首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ceramide 1-Phosphate Phosphatase Activity in Brain   总被引:1,自引:0,他引:1  
Recent studies have implicated sphingolipids in a variety of intracellular signaling systems. The finding that a calcium-stimulated ceramide kinase copurifies with neurotransmitter-containing vesicles suggests that ceramide, or one of its metabolites, has a role in neurotransmitter release. As a step toward understanding the role of ceramide kinase in vesicle functioning, this study sought to determine the metabolic fate of the product, ceramide 1-phosphate. We report that ceramide 1-phosphate is not deacylated by brain ceramidases to produce sphingosine 1-phosphate. It is, however, the substrate for a phosphatase activity that we name ceramide 1-phosphate phosphatase (CPPase). Subcellular fractionation studies suggest that CPPase is found in the synaptic terminal and is associated with both synaptic vesicle and plasma membranes. Divalent cations, most notably calcium, inhibit CPPase activity although not at concentrations that activate ceramide kinase. The existence of both ceramide kinase and CPPase activities at the synapse suggests that ceramide 1-phosphate production regulates some aspect of synaptic vesicle functioning.  相似文献   

2.
Inflammation is a network of complex processes involving a variety of metabolic and signaling pathways aiming at healing and repairing damage tissue, or fighting infection. However, inflammation can be detrimental when it becomes out of control. Inflammatory mediators involve cytokines, bioactive lipids and lipid-derived metabolites. In particular, the simple sphingolipids ceramides, sphingosine 1-phosphate, and ceramide 1-phosphate have been widely implicated in inflammation. However, although ceramide 1-phosphate was first described as pro-inflammatory, recent studies show that it has anti-inflammatory properties when produced in specific cell types or tissues. The biological functions of ceramides and sphingosine 1-phosphate have been extensively studied. These sphingolipids have opposing effects with ceramides being potent inducers of cell cycle arrest and apoptosis, and sphingosine 1-phosphate promoting cell growth and survival. However, the biological actions of ceramide 1-phosphate have only been partially described. Ceramide 1-phosphate is mitogenic and anti-apoptotic, and more recently, it has been demonstrated to be key regulator of cell migration. Both sphingosine 1-phosphate and ceramide 1-phosphate are also implicated in tumor growth and dissemination. The present review highlights new aspects on the control of inflammation and cell migration by simple sphingolipids, with special emphasis to the role played by ceramide 1-phosphate in controlling these actions.  相似文献   

3.
Sphingolipids and their synthetic enzymes are emerging as important mediators in inflammatory responses and as regulators of immune cell functions. In particular, sphingosine kinase (SK) and its product sphingosine-1-phosphate (S1P) have been extensively implicated in these processes. SK catalyzes the phosphorylation of sphingosine to S1P and exists as two isoforms, SK1 and SK2. SK1 has been shown to be activated by cytokines including tumor necrosis factor-alpha (TNF-α) and interleukin1-β (IL1-β). The activation of SK1 in this pathway has been shown to be, at least in part, required for mediating TNF-α and IL1-β inflammatory responses in cells, including induction of cyclo-oxygenase 2 (COX2). In addition to their role in inflammatory signaling, SK and S1P have also been implicated in various immune cell functions including, mast cell degranulation, migration of neutrophils, and migration and maturation of lymphocytes. The involvement of sphingolipids and sphingolipid metabolizing enzymes in inflammatory signaling and immune cell functions has implicated these mediators in numerous inflammatory disease states as well. The contribution of these mediators, specifically SK1 and S1P, to inflammation and disease are discussed in this review.  相似文献   

4.
Macrophages play a key role in host defense and in tissue repair after injury. Emerging evidence suggests that macrophage dysfunction in states of lipid excess can contribute to the development of insulin resistance and may underlie inflammatory complications of diabetes. Ceramides are sphingolipids that modulate a variety of cellular responses including cell death, autophagy, insulin signaling, and inflammation. In this study we investigated the intersection between TLR4-mediated inflammatory signaling and saturated fatty acids with regard to ceramide generation. Primary macrophages treated with lipopolysaccharide (LPS) did not produce C16 ceramide, whereas palmitate exposure led to a modest increase in this sphingolipid. Strikingly, the combination of LPS and palmitate led to a synergistic increase in C16 ceramide. This response occurred via cross-talk at the level of de novo ceramide synthesis in the ER. The synergistic response required TLR4 signaling via MyD88 and TIR-domain-containing adaptor-inducing interferon beta (TRIF), whereas palmitate-induced ceramide production occurred independent of these inflammatory molecules. This ceramide response augmented IL-1β and TNFα release, a process that may contribute to the enhanced inflammatory response in metabolic diseases characterized by dyslipidemia.  相似文献   

5.
Ceramide, the backbone structure of all sphingolipids, as well as a minor component of cellular membranes, has a unique role in the skin, by forming the epidermal permeability barrier at the extracellular domains of the outermost layer of the skin, the stratum corneum, which is required for terrestrial mammalian survival. In contrast to the role of ceramide in forming the permeability barrier, the signaling roles of ceramide and its metabolites have not yet been recognized. Ceramide and/or its metabolites regulate proliferation, differentiation, and apoptosis in epidermal keratinocytes. Recent studies have further demonstrated that a ceramide metabolite, sphingosine-1-phosphate, modulates innate immune function. Ceramide has already been applied to therapeutic approaches for treatment of eczema associated with attenuated epidermal permeability barrier function. Pharmacological modulation of ceramide and its metabolites' signaling can also be applied to cutaneous disease prevention and therapy. The author here describes the signaling roles of ceramide and its metabolites in mammalian cells and tissues, including the epidermis. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

6.
鞘脂与细胞凋亡   总被引:2,自引:0,他引:2  
Wang J  Hu XS  Shi JP 《生理科学进展》2003,34(3):217-221
随着生物技术的不断发展,近年来对鞘脂类物质的研究不断深入。鞘脂质除了在细胞骨架的迁移、血管发生、胚胎发育和信号转导等方面起重要作用外,最近的研究发现鞘脂及其代谢物(神经酰胺、鞘氨醇、鞘氨醇-1-磷酸)能诱导多种肿瘤和恶性增殖细胞(如腺癌、结肠癌、肝肿瘤、肺癌、鼻咽癌等)的凋亡。本文着重对鞘脂与细胞凋亡相关的最新研究进展进行综述。  相似文献   

7.
The available data concerning the ability of ceramide and other simple sphingolipids to segregate laterally into rigid, gel-like domains in a fluid bilayer has been reviewed. Ceramides give rise to rigid ceramide-enriched domains when their N-acyl chain is longer than C12. The high melting temperature of hydrated ceramides, revealing a tight intermolecular interaction, is probably responsible for their lateral segregation. Ceramides compete with cholesterol for the formation of domains with lipids such as sphingomyelin or saturated phosphatidylcholines; under these conditions displacement of cholesterol by ceramide involves a transition from a liquid-ordered to a gel-like phase in the domains involved. When ceramide is generated in situ by a sphingomyelinase, instead of being premixed with the other lipids, gel-like domain formation occurs as well, although the topology of the domains may not be the same, the enzyme causing clustering of domains that is not detected with premixed ceramide. Ceramide-1-phosphate is not likely to form domains in fluid bilayers, and the same is true of sphingosine and of sphingosine-1-phosphate. However, sphingosine does rigidify pre-existing gel domains in mixed bilayers.  相似文献   

8.
Sphingosine kinases (Sphks), which catalyze the formation of sphingosine 1-phosphate (S1P) from sphingosine, have been implicated as essential intracellular messengers in inflammatory responses. Specifically, intracellular Sphk1-derived S1P was reported to be required for NFκB induction during inflammatory cytokine action. To examine the role of intracellular S1P in the inflammatory response of innate immune cells, we derived murine macrophages that lack both Sphk1 and Sphk2 (MΦ Sphk dKO). Compared with WT counterparts, MΦ Sphk dKO cells showed marked suppression of intracellular S1P levels whereas sphingosine and ceramide levels were strongly up-regulated. Cellular proliferation and apoptosis were similar in MΦ Sphk dKO cells compared with WT counterparts. Treatment of WT and MΦ Sphk dKO with inflammatory mediators TNFα or Escherichia coli LPS resulted in similar NFκB activation and cytokine expression. Furthermore, LPS-induced inflammatory responses, mortality, and thioglycolate-induced macrophage recruitment to the peritoneum were indistinguishable between MΦ Sphk dKO and littermate control mice. Interestingly, autophagic markers were constitutively induced in bone marrow-derived macrophages from Sphk dKO mice. Treatment with exogenous sphingosine further enhanced intracellular sphingolipid levels and autophagosomes. Inhibition of autophagy resulted in caspase-dependent cell death. Together, these data suggest that attenuation of Sphk activity, particularly Sphk2, leads to increased intracellular sphingolipids and autophagy in macrophages.  相似文献   

9.
10.
Abstract: Ceramide generated from sphingomyelin has emerged as a new but conserved type of biologically active lipid. We previously found that endogenous sphingolipids are required for the normal growth of cultured cerebellar Purkinje neurons and that sphingomyelin is present abundantly in the somatodendritic region of these cells. To gain further insight into a potential role of the sphingomyelin/ceramide pathway, we investigated the effects of depletion of sphingolipids on the phenotypic growth and survival of immature Purkinje cells and the ability of ceramide or other sphingolipids to antagonize these effects. Inhibition of ceramide synthesis by ISP-1, a specific inhibitor of serine palmitoyltransferase, decreased cellular levels of sphingolipids. This treatment resulted in a decrease in cell survival accompanied by an induction of apoptotic cell death and aberrant dendritic differentiation of Purkinje cells with no detectable changes in other cerebellar neurons. Cell-permeable ceramides, sphingosine, or sphingomyelin overcame these abnormalities more effectively than other sphingolipids when added simultaneously with ISP-1. Exposure to bacterial sphingomyelinase in turn enhanced cell survival and dendritic branching complexity of Purkinje cells at different optimal concentrations. Furthermore, cell-permeable ceramide acted synergistically with the neurotrophin family, which has been previously shown to support Purkinje cell survival. These observations suggest that ceramide is a requisite for the survival and the dendritic differentiation of Purkinje cells.  相似文献   

11.

Background

Sphingolipids take part in immune response and can initiate and/or sustain inflammation. Various inflammatory diseases have been associated with increased ceramide content, and pharmacological reduction of ceramide diminishes inflammation damage in vivo. Inflammation and susceptibility to microbial infection are two elements in a vicious circle. Recently, sphingolipid metabolism inhibitors were used to reduce infection. Cystic fibrosis (CF) is characterized by a hyper-inflammation and an excessive innate immune response, which fails to evolve into adaptive immunity and to eradicate infection. Chronic infections result in lung damage and patient morbidity. Notably, ceramide content in mucosa airways is higher in CF mouse models and in patients than in control mice or healthy subjects.

Methods

The therapeutic potential of myriocin, an inhibitor of the sphingolipid de novo synthesis rate limiting enzyme (Serine Palmitoyl Transferase, SPT),was investigated in CF cells and mice models.

Results

We treated CF human respiratory epithelial cells with myriocin, This treatment resulted in reduced basal, as well as TNFα-stimulated, inflammation. In turn, TNFα induced an increase in SPT in these cells, linking de novo synthesis of ceramide to inflammation. Furthermore, myriocin-loaded nanocarrier, injected intratrachea prior to P. aeruginosa challenge, enabled a significant reduction of lung infection and reduced inflammation.

Conclusions

The presented data suggest that de novo ceramide synthesis is constitutively enhanced in CF mucosa and that it can be envisaged as pharmacological target for modulating inflammation and restoring effective innate immunity against acute infection.

General significance

Myriocin stands as a powerful immunomodulatory agent for inflammatory and infectious diseases.  相似文献   

12.
Sphingolipids, historically described as potential reservoirs for bioactive lipids, presently define a new family of cellular mediators, joining the well-established glycerolipid-derived mediators of signal transduction such as diacylglycerol, phosphatidylinositides, and eicosanoids. Sphingolipid metabolism is clearly involved in the regulation of cell growth, differentiation, and programmed cell death. Indeed, a majority of the greater than four thousand studies conducted on sphingolipids during the past five years were investigations of the role of sphingolipids as cellular bioregulators. Studies spanning more than a decade have shown multiple interactions and intersections of the sphingolipid-mediated pathways and the eicosanoid pathway. This review will discuss the emerging mechanisms by which sphingolipids induce inflammatory responses via the eicosanoid pathway in addition to linking previous literature on sphingolipids and inflammation with newer findings of distinct roles for sphingosine-1-phosphate in regulating cyclooygenase-2 and ceramide-1-phosphate in the regulation of cytosolic phospholipase A2alpha. Finally, the relationship between bioactive sphingolipids and inflammation is discussed.  相似文献   

13.
ERM (ezrin, radixin, and moesin) proteins are cytoskeletal interacting proteins that bind cortical actin, the plasma membrane, and membrane proteins, which are found in specialized plasma membrane structures such as microvilli and filopodia. ERM proteins are regulated by phosphatidylinositol 4, 5-biphosphate (PIP(2)) and by phosphorylation of a C-terminal threonine, and its inactivation involves PIP(2) hydrolysis and/or myosin phosphatase (MP). Recently, we demonstrated that ERM proteins are also subject to counter regulation by the bioactive sphingolipids ceramide and sphingosine 1-phosphate. Plasma membrane ceramide induces ERM dephosphorylation whereas sphingosine 1-phosphate induces their phosphorylation. In this work, we pursue the mechanisms by which ceramide regulates dephosphorylation. We found that this dephosphorylation was independent of hydrolysis and localization of PIP(2) and MP. However, the results show that ERM dephosphorylation was blocked by treatment with protein phosphatase 1 (PP1) pharmacological inhibitors and specifically by siRNA to PP1α, whereas okadaic acid, a PP2A inhibitor, failed. Moreover, a catalytic inactive mutant of PP1α acted as dominant negative of the endogenous PP1α. Additional results showed that the ceramide mechanism of PP1α activation is largely independent of PIP(2) hydrolysis and MP. Taken together, these results demonstrate a novel, acute mechanism of ERM regulation dependent on PP1α and plasma membrane ceramide.  相似文献   

14.
Sphingomyelin constitutes membrane microdomains such as lipid raft, caveolae, and clathrin-coated pits and implicates in the regulation of trans-membrane signaling. On the other hand, sphingomyelin emerges as an important molecule to generate bioactive sphingolipids through ceramide. Sphingomyelin synthase is an enzyme that generates sphingomyelin and diacylglycerol from phosphatidylcholine and ceramide. Although ceramide has a well-known role as a lipid mediator to regulate cell death and survival, the only known biological role of sphingomyelin regulated by sphingomyelin synthases was limited to being a source of bioactive lipids. Here, we describe the basic characters of sphingomyelin synthases and discuss additional roles for sphingomyelin and sphingomyelin synthase in biological functions including cell migration, apoptosis, autophagy, and cell survival/proliferation as well as in human disorders such as cancer and cardiovascular disorders. It is expected that a better understanding of the role of sphingomyelin regulated by sphingomyelin synthase will shed light on new mechanisms in cell biology, physiology and pathology. In the future, novel therapeutic procedures for currently incurable diseases could be developed through modifying the function of not only sphingolipids, such as sphingomyelin and ceramide, but also of their regulatory enzymes. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

15.
The interplay between bioactive sphingolipids and steroid hormones   总被引:1,自引:0,他引:1  
Natasha C. Lucki 《Steroids》2010,75(6):390-650
  相似文献   

16.
Alzheimer’s disease (AD) is the most common cause of senile dementia. Many inflammatory factors such as amyloid-β and pro-inflammatory cytokines are known to contribute to the inflammatory response in the AD brain. Sphingolipids are widely known to have roles in the pathogenesis of inflammatory diseases, where the precise roles for sphingolipids in inflammation-associated pathogenesis of AD are not well understood. Here we performed a network analysis to clarify the importance of sphingolipids and to model relationships among inflammatory factors and sphingolipids in AD. In this study, we have updated sphingolipid signaling and metabolic cascades in a map of AD signaling networks that we named “AlzPathway,” a comprehensive knowledge repository of signaling pathways in AD. Our network analysis of the updated AlzPathway indicates that the pathways related to ceramide are one of the primary pathways and that ceramide is one of the important players in the pathogenesis of AD. The results of our analysis suggest the following two prospects about inflammation in AD: (1) ceramide could play important roles in both inflammatory and anti-inflammatory pathways of AD, and (2) several factors such as Sphingomyelinase and Siglec-11 may be associated with ceramide related inflammation and anti-inflammation pathways in AD. In this study, network analysis of comprehensive knowledge repository reveals a dual role for ceramide in AD. This result provides a clue to clarify sphingolipids related inflammatory and anti-inflammatory pathways in AD.  相似文献   

17.
Ceramide-1-phosphate (C1P), produced by ceramide kinase (CERK), is implicated in the regulation of many biological functions including cell growth and inflammation. C1P is a direct activator of group IVA cytosolic phospholipsase A2 (PLA2G4A or cPLA2α). Although activation of the CERK–C1P pathway causes mitogenic and cytoprotective responses in many cells, the pathway shows cytotoxicity in several cells and the precise mechanism has not been elucidated. In the present study, we examined the effect of human CERK (hCERK) expression on cytotoxicity in two cell lines. Expression of hCERK in CHO cells caused cell rounding and lactate dehydrogenase (LDH) leakage, and co-addition of ceramide enhanced these responses. Expression of hCERK enhanced C1P formation and release of arachidonic acid in Ca2+ ionophore-stimulated cells. Treatment with 20 μM C2-C1P for 24 h caused cell rounding, and the response was significantly decreased by an inhibitor of cPLA2α. In L929 cells, expression of hCERK with and without ceramide caused cell rounding and LDH leakage, respectively, and the responses were significantly less in a stable clone of L929 cells lacking cPLA2α. These findings suggest the involvement of cPLA2α in CERK–C1P pathway-induced cytotoxicity.  相似文献   

18.
Sphingolipids such as ceramide and sphingosine-1-phosphate have recently attracted intense research interests because of their functional roles as signaling molecules in many important physiological processes, such as growth arrest, apoptosis, and inflammatory responses, and cell proliferation, vascular maturation and trafficking of lymphocytes. The well-defined modular structures of ceramides and related glycosylceramides are ideally amenable to library formation for medicinal chemistry investigation. We have developed divergent synthetic routes to all eight phytosphingosine stereoisomers and then proceeded to prepare phytosphingosine-based ceramide library composed of more than 500 compounds.  相似文献   

19.
Sphingolipids participate in membrane structure and signaling in neuronal cells, and an emerging strategy for control of gliomas is to inhibit growth and/or induce apoptosis using ceramide and ceramide analogs. Nonetheless, some sphingolipids (ceramides and sphingosine) induce and others (sphingosine 1-phosphate) inhibit apoptosis; therefore, when testing putative anti-cancer agents, it is critical to obtain precise knowledge of the types and quantities of not only the test compounds, but also their effects on endogenous species. Combination of liquid chromatography and tandem mass spectrometry affords a "metabolomic" profile of all of the intermediates of ceramide biosynthesis (3-ketosphinganine, sphinganine and dihydroceramides) and the direct products of ceramide metabolism (sphingomyelins and monohexosylceramides as well as sphingosine and sphingosine 1-phosphate). This method has been applied to four human glioma cell lines (LN18, LN229, LN319 and T98G), and differences in the amounts and types of sphingolipids were found. For example, LN229 and LN319 have approximately twice the sphingosine 1-phosphate of LN18 and T98G; LN229 and LN319 have more monohexosylceramides than lactosylceramides, whereas the opposite is the case for LN18 and T98G; and the fatty acyl chain distributions of the sphingolipids differ among the cell lines. The ability to obtain this type of "metabolomic" profile allows studies of how anti-cancer agents (especially sphingolipids and sphingolipid analogs) affect the amounts of these bioactive species, and may lead to a better understanding of the abnormal phenotypes of gliomas.  相似文献   

20.
ERM proteins are regulated by phosphorylation of the most C-terminal threonine residue, switching them from an activated to an inactivated form. However, little is known about the control of this regulation. Previous work in our group demonstrated that secretion of acid sphingomyelinase acts upstream of ERM dephosphorylation, suggesting the involvement of sphingomyelin (SM) hydrolysis in ERM regulation. To define the role of specific lipids, we employed recombinant bacterial sphingomyelinase (bSMase) as a direct probe of SM metabolism at the plasma membrane. bSMase induced a rapid dose- and time-dependent decrease in ERM dephosphorylation. ERM dephosphorylation was driven by ceramide generation and not by sphingomyelin depletion, as shown using recombinant sphingomyelinase D. The generation of ceramide at the plasma membrane was sufficient for ERM regulation, and no intracellular SM hydrolysis was required, as was visualized using Venus-tagged lysenin probe, which specifically binds SM. Interestingly, hydrolysis of plasma membrane bSMase-induced ceramide using bacterial ceramidase caused ERM hyperphosphorylation and formation of cell surface protrusions. The effects of plasma membrane ceramide hydrolysis were due to sphingosine 1-phosphate formation, as ERM phosphorylation was blocked by an inhibitor of sphingosine kinase and induced by sphingosine 1-phosphate. Taken together, these results demonstrate a new regulatory mechanism of ERM phosphorylation by sphingolipids with opposing actions of ceramide and sphingosine 1-phosphate. The approach also defines a tool kit to probe sphingolipid signaling at the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号