首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood vessels either form de novo through the process of vasculogenesis or through angiogenesis that involves the sprouting and proliferation of endothelial cells in pre-existing blood vessels. A complex interactive network of signaling cascades downstream from at least three of the nine known G-protein-coupled sphingosine-1-phosphate (S1P) receptors act as a prime effector of neovascularization that occurs in embryonic development and in association with various pathologies. This review focuses on the current knowledge of the roles of S1P signaling in vasculogenesis and angiogenesis, with particular emphasis on vascular cell adhesion and motility responses.  相似文献   

2.
Sphingosine-1-phosphate: dual messenger functions   总被引:8,自引:0,他引:8  
The sphingolipid metabolite sphingosine-1-phosphate (S1P) is a serum-borne lipid that regulates many vital cellular processes. S1P is the ligand of a family of five specific G protein-coupled receptors that are differentially expressed in different tissues and regulate diverse cellular actions. Much less is known of the intracellular actions of S1P. It has been suggested that S1P may also function as an intracellular second messenger to regulate calcium mobilization, cell growth and suppression of apoptosis in response to a variety of extracellular stimuli. Dissecting the dual actions and identification of intracellular targets of S1P has been challenging, but there is ample evidence to suggest that the balance between S1P and ceramide and/or sphingosine levels in cells is an important determinant of cell fate.  相似文献   

3.
Rat primary chondrocytes express the sphingosine-1-phosphate (S1P) receptor, S1P(2), S1P(3), S1P(4), but not S1P(1). When chondrocytes were stimulated with S1P or phytosphingosine-1-phosphate (PhS1P, an S1P(1)- and S1P(4)-selective agonist), phospholipase C-mediated cytosolic calcium increase was dramatically induced. S1P and PhS1P also stimulated two kinds of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK) and p38 kinase in chondrocytes. In terms of the two phospholipids-mediated functional modulation of chondrocytes, S1P and PhS1P stimulated cellular proliferation. The two phospholipids-induced chondrocyte proliferations were almost completely blocked by PD98059 but not by SB203580, suggesting that ERK but not p38 kinase is essentially required for the proliferation. Pertussis toxin almost completely inhibited the two phospholipids-induced cellular proliferation and ERK activation, indicating the crucial role of G(i) protein. This study demonstrates the physiological role of two important phospholipids (S1P and PhS1P) on the modulation of rat primary chondrocyte proliferation, and the crucial role played by ERK in the process.  相似文献   

4.
Sphingosine 1-phosphate (S1P) is a bioactive lipid whose levels are tightly regulated by its synthesis and degradation. Intracellularly, S1P is dephosphorylated by the actions of two S1P-specific phosphatases, sphingosine-1-phosphate phosphatases 1 and 2. To identify the physiological functions of S1P phosphatase 1, we have studied mice with its gene, Sgpp1, deleted. Sgpp1−/− mice appeared normal at birth, but during the 1st week of life they exhibited stunted growth and suffered desquamation, with most dying before weaning. Both Sgpp1−/− pups and surviving adults exhibited multiple epidermal abnormalities. Interestingly, the epidermal permeability barrier developed normally during embryogenesis in Sgpp1−/− mice. Keratinocytes isolated from the skin of Sgpp1−/− pups had increased intracellular S1P levels and displayed a gene expression profile that indicated overexpression of genes associated with keratinocyte differentiation. The results reveal S1P metabolism as a regulator of keratinocyte differentiation and epidermal homeostasis.  相似文献   

5.
鞘氨醇1-磷酸(Sphingosine-1-phosphate,S1P)是一种具有生物学活性的溶血磷脂信号分子,在体内通过G蛋白偶联受体(G protein coupled receptor,GPCR)家族鞘氨醇1-磷酸受体(S1P receptors)的5个亚型(S1P1-5)介导多种生物学功能。S1P4也称内皮分化基因受体6(Endothelial differentiation gene receptor 6,Edg-6),主要在淋巴组织和造血组织中表达。近年的研究发现,免疫细胞的迁移分化、骨骼肌前体细胞的迁移、乳腺癌细胞的增殖、TGFβ1介导的抑制骨骼肌细胞凋亡均与S1P4相关。本文将综述近几年来关于S1P介导S1P4的生理病理应答及相关的信号转导机制。  相似文献   

6.
Sphingosine-1-phosphate (S1P) is a bioactive lipid molecule. It stimulates the growth of some cells, but inhibits the growth of others. In this study, we describe the detection of sub-microM to microM concentrations of S1P in the ascitic fluids of patients with ovarian cancer. In ovarian cancer cells cultured in vitro, S1P exhibited a dual effect on growth and/or survival. S1P (10 microM) induced cell death when cells were in suspension but stimulated cell growth when cells were attached. The calcium-dependent induction of cell death by S1P is apparently associated with its inhibitory effect on cell attachment and cell adhesion. S1P (10-30 microM) also induced calcium-dependent cell-cell aggregation.  相似文献   

7.
Fibrosis is a pathological process characterized by massive deposition of extracellular matrix (ECM) such as type I/III collagens and fibronectin that are secreted by an expanded pool of myofibroblasts, which are phenotypically altered fibroblasts with more contractile, proliferative, migratory and secretory activities. Fibrosis occurs in various organs including the lung, heart, liver and kidney, resulting in loss of normal tissue architecture and functions. Myofibroblasts could originate from multiple sources including tissue-resident fibroblasts, epithelial and endothelial cells through mechanisms of epithelial/endothelial-mesenchymal transition (EMT/EndMT), and bone marrow-derived circulating progenitors called fibrocytes. Emerging evidence in recent years shows that sphingosine-1-phosphate (S1P) acts on several types of target cells and is engaged in pro-fibrotic inflammatory process and fibrogenic process through multiple mechanisms, which include vascular permeability change, leukocyte infiltration, and migration, proliferation and myofibroblast differentiation of fibroblasts. Many of these S1P actions are receptor subtype-specific. In these actions, S1P has multiple cross-talks with other cytokines, particularly transforming growth factor-β (TGFβ), which plays a major role in fibrosis. The cross-talks include the regulation of S1P production through altered expression and activity of sphingosine kinases in fibrotic lesions, altered expression of S1P receptors, and S1P receptor-mediated transactivation of TGFβ signaling pathway. These cross-talks may give rise to a feed-forward, amplifying loop between S1P and TGFβ, and possibly with other cytokines in stimulating fibrogenesis. Another lysophospholipid mediator lysophosphatidic acid has also been recently implicated in fibrosis. The lysophospholipid signaling pathways represent novel, promising therapeutic targets for treating refractory fibrotic diseases. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

8.
Sphingosine-1-phosphate (S1P) is a sphingolipid metabolite that functions as a bioactive lipid molecule. S1P is degraded either by S1P lyase or by S1P phosphohydrolase. The gene encoding mammalian S1P lyase, SPL, has been identified. Here, we characterize the SPL protein in its expression, localization, and topology. The expression levels of the SPL protein correlated well with the dihydrosphingosine-1-phosphate (DHS1P) lyase activity in most tissues. However, liver and heart exhibited high DHS1P lyase activities compared to their SPL protein levels. The SPL mRNA expression was temporally regulated during mouse embryonal development. Immunofluorescence microscopy demonstrated that SPL is localized at the endoplasmic reticulum. Proteinase K digestion studies revealed that the large hydrophilic domain, containing the active site, faces the cytosol. This active site orientation is opposite to that of S1P phosphohydrolase, indicating that the degradation of S1P by two S1P-degrading enzymes occurs in spatially separated sides of the endoplasmic reticulum.  相似文献   

9.
To elucidate the direct role and mechanism of FGFR1 signaling in the differentiation and activation of osteoclasts, we conditionally inactivated FGFR1 in bone marrow monocytes and mature osteoclasts of mice. Mice deficient in FGFR1 (Fgfr1−/−) exhibited misregulated bone remodeling with reduced osteoclast number and impaired osteoclast function. In vitro assay demonstrated that the number of tartrate-resistant acid phosphatase (TRAP) positive osteoclasts derived from bone marrow monocytes of Fgfr1−/− mice was significantly diminished. The bone resorption activity of mature osteoclasts derived from Fgfr1−/− mice was also suppressed. Further analysis showed that the osteoclasts with FGFR1 deficiency exhibited downregulated expression of genes related to osteoclastic activity including TRAP and MMP-9. The phosphorylation of Erk1/2 mitogen-activated protein (MAP) kinase was also decreased. Our results suggest that FGFR1 is indispensable for complete differentiation and activation of osteoclasts in mice.  相似文献   

10.
Sphingolipids represent an essential class of lipids found in all eukaryotes, and strongly influence cellular signal transduction. Autoimmune diseases like asthma and multiple sclerosis (MS) are mediated by the sphingosine-1-phosphate receptor 1 (S1P1) to express a variety of symptoms and disease patterns. Inspired by its natural substrate, an array of artificial sphingolipid derivatives has been developed to target this specific G protein-coupled receptor (GPCR) in an attempt to suppress autoimmune disorders. FTY720, also known as fingolimod, is the first oral disease-modifying therapy for MS on the market. In pursuit of improved stability, bioavailability, and efficiency, structural analogues of this initial prodrug have emerged over time. This review covers a brief introduction to the sphingolipid metabolism, the mechanism of action on S1P1, and an updated overview of synthetic sphingosine S1P1 agonists.  相似文献   

11.
Osteocytes have been suggested to play a role in the regulation of bone resorption, although their effect on bone turnover has remained controversial. In order to study this open question, we developed an organ culture system based on isolated rat calvaria, where the osteocyte viability and its effect on osteoclastic bone resorption can be monitored. Our results suggest that osteocytes are constitutively negative regulators of osteoclastic activity. Osteoclasts, which were cultured on calvarial slices with living osteocytes inside, failed to form actin rings which are the hallmarks of resorbing cells. A similar inhibitory effect was also achieved by the conditioned medium obtained from calvarial organ culture, suggesting that living osteocytes produce yet unrecognized osteoclast inhibitors. On the contrary, when osteocyte apoptosis was induced, this inhibitory effect disappeared and strong osteoclastic bone resorption activity was observed. Thus, local apoptosis of osteocytes may play a major role in triggering local bone remodeling.  相似文献   

12.
Sphingosine-1-phosphate (S1P)-induced migration and proliferation of endothelial cells are critical for angiogenesis. C2H2-zinc finger (ZNF) proteins usually play an essential role in altering gene expression and regulating the angiogenesis. The aim of this study is to investigate whether a novel human C2H2-zinc finger gene ZNF580 (Gene ID: 51157) is involved in the migration and proliferation of endothelial cells stimulated by S1P. Our study shows that EAhy926 endothelial cells express S1P1, S1P3 and S1P5 receptors. Furthermore, S1P upregulates both ZNF580 mRNA and protein levels in a concentration- and time-dependent manner. SB203580, the specific inhibitor of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, blocks the S1P-induced upregulation of ZNF580. Moreover, overexpression/downexpression of ZNF580 in EAhy926 cells leads to the enhancement/decrease of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) expression as well as the migration and proliferation of EAhy926 endothelial cells. These results elucidate the important role that ZNF580 plays in the process of migration and proliferation of endothelial cells, which provides a foundation for a novel approach to regulate angiogenesis.  相似文献   

13.
Abstract

Sphingolipids represent an important class of bioactive signaling lipids which have key roles in numerous cellular processes. Over the last few decades, the levels of bioactive sphingolipids and/or their metabolizing enzymes have been realized to be important factors involved in disease development and progression, most notably in cancer. Targeting sphingolipid-metabolizing enzymes in disease states has been the focus of many studies and has resulted in a number of pharmacological inhibitors, with some making it into the clinic as therapeutics. In order to better understand the regulation of sphingolipid-metabolizing enzymes as well as to develop much more potent and specific inhibitors, the field of sphingolipids has recently taken a turn toward structural biology. The last decade has seen the structural determination of a number of sphingolipid enzymes and effector proteins. In these terms, one of the most complete arms of the sphingolipid pathway is the sphingosine-1-phosphate (S1P) arm. The structures of proteins involved in the function and regulation of S1P are being used to investigate further the regulation of said proteins as well as in the design and development of inhibitors as potential therapeutics.  相似文献   

14.
Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid metabolite that exerts important effects on numerous cellular events via cell surface receptors, S1P(1-5). S1P influences differentiation, proliferation, and migration during vascular development. However, the effects of S1P signaling on early cardiac development are not well understood. To address this issue, we examined the expression of S1P regulatory enzymes and S1P receptors during cardiac development. We observed that enzymes that regulate S1P levels, sphingosine kinase and sphingosine-1-phosphate phosphatase, are expressed in the developing heart. In addition, RT-PCR revealed that four of the five known S1P receptors (S1P(1-4)) are also expressed in the developing heart. Next, effects of altered S1P levels on whole embryo and atrioventricular (AV) canal cultures were investigated. We demonstrate that inactivation of the S1P producing enzyme, sphingosine kinase, leads to cell death in cardiac tissue which is rescued by exogenous S1P treatment. Other experiments reveal that increased S1P concentration prevents alterations in cell morphology that are required for cell migration. This effect results in reduced cell migration and inhibited mesenchymal cell formation in AV canal cushion tissue. These data indicate that S1P, locally maintained within a specific concentration range, is an important and necessary component of early heart development.  相似文献   

15.
The bioactive metabolite sphingosine-1-phosphate (S1P), a product of sphingosine kinases (SphKs), mediates diverse biological processes such as cell differentiation, proliferation, survival and angiogenesis. A fluorinated analogue of S1P receptor agonist has been synthesized by utilizing a ring opening reaction of oxacycles by a lithiated difluoromethylphosphonate anion as the key reaction. In vitro activity of this S1P analogue is also reported.  相似文献   

16.
Progressive accumulation of the amyloid β protein in extracellular plaques is a neuropathological hallmark of Alzheimer disease. Amyloid β is generated during sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. In addition to the proteolytic processing by secretases, APP is also metabolized by lysosomal proteases. Here, we show that accumulation of intracellular sphingosine-1-phosphate (S1P) impairs the metabolism of APP. Cells lacking functional S1P-lyase, which degrades intracellular S1P, strongly accumulate full-length APP and its potentially amyloidogenic C-terminal fragments (CTFs) as compared with cells expressing the functional enzyme. By cell biological and biochemical methods, we demonstrate that intracellular inhibition of S1P-lyase impairs the degradation of APP and CTFs in lysosomal compartments and also decreases the activity of γ-secretase. Interestingly, the strong accumulation of APP and CTFs in S1P-lyase-deficient cells was reversed by selective mobilization of Ca2+ from the endoplasmic reticulum or lysosomes. Intracellular accumulation of S1P also impairs maturation of cathepsin D and degradation of Lamp-2, indicating a general impairment of lysosomal activity. Together, these data demonstrate that S1P-lyase plays a critical role in the regulation of lysosomal activity and the metabolism of APP.  相似文献   

17.
18.
19.
Sphingosine-1-phosphate (S1P) is a blood-borne lipid mediator with pleiotropic biological activities. S1P acts via the specific cell surface G-protein-coupled receptors, S1P(1-5). S1P(1) and S1P(2) were originally identified from vascular endothelial cells (ECs) and smooth muscle cells, respectively. Emerging evidence shows that S1P plays crucial roles in the regulation of vascular functions, including vascular formation, barrier protection and vascular tone via S1P(1), S1P(2) and S1P(3). In particular, S1P regulates vascular formation through multiple mechanisms; S1P exerts both positive and negative effects on angiogenesis and vascular maturation. The positive and negative effects of S1P are mediated by S1P(1) and S1P(2), respectively. These effects of S1P(1) and S1P(2) are probably mediated by the S1P receptors expressed in multiple cell types including ECs and bone-marrow-derived cells. The receptor-subtype-specific, distinct effects of S1P favor the development of novel therapeutic tactics for antitumor angiogenesis in cancer and therapeutic angiogenesis in ischemic diseases.  相似文献   

20.
Balanced sphingolipid signaling is important for the maintenance of homeostasis. Sphingolipids were demonstrated to function as structural components, second messengers, and regulators of cell growth and survival in normal and disease-affected tissues. Particularly, sphingosine kinase 1 (SphK1) and its product sphingosine-1-phosphate (S1P) operate as mediators and facilitators of proliferation-linked signaling. Unlimited proliferation (selfrenewal) within the regulated environment is a hallmark of progenitor/stem cells that was recently associated with the S1P signaling network in vasculature, nervous,muscular, and immune systems. S1P was shown to regulate progenitor-related characteristics in normal and cancerstemcells(CSCs) viaG-protein coupled receptorsS1Pn(n=1 to 5). The SphK/S1P axis is crucially involved in the regulation of embryonic development of vasculature and the nervous system, hematopoietic stem cell migration, regeneration of skeletal muscle, and development of multiple sclerosis. The ratio of the S1P receptor expression, localization, and specific S1P receptoractivated downstream effectors influenced the rate of selfrenewal and should be further explored as regeneration related targets. Considering malignant transformation,it is essential to control the level of self-renewal capacity.Proliferation of the progenitor cell should be synchronized with differentiation to provide healthy lifelong function of blood, immune systems, and replacement of damaged ordead cells. The differentiation-related role of SphK/S1P remains poorly assessed. A few pioneering investigations exploredpharmacologicaltoolsthattargetsphingolipid signaling and can potentially confine and direct self-renewal towards normal differentiation. Further investigation is required to test the role of the SphK/S1P axis in regulation of self-renewal and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号