首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human neuropathy target esterase catalyzes hydrolysis of membrane lipids   总被引:7,自引:0,他引:7  
A neuronal membrane protein, neuropathy target esterase (NTE), reacts with those organophosphates that initiate a syndrome of axonal degeneration. NTE has homologues in Drosophila and yeast and is detected in vitro by assays with a non-physiological ester substrate, phenyl valerate. We report that NEST, the recombinant esterase domain of NTE (residues 727-1216) purified from bacterial lysates, can catalyze hydrolysis of several naturally occurring membrane-associated lipids. The active site regions of NEST and calcium-independent phospholipase A(2) (iPLA(2)) share sequence similarity, and the phenyl valerate hydrolase activity of NEST is inhibited by low concentrations of iPLA(2) inhibitors. However, on incubation with NEST, fatty acid was liberated only extremely slowly from the sn-2 position of phospholipids (V(max) approximately 0.01 micromol/min/mg and K(m) approximately 0.4 mm for 1-palmitoyl, 2-oleoylphosphatidylcholine). Comparison of the NEST-mediated generation of (14)C-labeled products from two differentially labeled (14)C-phospholipid substrates suggested that a rate-limiting sn-2 cleavage was followed very rapidly by hydrolysis of the resulting lysophospholipid. Among the various naturally occurring lipids tested with NEST, lysophospholipids were by far the most avidly hydrolyzed substrates (V(max) approximately 20 micromol/min/mg and K(m) approximately 0.05 mm for 1-palmitoyl-lysophosphatidylcholine). NEST also catalyzed the hydrolysis of monoacylglycerols, preferring the 1-acyl to the 2-acyl isomer (V(max) approximately 1 micromol/min/mg and K(m) approximately 0.4 mm for 1-palmitoylglycerol). NEST did not catalyze hydrolysis of di- or triacylglycerols or fatty acid amides. This demonstration that membrane lipids are its putative cellular substrates raises the possibility that NTE and its homologues may be involved in intracellular membrane trafficking.  相似文献   

2.
Calcium-independent phospholipase A(2) group VIA (iPLA(2)β) releases docosahexaenoic acid (DHA) from phospholipids in vitro. Mutations in the iPLA(2)β gene, PLA2G6, are associated with dystonia-parkinsonism and infantile neuroaxonal dystrophy. To understand the role of iPLA(2)β in brain, we applied our in vivo kinetic method using radiolabeled DHA in 4 to 5-month-old wild type (iPLA(2)β(+/+)) and knockout (iPLA(2)β(-/-)) mice, and measured brain DHA kinetics, lipid concentrations, and expression of PLA(2), cyclooxygenase (COX), and lipoxygenase (LOX) enzymes. Compared to iPLA(2)β(+/+) mice, iPLA(2)β(-/-) mice showed decreased rates of incorporation of unesterified DHA from plasma into brain phospholipids, reduced concentrations of several fatty acids (including DHA) esterified in ethanolamine- and serine-glycerophospholipids, and increased lysophospholipid fatty acid concentrations. DHA turnover in brain phospholipids did not differ between genotypes. In iPLA(2)β(-/-) mice, brain levels of iPLA(2)β mRNA, protein, and activity were decreased, as was the iPLA(2)γ (Group VIB PLA(2)) mRNA level, while levels of secretory sPLA(2)-V mRNA, protein, and activity and cytosolic cPLA(2)-IVA mRNA were increased. Levels of COX-1 protein were decreased in brain, while COX-2 protein and mRNA were increased. Levels of 5-, 12-, and 15-LOX proteins did not differ significantly between genotypes. Thus, a genetic iPLA(2)β deficiency in mice is associated with reduced DHA metabolism, profound changes in lipid-metabolizing enzyme expression (demonstrating lack of redundancy) and of phospholipid fatty acid content of brain (particularly of DHA), which may be relevant to neurologic abnormalities in humans with PLA2G6 mutations.  相似文献   

3.
PLA2G6 or GVIA calcium-independent PLA2 (iPLA2β) is identified as one of the NAFLD modifier genes in humans, and thought to be a target for NAFLD therapy. iPLA2β is known to play a house-keeping role in phospholipid metabolism and remodeling. However, its role in NAFLD pathogenesis has not been supported by results obtained from high-fat feeding of iPLA2β–null (PKO) mice. Unlike livers of human NAFLD and genetically obese rodents, fatty liver induced by high-fat diet is not associated with depletion of hepatic phospholipids. We therefore tested whether iPLA2β could regulate obesity and hepatic steatosis in leptin-deficient mice by cross-breeding PKO with ob/ob mice to generate ob/ob–PKO mice. Here we observed an improvement in ob/ob–PKO mice with significant reduction in serum enzymes, lipids, glucose, insulin as well as improved glucose tolerance, and reduction in islet hyperplasia. The improvement in hepatic steatosis measured by liver triglycerides, fatty acids and cholesterol esters was associated with decreased expression of PPARγ and de novo lipogenesis genes, and the reversal of β-oxidation gene expression. Notably, ob/ob livers contained depleted levels of lysophospholipids and phospholipids, and iPLA2β deficiency in ob/ob–PKO livers lowers the former, but replenished the latter particularly phosphatidylethanolamine (PE) and phosphatidylcholine (PC) that contained arachidonic (AA) and docosahexaenoic (DHA) acids. Compared with WT livers, PKO livers also contained increased PE and PC containing AA and DHA. Thus, iPLA2β deficiency protected against obesity and ob/ob fatty liver which was associated with hepatic fatty-acyl phospholipid remodeling. Our results support the deleterious role of iPLA2β in severe obesity associated NAFLD.  相似文献   

4.
Previously, we showed that lowering the growth temperature increased the level of eicosapentaenoic acid (EPA) in the phosphatidylcholine (PtdCho) of Caenorhabditis elegans. In this study, we investigated the molecular species composition of PtdCho of C. elegans, with an emphasis on EPA-containing species. C. elegans contained a substantial amount of 1,2-dipolyunsaturated fatty acid-containing PtdCho (1,2-diPUFA-PtdCho) species, such as arachidonic acid/EPA and EPA/EPA, which are unusual phospholipids in higher animals. The EPA/EPA-PtdCho content was significantly increased in C. elegans grown at a low temperature. To examine the possibility that the acyltransferase activity involved in the remodeling of phospholipids accounts for the production of 1,2-diPUFA-PtdCho, we investigated the substrate specificity of this enzyme in C. elegans and found that it did not exhibit a preference for saturated fatty acid for acylation to the sn-1 position of PtdCho. The efficacy of the esterification of EPA to the sn-1 position was almost equal to that of stearic acid. The lack of preference for a saturated fatty acid for acylation to the sn-1 position of PtdCho is thought to result in the existence of the unusual 1,2-diEPA-PtdCho in C. elegans.  相似文献   

5.
6.
Certain organophosphates react with the active site serine residue of neuropathy target esterase (NTE) and cause axonal degeneration and paralysis. Cloning of NTE revealed the presence of homologues in eukaryotes from yeast to man and that the protein has both a catalytic and a regulatory domain. The latter contains sequences similar to the regulatory subunit of protein kinase A, suggesting that NTE may bind cyclic AMP. NTE is tethered via an amino-terminal transmembrane segment to the cytoplasmic face of the endoplasmic reticulum. Unlike wild-type yeast, mutants lacking NTE activity cannot deacylate CDP-choline pathway-synthesized phosphatidylcholine (PtdCho) to glycerophosphocholine (GroPCho) and fatty acids. In cultured mammalian cells, GroPCho levels rise and fall, respectively, in response to experimental over-expression, and inhibition, of NTE. A complex of PtdCho and Sec14p, a yeast phospholipid-binding protein, both inhibits the rate-limiting step in PtdCho synthesis and enhances deacylation of PtdCho by NTE. While yeast can maintain PtdCho homeostasis in the absence of NTE, certain post-mitotic metazoan cells may not be able to, and some NTE-null animals have deleterious phenotypes. NTE is not required for cell division in the early mammalian embryo or in larval and pupal forms of Drosophila, but is essential for placenta formation and survival of neurons in the adult. In vertebrates, the relative importance of NTE and calcium-independent phospholipase A2 for homeostatic PtdCho deacylation in particular cell types, possible interactions of NTE with Sec14p homologues and cyclic AMP, and whether deranged phospholipid metabolism underlies organophosphate-induced neuropathy are areas which require further investigation.  相似文献   

7.
This study was performed to determine whether fatty acids incorporated into liver cell nuclei phosphatidylcholine (PtdCho) could be remodeled in the isolated nuclear. For this reason, rat liver cell nuclei were incubated in vitro with [1-14C]20:4n-6-CoA. PtdCho molecular species with the highest specific activity had an unsaturated fatty acid at sn-1 and sn-2 positions (20:4-20:4>18:2-20:4>18:1-20:4). 16:0-20:4 and 18:0-20:4 PtdChos showed a minor specific activity. When labeled nuclei were reincubated in the absence of labeled substrate with the addition of cytosol, ATP and CoA, the specific activity of 20:4-20:4, 18:2-20:4 and 18:1-20:4 species decreased, while that of 16:0-20:4 and 18:0-20:4 increased. In conclusion, the asymmetric fatty acid distribution of saturated fatty acids at sn-1 position, and unsaturated fatty acids at sn-2 position of nuclear PtdCho molecular species was re-established by an acyl-CoA-dependent remodeling process.  相似文献   

8.
Calcium-independent phospholipase A2 group VIA (iPLA2β) releases docosahexaenoic acid (DHA) from phospholipids in vitro. Mutations in the iPLA2β gene, PLA2G6, are associated with dystonia-parkinsonism and infantile neuroaxonal dystrophy. To understand the role of iPLA2β in brain, we applied our in vivo kinetic method using radiolabeled DHA in 4 to 5-month-old wild type (iPLA2β+/+) and knockout (iPLA2β−/−) mice, and measured brain DHA kinetics, lipid concentrations, and expression of PLA2, cyclooxygenase (COX), and lipoxygenase (LOX) enzymes. Compared to iPLA2β+/+ mice, iPLA2β−/− mice showed decreased rates of incorporation of unesterified DHA from plasma into brain phospholipids, reduced concentrations of several fatty acids (including DHA) esterified in ethanolamine- and serine-glycerophospholipids, and increased lysophospholipid fatty acid concentrations. DHA turnover in brain phospholipids did not differ between genotypes. In iPLA2β−/− mice, brain levels of iPLA2β mRNA, protein, and activity were decreased, as was the iPLA2γ (Group VIB PLA2) mRNA level, while levels of secretory sPLA2-V mRNA, protein, and activity and cytosolic cPLA2-IVA mRNA were increased. Levels of COX-1 protein were decreased in brain, while COX-2 protein and mRNA were increased. Levels of 5-, 12-, and 15-LOX proteins did not differ significantly between genotypes. Thus, a genetic iPLA2β deficiency in mice is associated with reduced DHA metabolism, profound changes in lipid-metabolizing enzyme expression (demonstrating lack of redundancy) and of phospholipid fatty acid content of brain (particularly of DHA), which may be relevant to neurologic abnormalities in humans with PLA2G6 mutations.  相似文献   

9.
Whether group VIA phospholipase A(2) (iPLA(2)β) is involved in vascular inflammation and neointima formation is largely unknown. Here, we report that iPLA(2)β expression increases in the vascular tunica media upon carotid artery ligation and that neointima formation is suppressed by genetic deletion of iPLA(2)β or by inhibiting its activity or expression via perivascular delivery of bromoenol lactone or of antisense oligonucleotides, respectively. To investigate whether smooth muscle-specific iPLA(2)β is involved in neointima formation, we generated transgenic mice in which iPLA(2)β is expressed specifically in smooth muscle cells and demonstrate that smooth muscle-specific expression of iPLA(2)β exacerbates ligation-induced neointima formation and enhanced both production of proinflammatory cytokines and vascular infiltration by macrophages. With cultured vascular smooth muscle cell, angiotensin II, arachidonic acid, and TNF-α markedly induce increased expression of IL-6 and TNF-α mRNAs, all of which were suppressed by inhibiting iPLA(2)β activity or expression with bromoenol lactone, antisense oligonucleotides, and genetic deletion, respectively. Similar suppression also results from genetic deletion of 12/15-lipoxygenase or inhibiting its activity with nordihydroguaiaretic acid or luteolin. Expression of iPLA(2)β protein in cultured vascular smooth muscle cells was found to depend on the phenotypic state and to rise upon incubation with TNF-α. Our studies thus illustrate that smooth muscle cell-specific iPLA(2)β participates in the initiation and early progression of vascular inflammation and neointima formation and suggest that iPLA(2)β may represent a novel therapeutic target for preventing cardiovascular diseases.  相似文献   

10.
The endothelium comprises a cellular barrier between the circulation and tissues. We have previously shown that activation of protease-activated receptor 1 (PAR-1) and PAR-2 on the surface of human coronary artery endothelial cells by tryptase or thrombin increases group VIA phospholipase A(2) (iPLA(2)β) activity and results in production of multiple phospholipid-derived inflammatory metabolites. We isolated cardiac endothelial cells from hearts of iPLA(2)β-knockout (iPLA(2)β-KO) and wild-type (WT) mice and measured arachidonic acid (AA), prostaglandin I(2) (PGI(2)), and platelet-activating factor (PAF) production in response to PAR stimulation. Thrombin (0.1 IU/ml) or tryptase (20 ng/ml) stimulation of WT endothelial cells rapidly increased AA and PGI(2) release and increased PAF production. Selective inhibition of iPLA(2)β with (S)-bromoenol lactone (5 μM, 10 min) completely inhibited thrombin- and tryptase-stimulated responses. Thrombin or tryptase stimulation of iPLA(2)β-KO endothelial cells did not result in significant PAF production and inhibited AA and PGI(2) release. Stimulation of cardiac endothelial cells from group VIB (iPLA(2)γ)-KO mice increased PAF production to levels similar to those of WT cells but significantly attenuated PGI(2) release. These results indicate that cardiac endothelial cell PAF production is dependent on iPLA(2)β activation and that both iPLA(2)β and iPLA(2)γ may be involved in PGI(2) release.  相似文献   

11.
We determined the contribution of calcium-independent phospholipase A(2)β (iPLA(2)β) to lung metastasis development following breast cancer injection into wild-type (WT) and iPLA(2)β-knockout (iPLA(2)β-KO) mice. WT and iPLA(2)β-KO mice were injected in the mammary pad with 200,000 E0771 breast cancer cells. There was no difference in primary tumor size between WT and iPLA(2)β-KO mice at 27 days postinjection. However, we observed an 11-fold greater number of breast cancer cells in the lungs of WT mice compared with iPLA(2)β-KO animals (P < 0.05). Isolated WT lung endothelial cells demonstrated a significant increase in platelet-activating factor (PAF) production when stimulated with thrombin [1 IU/ml, 10 min, 4,330 ± 555 vs. 15,227 ± 1,043 disintegrations per minute (dpm), P < 0.01] or TNF-α (10 ng/ml, 2 h, 16,532 ± 538 dpm, P < 0.01). Adherence of E0771 cells to WT endothelial cells was increased by thrombin (4.8 ± 0.3% vs. 70.9 ± 6.3, P < 0.01) or TNF-α (60.5 ± 4.3, P < 0.01). These responses were blocked by pretreatment with the iPLA(2)β-selective inhibitor (S)-bromoenol lactone and absent in lung endothelial cells from iPLA(2)β-KO mice. These data indicate that endothelial cell iPLA(2)β is responsible for PAF production and adherence of E0771 cells and may play a role in cancer cell migration to distal locations.  相似文献   

12.
Activation of lymphocytes induces blastogenesis and cell division which is accompanied by membrane lipid metabolism such as increased fatty acid turnover. To date little is known about the enzymatic mechanism(s) regulating this process. Release of fatty acids such as arachidonic acid requires sn-2-deacylation catalyzed by a class of enzymes known as phospholipases A(2) (PLA(2), EC ). Herein, we confirm that human peripheral blood B or T lymphocytes (PBL) do not possess measurable levels of 85-kDa PLA(2) as assessed by Western immunoblot. Low levels of 14-kDa PLA(2) protein and activity were detectable in the particulate fraction of PBL and Jurkat cells. Western immunoblot analysis indicates that PBLs possess the calcium-independent PLA(2) (iPLA(2)) protein. Calcium-independent sn-2-acylhydrolytic activity was measurable in PBL cytosols and could be inhibited by the selective iPLA(2) inhibitor bromoenol lactone. Mitogen activation of PBLs resulted in maintenance of activity levels which remained constant over 72 h suggesting an important role for iPLA(2) in this proliferative process. Indeed, evaluation of iPLA(2) activity in cell cycle-arrested Jurkat T cell fractions revealed the highest iPLA(2) levels occurring at the G(2)/M phase. Addition of the iPLA(2) inhibitors, bromoenol lactone, or arachidonyl trifluoromethyl ketone (AAOCF(3)), inhibited both mitogen-induced PBL as well as Jurkat T cell proliferation. Moreover, specific depletion of iPLA(2) protein by antisense treatment also resulted in marked suppression of cell division. Inhibition of Jurkat cell proliferation was not associated with arrest at a particular phase of the cell cycle nor was it associated with apoptosis as assessed by flow cytometry. These findings provide the first evidence that iPLA(2) plays a key role in the lymphocyte proliferative response.  相似文献   

13.
Dysregulated cholinergic signaling is an early hallmark of Alzheimer disease (AD), usually ascribed to degeneration of cholinergic neurons induced by the amyloid-β peptide (Aβ). It is now generally accepted that neuronal dysfunction and memory deficits in the early stages of AD are caused by the neuronal impact of soluble Aβ oligomers (AβOs). AβOs build up in AD brain and specifically attach to excitatory synapses, leading to synapse dysfunction. Here, we have investigated the possibility that AβOs could impact cholinergic signaling. The activity of choline acetyltransferase (ChAT, the enzyme that carries out ACh production) was inhibited by ~50% in cultured cholinergic neurons exposed to low nanomolar concentrations of AβOs. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction, lactate dehydrogenase release, and [(3)H]choline uptake assays showed no evidence of neuronal damage or loss of viability that could account for reduced ChAT activity under these conditions. Glutamate receptor antagonists fully blocked ChAT inhibition and oxidative stress induced by AβOs. Antioxidant polyunsaturated fatty acids had similar effects, indicating that oxidative damage may be involved in ChAT inhibition. Treatment with insulin, previously shown to down-regulate neuronal AβO binding sites, fully prevented AβO-induced inhibition of ChAT. Interestingly, we found that AβOs selectively bind to ~50% of cultured cholinergic neurons, suggesting that ChAT is fully inhibited in AβO-targeted neurons. Reduction in ChAT activity instigated by AβOs may thus be a relevant event in early stage AD pathology, preceding the loss of cholinergic neurons commonly observed in AD brains.  相似文献   

14.
Na(+)-K(+)-2Cl(-) cotransporter (NKCC2)-mediated NaCl reabsorption in the thick ascending limb (TAL) is stimulated by AVP via V2 receptor/PKA/cAMP signaling. This process is antagonized by locally produced eicosanoids such as 20-HETE or prostaglandin E(2), which are synthesized in a phospholipase A(2)-dependent reaction cascade. Using microarray-based gene expression analysis, we found evidence for an AVP-dependent downregulation of the calcium-independent isoform of PLA(2), iPLA(2)β, in the outer medulla of rats. In the present study, we therefore examined the contribution of iPLA(2)β to NKCC2 regulation. Immunoreactive iPLA(2)β protein was detected in cultured mTAL cells as well as in the entire TAL of rodents and humans with the exception of the macula densa. Administration of the V2 receptor-selective agonist desmopressin (5 ng/h; 3 days) to AVP-deficient diabetes insipidus rats increased outer medullary phosphorylated NKCC2 (pNKCC2) levels more than twofold in association with a marked reduction in iPLA(2)β abundance (-65%; P < 0.05), thus confirming microarray results. Inhibition of iPLA(2)β in Sprague-Dawley rats with FKGK 11 (0.5 μM) or in mTAL cells with FKGK 11 (10 μM) or (S)-bromoenol lactone (5 μM) for 1 h markedly increased pNKCC2 levels without affecting total NKCC2 expression. Collectively, these data indicate that iPLA(2)β acts as an inhibitory modulator of NKCC2 activity and suggest that downregulation of iPLA(2)β may be a relevant step in AVP-mediated urine concentration.  相似文献   

15.
Numerous studies have reported the implication of calcium-independent phospholipase A2 (iPLA2) in various biological mechanisms. Most of these works have used in vitro models and only a few have been carried out in vivo on iPLA2−/− mice. The functions of iPLA2 have been investigated in vivo in the heart, brain, pancreatic islets, and liver, but not in the retina despite its very high content in phospholipids. Phospholipids in the retina are known to be involved in several various key mechanisms such as visual transduction, inflammation or apoptosis. In order to investigate the implication of iPLA2 in these processes, this work was aimed to build an in vivo model of iPLA2 activity inhibition. After testing the efficacy of different chemical inhibitors of iPLA2, we have validated the use of bromoenol lactone (BEL) in vitro and in vivo for inhibiting the activity of iPLA2. Under in vivo conditions, a dose of 6 μg/g of body weight of BEL in mice displayed a 50%-inhibition of retinal iPLA2 activity 8–16 h after intraperitoneal administration. Delivering the same dose twice a day to animals was successful in producing a similar inhibition that was stable over one week. In summary, this novel mouse model exhibits a significant inhibition of retinal iPLA2 activity. This model of chemical inhibition of iPLA2 will be useful in future studies focusing on iPLA2 functions in the retina.  相似文献   

16.
Group VIA calcium-independent phospholipase A2 (iPLA2) has been shown to play a major role in regulating basal phospholipid deacylation reactions in certain cell types. More recently, roles for this enzyme have also been suggested in the destruction of membrane phospholipid during apoptosis and after oxidant injury. Proposed iPLA2 roles have rested heavily on the use of bromoenol lactone as an iPLA2-specific inhibitor, but this compound actually inhibits other enzymes and lipid pathways unrelated to PLA2, which makes it difficult to define the contribution of iPLA2 to specific functions. In previous work, we pioneered the use of antisense technology to decrease cellular iPLA2 activity as an alternative approach to study iPLA2 functions. In the present study, we followed the opposite strategy and prepared U937 cells that exhibited enhanced iPLA activity by stably expressing a plasmid containing iPLA2 cDNA. Compared with control cells, the iPLA2 -overexpressing U937 cells showed elevated responses to hydrogen peroxide with regard to both arachidonic acid mobilization and incorporation of the fatty acid into phospholipids, thus providing additional evidence for the key role that iPLA2 plays in these events. Long-term exposure of the cells to hydrogen peroxide resulted in cell death by apoptosis, and this process was accelerated in the iPLA2-overexpressing cells. Increased phospholipid hydrolysis and fatty acid release also occurred in these cells. Unexpectedly, however, abrogation of U937 cell iPLA2 activity by either methyl arachidonyl fluorophosphonate or an antisense oligonucleotide did not delay or decrease the extent of apoptosis induced by hydrogen peroxide. These results indicate that, although iPLA2-mediated phospholipid hydrolysis occurs during apoptosis, iPLA2 may actually be dispensable for the apoptotic process to occur. Thus, beyond a mere destructive role, iPLA2 may play other roles during apoptosis.  相似文献   

17.
We purified an 80-kDa Ca2+-independent phospholipase A2 (iPLA2) from rat brain using octyl-Sepharose, ATP-agarose, and calmodulin-agarose column chromatography steps. This procedure gave a 30,000-fold purification and yielded 4 microg of a near-homogeneous iPLA2 with a specific activity of 4.3 micromol/min/mg. Peptide sequences of the rat brain iPLA2 display considerable homology to sequences of the iPLA2 from P388D1 macrophages, Chinese hamster ovary cells, and human B lymphocytes. Under optimal conditions, the iPLA2 revealed the following substrate preference toward the fatty acid chain in the sn-2 position of phosphatidylcholine: linoleoyl > palmitoyl > oleoyl > arachidonoyl. The rat brain iPLA2 also showed a head group preference for choline > or = ethanolamine > inositol. The iPLA2 is inactivated when exposed to pure phospholipid vesicles. The only exception is vesicles composed of phosphatidylcholine and phosphatidylinositol 4,5-bisphosphate. Studies on the regional distribution and ontogeny of various phospholipase A2 (PLA2) types in rat brain indicate that the iPLA2 is the dominant PLA2 activity in the cytosolic fraction, whereas the group IIA secreted PLA2 is the dominant activity in the particulate fraction. The activities of these two enzymes change during postnatal development.  相似文献   

18.
Central to Alzheimer's disease (AD) pathology is the assembly of monomeric amyloid-β peptide (Aβ) into oligomers and fibers. The most abundant protein in the blood plasma and cerebrospinal fluid is human serum albumin. Albumin can bind to Aβ and is capable of inhibiting the fibrillization of Aβ at physiological (μM) concentrations. The ability of albumin to bind Aβ has recently been exploited in a phase II clinical trial, which showed a reduction in cognitive decline in AD patients undergoing albumin–plasma exchange. Here we explore the equilibrium between Aβ monomer, oligomer and fiber in the presence of albumin. Using transmission electron microscopy and thioflavin-T fluorescent dye, we have shown that albumin traps Aβ as oligomers, 9 nm in diameter. We show that albumin-trapped Aβ oligomeric assemblies are not capable of forming ion channels, which suggests a mechanism by which albumin is protective in Aβ-exposed neuronal cells. In vivo albumin binds a variety of endogenous and therapeutic exogenous hydrophobic molecules, including cholesterol, fatty acids and warfarin. We show that these molecules bind to albumin and suppress its ability to inhibit Aβ fiber formation. The interplay between Aβ, albumin and endogenous hydrophobic molecules impacts Aβ assembly; thus, changes in cholesterol and fatty acid levels in vivo may impact Aβ fibrillization, by altering the capacity of albumin to bind Aβ. These observations are particularly intriguing given that high cholesterol or fatty acid diets are well-established risk factors for late-onset AD.  相似文献   

19.
20.
The role of nuclear membrane phospholipids as targets of phospholipases resulting in the generation of nuclear signaling messengers has received attention. In the present study, we have exploited the utility of electrospray ionization mass spectrometry to determine the phospholipid content of nuclei isolated from perfused hearts. Rat heart nuclei contained choline glycerophospholipids composed of palmitoyl and stearoyl residues at the sn-1 position with oleoyl, linoleoyl, and arachidonoyl residues at the sn-2 position. Diacyl molecular species were the predominant molecular subclass in the choline glycerophospholipids, with the balance of the molecular species being plasmalogens. In the ethanolamine glycerophospholipid pool from rat heart nuclei approximately 50% of the molecular species were plasmalogens, which were enriched with arachidonic acid at the sn-2 position. A 50% loss of myocytic nuclear choline and ethanolamine glycerophospholipids was observed in hearts rendered globally ischemic for 15 min followed by 90 min of reperfusion in comparisons with the content of these phospholipids in control perfused hearts. The loss of nuclear choline and ethanolamine glycerophospholipids during reperfusion of ischemic myocardium was partially reversed by the calcium-independent phospholipase A(2) (iPLA(2)) inhibitor bromoenol lactone (BEL), suggesting that the loss of nuclear phospholipids during ischemia/reperfusion is mediated, in part, by iPLA(2). Western blot analyses of isolated nuclei from ischemic hearts demonstrated that iPLA(2) is translocated to the nucleus after myocardial ischemia. Taken toghether, these studies have demonstrated that nuclear phospholipid mass decreases after myocardial ischemia by a mechanism that involves, at least in part, phospholipolysis mediated by iPLA2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号