PDK1) or S473 kinase (mTORC2, DNA-dependent protein kinase and integrin-linked kinase) and combinations of two of them incompletely inhibited, or even enhanced, the phosphorylation in this cell line. In contrast, it was found that DHA as well as other PUFAs inhibited Akt phosphorylation on T308 after 24 h. These PUFAs also blocked phosphorylation of S473, although certain omega-6 PUFAs were ineffective. After 48 h, only DHA inhibited Akt phosphorylation on the both residues. DHA, and other PUFAs though less efficiently, also elevated the expression of a mitochondrial enzyme, 2,4-dienoyl-CoA reductase, which catalyzes process necessary for β-oxidation of PUFAs. These PUFAs were present in the cells at high concentrations and reduced the amount of free and phospholipid-bound MUFAs. DHA most efficiently blocked deregulated cell proliferation while the effects of other PUFAs were moderate. These results suggest that DHA suppressed the growth of the cancer cell through its specifically persistent block of Akt phosphorylation in conjunction with modulation of fatty acid metabolism.  相似文献   

18.
Recent advances have thrust the study of plant phospholipase D (PLD) into the molecular era. This review will highlight some of the recent progress made in elucidating the molecular and biochemical nature of plant PLDs as well as their roles in plant physiology.  相似文献   

19.
Chen WY  Ni Y  Pan YM  Shi QX  Yuan YY  Chen AJ  Mao LZ  Yu SQ  Roldan ER 《FEBS letters》2005,579(21):4692-4700
We investigated whether GABA activates phospholipase A2 (PLA2) during acrosomal exocytosis, and if the MEK-ERK1/2 pathway modulates PLA2 activation initiated by GABA, progesterone or zona pellucida (ZP). In guinea pig spermatozoa prelabelled with [14C]arachidonic acid or [14C]choline chloride, GABA stimulated a decrease in phosphatidylcholine (PC), and release of arachidonic acid and lysoPC, during exocytosis. These lipid changes are indicative of PLA2 activation and appear essential for exocytosis since inclusion of aristolochic acid (a PLA2 inhibitor) abrogated them, along with exocytosis. GABA activation of PLA2 seems to be mediated, at least in part, by diacylglycerol (DAG) and protein kinase C since inclusion of the DAG kinase inhibitor R59022 enhanced PLA2 activity and exocytosis stimulated by GABA, whereas exposure to staurosporine decreased both. GABA-, progesterone- and ZP-induced release of arachidonic acid and exocytosis were prevented by U0126 and PD98059 (MEK inhibitors). Taken together, our results suggest that PLA2 plays a fundamental role in agonist-stimulated exocytosis and that MEK-ERK1/2 are involved in PLA2 regulation during this process.  相似文献   

20.
Protein kinase D (PKD) has been implicated in the regulation of cell shape, adhesion, and migration. At the leading edge of migrating cells active PKD co-localizes with F-actin, Arp3 and cortactin. Platelet derived growth factor (PDGF) activates PKD and recruits the kinase to the leading edge, suggesting a role for PKD in actin remodelling. In support of this, PKD directly interacts with F-actin and phosphorylates cortactin in vitro. Interference with PKD function by overexpression of a dominant negative PKD or by PKD-specific siRNA enhanced cell migration, whereas cells overexpressing PKD wild type displayed reduced migratory potential. Taken together, these data reveal a negative regulatory function of PKD in cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号