首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gemfibrozil and fenofibrate, two of the fibrates most used in clinical practice, raise HDL cholesterol (HDLc) and are thought to reduce the risk of atherosclerotic cardiovascular disease. These drugs act as PPARα agonists and upregulate the expression of genes crucial in reverse cholesterol transport (RCT). In the present study, we determined the effects of these two fibrates on RCT from macrophages to feces in vivo in human apoA-I transgenic (hApoA-ITg) mice. [(3)H]cholesterol-labeled mouse macrophages were injected intraperitoneally into hApoA-ITg mice treated with intragastric doses of fenofibrate, gemfibrozil or a vehicle solution for 17days, and radioactivity was determined in plasma, liver and feces. Fenofibrate, but not gemfibrozil, enhanced [(3)H]cholesterol flux to plasma and feces of female hApoA-ITg mice. Fenofibrate significantly increased plasma HDLc, HDL phospholipids, hApoA-I levels and phospholipid transfer protein activity, whereas these parameters were not altered by gemfibrozil treatment. Unlike gemfibrozil, fenofibrate also induced the generation of larger HDL particles, which were more enriched in cholesteryl esters, together with higher potential to generate preβ-HDL formation and caused a significant increase in [(3)H]cholesterol efflux to plasma. Our findings demonstrate that fenofibrate promotes RCT from macrophages to feces in vivo and, thus, highlight a differential action of this fibrate on HDL.  相似文献   

2.
Obese mice without leptin (ob/ob) or the leptin receptor (db/db) have increased plasma HDL levels and accumulate a unique lipoprotein referred to as LDL/HDL1. To determine the role of apolipoprotein A-I (apoA-I) in the formation and accumulation of LDL/HDL1, both ob/ob and db/db mice were crossed onto an apoA-I-deficient (apoA-I(-/-)) background. Even though the obese apoA-I(-/-) mice had an expected dramatic decrease in HDL levels, the LDL/HDL1 particle persisted. The cholesterol in this lipoprotein range was associated with both alpha- and beta-migrating particles, confirming the presence of small LDLs and large HDLs. Moreover, in the obese apoA-I(-/-) mice, LDL particles were smaller and HDLs were more negatively charged and enriched in apoE compared with controls. This LDL/HDL1 particle was rapidly remodeled to the size of normal HDL after injection into C57BL/6 mice, but it was not catabolized in obese apoA-I(-/-) mice even though plasma hepatic lipase (HL) activity was increased significantly. The finding of decreased hepatic scavenger receptor class B type I (SR-BI) protein levels may explain the persistence of LDL/HDL1 in obese apoA-I(-/-) mice. Our studies suggest that the maturation and removal of large HDLs depends on the integrity of a functional axis of apoA-I, HL, and SR-BI. Moreover, the presence of large HDLs without apoA-I provides evidence for an apoA-I-independent pathway of cholesterol efflux, possibly sustained by apoE.  相似文献   

3.
Endothelial lipase (EL) influences high density lipoprotein (HDL) metabolism in vivo and mediates bridging and uptake of HDL particles independent of its lipolytic activity in vitro. To determine whether EL has a nonlipolytic ligand function in HDL metabolism in vivo, 1 x 1011 particles of a recombinant adenovirus encoding human EL (AdEL), catalytically inactive human EL (AdELS149A), or control (Adnull) were injected into wild-type, apoA-I transgenic, and hepatic lipase knockout mice. ELS149A protein was expressed at higher levels than wild-type EL. EL and ELS149A protein were both substantially increased in the postheparin plasma compared with preheparin, indicating that both the wild-type and mutant EL were bound to cell-surface heparan sulfate proteoglycans. Overexpression of wild-type EL was associated with a significantly increased postheparin-plasma phospholipase activity and dramatically decreased levels of total cholesterol, HDL cholesterol, phospholipids, and apoA-I. Injection of AdELS149A did not result in increased phospholipase activity confirming that ELS149A was catalytically inactive. Expression of ELS149A did not decrease lipid or apoA-I levels in wild-type and apoA-I transgenic mice yet led to an intermediate reduction of total cholesterol, HDL cholesterol, and phospholipids in hepatic lipase-deficient mice compared with control and EL-expressing mice. Our study demonstrates for the first time that EL has both a lipolytic and nonlipolytic function in HDL metabolism in vivo. Lipolytic activity of EL, however, seems to be most important for its effects on systemic HDL metabolism.  相似文献   

4.
We have shown mouse to be an useful animal model for studies on the estrogen-mediated synthesis and secretion of lipoproteins since, unlike in rats, low density lipoprotein receptors are not upregulated in mice [3]. This results into the elevation of plasma levels of apolipoprotein (apo) B and apoE, and lowering of apoA-I-containing particles. The mechanisms of apoB and apoE elevation by estrogen have been elucidated [6], but the mechanism of lowering of plasma levels of HDL is still not known. Among other factors, apoA-I, cholesterol ester transfer protein (CETP), scavenger receptor B1 (SR-B1), and hepatic lipase are potential candidates that modulate plasma levels of HDL. Since estrogen treatment increased hepatic apoA-I mRNA and apoA-I synthesis, and mouse express undetectable levels of CETP, we tested the hypothesis that estradiol-mediated lowering of HDL in mice may occur through modulation of hepatic lipase (HL). Four mouse strains (C57L, C57BL, BALB, C3H) were administered supraphysiological doses of estradiol, and plasma levels of HDL as well as HL mRNA were quantitated. In all 4 strains estradiol decreased plasma levels of HDL by 30%, and increased HL mRNA 2–3 fold. In a separate experiment groups of male C57BL mouse were castrated or sham-operated, and low and high doses of estradiol administered. We found 1.4–2.5 fold elevation of HL mRNA with concomitant lowering of HDL levels. Ten other mouse strains examined also showed estradiol-induced elevation of HL mRNA, but the extent of elevation was found to be strain-specific. Based on these studies, we conclude that hepatic lipase is an important determinant of plasma levels of HDL and that HL mRNA is modulated by estrogen which in turn may participate in the lowering of plasma levels of HDL.  相似文献   

5.
Reverse cholesterol transport (RCT) pathway from macrophage foam cells initiates when HDL particles cross the endothelium, enter the interstitial fluid, and induce cholesterol efflux from these cells. We injected [3H]cholesterol-loaded J774 macrophages into the dorsal skin of mice and measured the transfer of macrophage-derived [3H]cholesterol to feces [macrophage-RCT (m-RCT)]. Injection of histamine to the macrophage injection site increased locally vascular permeability, enhanced influx of intravenously administered HDL, and stimulated m-RCT from the histamine-treated site. The stimulatory effect of histamine on m-RCT was abolished by prior administration of histamine H1 receptor (H1R) antagonist pyrilamine, indicating that the histamine effect was H1R-dependent. Subcutaneous administration of two other vasoactive mediators, serotonin or bradykinin, and activation of skin mast cells to secrete histamine and other vasoactive compounds also stimulated m-RCT. None of the studied vasoactive mediators affected serum HDL levels or the cholesterol-releasing ability of J774 macrophages in culture, indicating that acceleration of m-RCT was solely due to increased availability of cholesterol acceptors in skin. We conclude that disruption of the endothelial barrier by vasoactive compounds enhances the passage of HDL into interstitial fluid and increases the rate of RCT from peripheral macrophage foam cells, which reveals a novel tissue cholesterol-regulating function of these compounds.  相似文献   

6.
The aim of the present study was to characterize the composition and metabolism of HDL in subjects with complete hepatic lipase (HL) deficiency. Analyses were carried out in three complete and three partial HL-deficient subjects as well as in eight normotriglyceridemic (NTG) and two hypertriglyceridemic controls. Complete HL deficiency was associated with hypertriglyceridemia and with a 3.5-fold increase in HDL-triglyceride (TG) levels. The in vivo kinetics of apolipoprotein A-I (apoA-I) and apoA-II (d < 1.25 g/l) were studied in the fasted state using a primed-constant infusion of l-(5,5,5-D3)leucine for 12 h. Complete HL deficiency was associated with a reduced fractional catabolic rate of apoA-I in the HL-deficient female proband (-47%) and in her two brothers (-21%) compared with gender- and TG-matched controls. Total plasma and HDL from complete HL-deficient patients were able to mediate normal cholesterol efflux from human skin fibroblasts labeled with [3H]cholesterol. Complete HL deficiency was also associated with normal levels of prebeta-migrating apoA-I-containing HDL separated by two-dimensional gel electrophoresis and with an accumulation of large HDL particles compared with NTG controls. These results suggest that HL activity is important for adequate HDL metabolism, although its presence may not be necessary for normal HDL-mediated reverse cholesterol transport.  相似文献   

7.
We previously identified that four of five putative N-linked glycosylation sites of human endothelial lipase (EL) are utilized and suggested that the substitution of asparagine-116 (Asn-116) with alanine (Ala) (N116A) increased the hydrolytic activity of EL. The current study demonstrates that mutagenesis of either Asn-116 to threonine (Thr) or Thr-118 to Ala also disrupted the glycosylation of EL and enhanced catalytic activity toward synthetic substrates by 3-fold versus wild-type EL. Furthermore, we assessed the hydrolysis of native lipoprotein lipids by EL-N116A. EL-N116A exhibited a 5-fold increase in LDL hydrolysis and a 1.8-fold increase in HDL2 hydrolysis. Consistent with these observations, adenovirus-mediated expression of EL-N116A in mice significantly reduced the levels of both LDL and HDL cholesterol beyond the reductions observed by the expression of wild-type EL alone. Finally, we introduced Asn-116 of EL into the analogous positions within LPL and HL, resulting in N-linked glycosylation at this site. Glycosylation at this site suppressed the LPL hydrolysis of synthetic substrates, LDL, HDL2, and HDL3 but had little effect on HL activity. These data suggest that N-linked glycosylation at Asn-116 reduces the ability of EL to hydrolyze lipids in LDL and HDL2.  相似文献   

8.
Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester (CE) and triglyceride between HDL and apoB-containing lipoproteins. Anacetrapib (ANA), a reversible inhibitor of CETP, raises HDL cholesterol (HDL-C) and lowers LDL cholesterol in dyslipidemic patients; however, the effects of ANA on cholesterol/lipoprotein metabolism in a dyslipidemic hamster model have not been demonstrated. To test whether ANA (60 mg/kg/day, 2 weeks) promoted reverse cholesterol transport (RCT), 3H-cholesterol-loaded macrophages were injected and (3)H-tracer levels were measured in HDL, liver, and feces. Compared to controls, ANA inhibited CETP (94%) and increased HDL-C (47%). 3H-tracer in HDL increased by 69% in hamsters treated with ANA, suggesting increased cholesterol efflux from macrophages to HDL. 3H-tracer in fecal cholesterol and bile acids increased by 90% and 57%, respectively, indicating increased macrophage-to-feces RCT. Mass spectrometry analysis of HDL from ANA-treated hamsters revealed an increase in free unlabeled cholesterol and CE. Furthermore, bulk cholesterol and cholic acid were increased in feces from ANA-treated hamsters. Using two independent approaches to assess cholesterol metabolism, the current study demonstrates that CETP inhibition with ANA promotes macrophage-to-feces RCT and results in increased fecal cholesterol/bile acid excretion, further supporting its development as a novel lipid therapy for the treatment of dyslipidemia and atherosclerotic vascular disease.  相似文献   

9.
Type I diabetes mellitus (T1DM) increases atherosclerotic cardiovascular disease; however, the underlying pathophysiology is still incompletely understood. We investigated whether experimental T1DM impacts HDL-mediated reverse cholesterol transport (RCT). C57BL/6J mice with alloxan-induced T1DM had higher plasma cholesterol levels (P < 0.05), particularly within HDL, and increased hepatic cholesterol content (P < 0.001). T1DM resulted in increased bile flow (2.1-fold; P < 0.05) and biliary secretion of bile acids (BA, 10.5-fold; P < 0.001), phospholipids (4.5-fold; P < 0.001), and cholesterol (5.5-fold; P < 0.05). Hepatic cholesterol synthesis was unaltered, whereas BA synthesis was increased in T1DM (P < 0.001). Mass fecal BA output was significantly higher in T1DM mice (1.5-fold; P < 0.05), fecal neutral sterol excretion did not change due to increased intestinal cholesterol absorption (2.1-fold; P < 0.05). Overall in vivo macrophage-to-feces RCT, using [(3)H]cholesterol-loaded primary mouse macrophage foam cells, was 20% lower in T1DM (P < 0.05), mainly due to reduced tracer excretion within BA (P < 0.05). In vitro experiments revealed unchanged cholesterol efflux toward T1DM HDL, whereas scavenger receptor class BI-mediated selective uptake from T1DM HDL was lower in vitro and in vivo (HDL kinetic experiments) (P < 0.05), conceivably due to increased glycation of HDL-associated proteins (+65%, P < 0.01). In summary, despite higher mass biliary sterol secretion T1DM impairs macrophage-to-feces RCT, mainly by decreasing hepatic selective uptake, a mechanism conceivably contributing to increased cardiovascular disease in T1DM.  相似文献   

10.
11.
Increased or decreased hepatic lipase (HL) activity has been associated with coronary artery disease (CAD). This is consistent with the findings that gene variants that influence HL activity were associated with increased CAD risk in some population studies but not in others. In this review, we will explain the conditions that influence the effects of HL on CAD. Increased HL is associated with smaller and denser LDL (sdLDL) and HDL (HDL3) particles, while decreased HL is associated with larger and more buoyant LDL and HDL particles. The effect of HL activity on CAD risk is dependent on the underlying lipoprotein phenotype or disorder. Central obesity with hypertriglyceridemia (HTG) is associated with high HL activity that leads to the formation of sdLDL that is pro-atherogenic. In the absence of HTG, where large buoyant cholesteryl ester-enriched LDL is prominent, elevation of HL does not raise the risk for CAD. In HTG patients, drug therapy that decreases HL activity selectively decreases sdLDL particles, an anti-atherogenic effect. Drug therapy that raises HDL2 cholesterol has not decreased the risk for CAD. In trials where inhibition of cholesterol ester transfer protein (CETP) or HL occurs, the increase in HDL2 most likely is due to inhibition of catabolism of HDL2 and impairment of reverse cholesterol transport (RCT). In patients with isolated hypercholesterolemia, but with normal triglyceride levels and big-buoyant LDL particles, an increase in HL activity is beneficial; possibly because it increases RCT. Drugs that lower HL activity might decrease the risk for CAD only in hypertriglyceridemic patients with sdLDL by selectively clearing sdLDL particles from plasma, which would override the potentially pro-atherogenic effect on RCT. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

12.
Studies with mice have revealed that increased expression of apolipoprotein A-II (apoA-II) results in elevations in high density lipoprotein (HDL), the formation of larger HDL, and the development of early atherosclerosis. We now show that the increased size of HDL results in part from an inhibition of the ability of hepatic lipase (HL) to hydrolyze phospholipids and triglycerides in the HDL and that the ratio of apoA-I to apoA-II determines HDL functional and antiatherogenic properties. HDL from apoA-II transgenic mice was relatively resistant to the action of HL in vitro. To test whether HL and apoA-II influence HDL size independently, combined apoA-II transgenic/HL knockout (HLko) mice were examined. These mice had HDL similar in size to apoA-II transgenic mice and HLko mice, suggesting that they do not increase HDL side by independent mechanisms. Overexpression of apoA-I from a transgene reversed many of the effects of apoA-II overexpression, including the ability of HDL to serve as a substrate for HL. Combined apoA-I/apoA-II transgenic mice exhibited significantly less atherosclerotic lesion formation than did apoA-II transgenic mice. These results were paralleled by the effects of the transgenes on the ability of HDL to protect against the proinflammatory effects of oxidized low density lipoprotein (LDL). Whereas nontransgenic HDL protected against oxidized LDL induction of adhesion molecules in endothelial cells, HDL from apoA-II transgenic mice was proinflammatory. HDL from combined apoA-I/apoA-II transgenic mice was equally as protective as HDL from nontransgenic mice. Our data suggest that as the ratio of apoA-II to apoA-I is increased, the HDL become larger because of inhibition of HL, and lose their antiatherogenic properties.  相似文献   

13.
We studied the significance of four hydrophobic residues within the 225–230 region of apoA-I on its structure and functions and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of an apoA-I[F225A/V227A/F229A/L230A] mutant in apoA-I−/− mice decreased plasma cholesterol, HDL cholesterol, and apoA-I levels. When expressed in apoA-I−/− × apoE−/− mice, approximately 40% of the mutant apoA-I as well as mouse apoA-IV and apoB-48 appeared in the VLDL/IDL/LDL. In both mouse models, the apoA-I mutant generated small spherical particles of pre-β- and α4-HDL mobility. Coexpression of the apoA-I mutant and LCAT increased and shifted the-HDL cholesterol peak toward lower densities, created normal αHDL subpopulations, and generated spherical-HDL particles. Biophysical analyses suggested that the apoA-I[225–230] mutations led to a more compact folding that may limit the conformational flexibility of the protein. The mutations also reduced the ability of apoA-I to promote ABCA1-mediated cholesterol efflux and to activate LCAT to 31% and 66%, respectively, of the WT control. Overall, the apoA-I[225–230] mutations inhibited the biogenesis of-HDL and led to the accumulation of immature pre-β- and α4-HDL particles, a phenotype that could be corrected by administration of LCAT.  相似文献   

14.
15.
Stearoyl-coenzyme A desaturase 1 (SCD1) is the rate-limiting enzyme in the synthesis of monounsaturated fatty acids. However, the impact of SCD1 on atherosclerosis remains unclear. The aim of this study was to determine whether SCD1 affects macrophage reverse cholesterol transport (RCT) in mice. Compared to the control, adenoviral-mediated SCD1 overexpression in RAW264.7 macrophages increased cholesterol efflux to HDL, but not to apoA-I, without clear changes in ABCA1, ABCG1 and SR-BI expressions. While knockdown of ABCG1 and SR-BI did not affect the SCD1-induced cholesterol efflux to HDL, SCD1-overexpressing macrophages promoted the formation of both normal- and large-sized HDL in media, accompanying increased apolipoprotein A-I levels in HDL fractions. Transformation to larger particles of HDL was independently confirmed by nuclear magnetic resonance-based lipoprotein analysis. Interestingly, media transfer assays revealed that HDL generated by SCD1 had enhanced cholesterol efflux potential, indicating that SCD1 transformed HDL to a more anti-atherogenic phenotype. To study macrophage RCT in vivo, 3H-cholesterol-labeled RAW264.7 cells overexpressing SCD1 or the control were intraperitoneally injected into mice. Supporting the in vitro data, injection of SCD1-macrophages resulted in significant increases in 3H-tracer in plasma, liver, and feces compared to the control. Moreover, there was a shift towards larger particles in the 3H-tracer distribution of HDL fractions obtained from the mice.  相似文献   

16.
We have used adenovirus-mediated gene transfer in apolipoprotein (apo)E−/− mice to elucidate the molecular etiology of a dominant form of type III hyperlipoproteinemia (HLP) caused by the R142C substitution in apoE4. It was found that low doses of adenovirus expressing apoE4 cleared cholesterol, whereas comparable doses of apoE4[R142C] greatly increased plasma cholesterol, triglyceride, and apoE levels, caused accumulation of apoE in VLDL/IDL/LDL region, and promoted the formation of discoidal HDL. Co-expression of apoE4[R142C] with lecithin cholesterol acyltransferase (LCAT) or lipoprotein lipase (LPL) in apoE−/− mice partially corrected the apoE4[R142C]-induced dyslipidemia. High doses of C-terminally truncated apoE4[R142C]-202 partially cleared cholesterol in apoE−/− mice and promoted formation of discoidal HDL. The findings establish that apoE4[R142C] causes accumulation of apoE in VLDL/IDL/LDL region and affects in vivo the activity of LCAT and LPL, the maturation of HDL, and the clearance of triglyceride-rich lipoproteins. The prevention of apoE4[R142C]-induced dyslipidemia by deletion of the 203-299 residues suggests that, in the full-length protein, the R142C substitution may have altered the conformation of apoE bound to VLDL/IDL/LDL in ways that prevent triglyceride hydrolysis, cholesterol esterification, and receptor-mediated clearance in vivo.  相似文献   

17.
By lowering high density lipoprotein (HDL) cholesterol, testosterone contributes to the gender difference in HDL cholesterol and has been accused to be pro-atherogenic. The mechanism by which testosterone influences HDL cholesterol is little understood. We therefore investigated the effect of testosterone on the gene expression of apolipoprotein A-I (apoA-I), hepatic lipase (HL), scavenger receptor B1 (SR-BI), and the ATP binding cassette transporter A1 (ABCA1), all of which are important regulators of HDL metabolism. In both cultivated HepG2 hepatocytes and primary human monocyte-derived macrophages, testosterone led to a dose-dependent up-regulation of SR-BI, which was assessed on both the mRNA and the protein levels. As a functional consequence, we observed an increased HDL(3)-induced cholesterol efflux from macrophages. At supraphysiological dosages, testosterone also increased the expression of HL in HepG2 cells. Testosterone had no effect on the expression of apoA-I in HepG2 cells and ABCA1 in either HepG2 cells or macrophages. These data suggest that testosterone, despite lowering HDL cholesterol, intensifies reverse cholesterol transport and thereby exerts an anti-atherogenic rather than a pro-atherogenic effect.  相似文献   

18.
Endothelial lipase (EL) plays an important physiological role in modulating HDL metabolism. Data suggest that plasma contains an inhibitor of EL, and previous studies have suggested that apolipoprotein A-II (apoA-II) inhibits the activity of several enzymes involved in HDL metabolism. Therefore, we hypothesized that apoA-II may reduce the ability of EL to influence HDL metabolism. To test this hypothesis, we determined the effect of EL expression on plasma phospholipase activity and HDL metabolism in human apoA-I and human apoA-I/A-II transgenic mice. Expression of EL in vivo resulted in lower plasma phospholipase activity and significantly less reduction of HDL-cholesterol, phospholipid, and apoA-I levels in apoA-I/A-II double transgenic mice compared with apoA-I single transgenic mice. We conclude that the presence of apoA-II on HDL particles inhibits the ability of EL to influence the metabolism of HDL in vivo.  相似文献   

19.
Hepatic lipase (HL) plays a major role in high-density lipoprotein (HDL) metabolism both as a lipolytic enzyme and as a ligand. To investigate whether HL enhances the uptake of HDL-cholesteryl ester (CE) via the newly described scavenger receptor BI (SR-BI), we measured the effects of expressing HL and SR-BI on HDL-cell association as well as uptake of 125I-labeled apoA-I and [3H]CE-HDL, by embryonal kidney 293 cells. As expected, HDL cell association and CE selective uptake were increased in SR-BI transfected cells by 2- and 4-fold, respectively, compared to controls (P < 0.001). Cells transfected with HL alone or in combination with SR-BI expressed similar amounts of HL, 20% of which was bound to cell surface proteoglycans. HL alone increased HDL cell association by 2-fold but had no effect on HDL-CE uptake in 293 cells. However, in cells expressing SR-BI, HL further enhanced the selective uptake of CE from HDL by 3-fold (P < 0.001). To determine whether the lipolytic and/or ligand function of HL are required in this process, we generated a catalytically inactive form of HL (HL-145G). Cells co-transfected with HL-145G and SR-BI increased their HDL cell association and HDL-CE selective uptake by 1.4-fold compared to cells expressing SR-BI only (P < 0.03). Heparin abolished the effect of HL-145G on SR-BI-mediated HDL-CE selective uptake.Thus, the enhanced uptake of HDL-CE by HL is mediated by both its ligand role, which requires interaction with proteoglycans, and by lipolysis with subsequent HDL particle remodeling. These results establish HL as a major modulator of SR-BI mediated selective uptake of HDL-CE.  相似文献   

20.
The K146N/R147W substitutions in apoE3 were described in patients with a dominant form of type III hyperlipoproteinemia. The effects of these mutations on the in vivo functions of apoE were studied by adenovirus-mediated gene transfer in different mouse models. Expression of the apoE3[K146N/R147W] mutant in apoE-deficient (apoE−/−) or apoA-I-deficient (apoA-I−/−)×apoE−/− mice exacerbated the hypercholesterolemia and increased plasma apoE and triglyceride levels. In apoE−/− mice, the apoE3[K146N/R147W] mutant displaced apoA-I from the VLDL/LDL/HDL region and caused the accumulation of discoidal apoE-containing HDL. The WT apoE3 cleared the cholesterol of apoE−/− mice without induction of hypertriglyceridemia and promoted formation of spherical HDL. A unique property of the truncated apoE3[K146N/R147W]202 mutant, compared with similarly truncated apoE forms, is that it did not correct the hypercholesterolemia. The contribution of LPL and LCAT in the induction of the dyslipidemia was studied. Treatment of apoE−/− mice with apoE3[K146N/R147W] and LPL corrected the hypertriglyceridemia, but did not prevent the formation of discoidal HDL. Treatment with LCAT corrected hypertriglyceridemia and generated spherical HDL. The combined data indicate that the K146N/R147W substitutions convert the full-length and the truncated apoE3[K146N/R147W] mutant into a dominant negative ligand that prevents receptor-mediated remnant clearance, exacerbates the dyslipidemia, and inhibits the biogenesis of HDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号