首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In various eukaryotes, sterol-rich membrane domains have been proposed to play an important role in polarization and compartmentalization of the plasma membrane. Several studies have reported the cellular distribution of sterols in genetically tractable yeast species and the identification of molecules that might regulate the localization of sterol-rich membrane domains. Here, we attempt to synthesize our understanding of the function and organization of these domains from the study of fungi and identify some outstanding issues.  相似文献   

2.
Choline phospholipid metabolism: A target in cancer cells?   总被引:6,自引:0,他引:6  
The experience of treating cancer over the past several decades overwhelmingly demonstrates that the disease continues to evade the vast array of drugs and treatment modalities available in the twenty-first century. This is not surprising in view of the complexity of this disease, and the multiplicities of pathways available to the cancer cell to enable its survival. Although the progression of cancer arrives at a common end point of cachexia, organ failure, and death, common pathways are rare in cancer. Identifying and targeting common pathways that would act across these levels of multiplicity is essential for the successful treatment of this disease. Over the past decade, one common characteristic consistently revealed by magnetic resonance spectroscopic studies is the elevation of phosphocholine and total choline-containing compounds in cancer cells and solid tumors. This elevation has been observed in almost every single cancer type studied with NMR spectroscopy and can be used as an endogenous biomarker of cancer. In this article, we have summarized some of the observations on the choline phospholipid metabolism of cancer cells and tumors, and make a case for targeting the aberrant choline phospholipid metabolism of cancer cells.  相似文献   

3.
4.
The goal of this study was to characterize phosphorylated proteins and to evaluate the changes in their phosphorylation level under the influence of a peroxisome proliferator (PP) with hypolipidemic activity of the fibrate family. The incubation of rat hepatic derived Fao cells with ciprofibrate leads to an overphosphorylation of proteins, especially one of 85 kDa, indicating that kinase (or phosphatase) activities are modified. Moreover, immunoprecipitation of 32P-labeled cell lysates shows that the nuclear receptor, PP-activated receptor, α isoform, can exist in a phosphorylated form, and its phosphorylation is increased by ciprofibrate. This study shows that PP acts at different steps of cell signaling. These steps can modulate gene expression of enzymes involved in fatty acid metabolism and lipid homeostasis, as well as in detoxication processes.  相似文献   

5.
Ovarian carcinomas relate to highest death rate in gynecologic malignancies as absence of symptoms shield the disease in the early stage. Current evidences have been devoted to discovering early effective screening mechanism prior to the onset of clinical symptoms. Therefore, biomarkers are the crucial tools that are capable of predicting progression, risk stratification and overall therapeutic benefit to fight against this deadly disease. Although recent studies have revealed serum protein markers, CA-125, HE4, mesothelin etc. have higher sensitivity and specificity at the early stages of the cancer; the critical questions arise regarding the applicability and reproducibility of genomic profiling across different patient groups. Hence, our hypothesis is that the panels of signature biomarkers will be much more effective to improve the diagnosis and prediction of patient survival outcome with high sensitivity and specificity. Ovarian cancer is heterogeneous in nature and contain a sub-population of stem cell-like characteristics that has the ability to grow as anchorage-independent manner and subsequently is able to metastasize. Highly tumorigenic and chemotherapy-resistant cancer stem cells (CSCs)-specific biomarkers therefore reflects the interesting possibilities to be targeted to minimize the high frequency of relapse and resistance to drugs. Several putative ovarian CSC markers such as CD24, CD44, CD133, SSEA have already been proposed in recent studies, yet, a large panel of updated biomarkers have high clinical relevance to define the prospective isolation of viable circulating CSCs. Therefore, this review highlights current evidence based updated ovarian cancer specific prognostic and diagnostic biomarkers and potential importance of CSCs in context of tumorigenicity and metastatic activity for fundamental biological and clinical implications.  相似文献   

6.
Reinterpretation of the Wartburg effect leads to understanding aerobic glycolysis as a process that provides considerable amount of molecular precursors for the production of lipids, nucleotides and amino acids that are necessary for continuous growth and rapid proliferation characteristic for cancer cells.Human papilloma virus (HPV) is a number one cause of cervical carcinoma with 99% of the cervical cancer patients being HPV positive. This tight link between HPV and cancer raises the question if and how HPV impact cells to reprogram their metabolism? Focusing on early phase proteins E1, E2, E5, E6 and E7 we demonstrate that HPV activates plethora of metabolic pathways and directly influences enzymes of the glycolysis pathway to promote the Warburg effect by increasing glucose uptake, activating glycolysis and pentose phosphate pathway, increasing the level of lactate dehydrogenase A synthesis and inhibiting β-oxidation. Our considerations lead to conclusion that HPV is substantially involved in metabolic cell reprogramming toward neoplastic phenotype and its metabolic activity is the fundamental reason of its oncogenicity.  相似文献   

7.
Thyroid hormones (THs) exert their actions by binding to thyroid hormone receptors (TRs) and thereby affect tissue differentiation, development, and metabolism in most tissues. TH-deficiency creates a less favorable lipid profile (e.g. increased plasma cholesterol levels), whereas TH-excess is associated with both positive (e.g. reduced plasma cholesterol levels) and negative (e.g. increased heart rate) effects. TRs are encoded by two genes, THRA and THRB, which, by alternative splicing, generate several isoforms (e.g. TRα1, TRα2, TRβ1, and TRβ2). TRα, the major TR in the heart, is crucial for heart rate and for cardiac contractility and relaxation, whereas TRβ1, the major TR in the liver, is important for lipid metabolism. Selective modulation of TRβ1 is thus considered as a potential therapeutic target to treat dyslipidemia without cardiac side effects. Several selective TH analogs have been tested in preclinical studies with promising results, but only a few of these compounds have so far been tested in clinical studies. This review focuses on the role of THs, TRs, and selective and non-selective TH analogs in lipid metabolism. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.  相似文献   

8.
9.
Abstract

Lipid droplets are discrete organelles present in most cell types and organisms including bacteria, yeast, plants, insects and animals. Long considered as passive storage deposits, recent cell biology, proteomic and lipidomic analysis show that lipid droplets are dynamic organelles involved in multiple cellular functions. They have a central function in lipid distribution to different membrane-bound organelles and serve not only as main reservoirs of neutral lipids such as triglycerides and cholesterol but in addition, contain structural proteins, proteins involved in lipid synthesis and transmembrane proteins. A detailed model for how transmembrane proteins such as SNARE proteins can exist in lipid droplets is proposed.  相似文献   

10.
Cadmium (Cd) is widely distributed in the environment and easy adsorbed by living organisms with adverse effects. Exposure to Cd-contaminated food may disrupt lipid metabolism and increase human health risk. To study the perturbation effect of Cd on lipid metabolism in vivo, 24 male Sprague–Dawley (SD) rats were randomly assigned four groups and treated by Cd chloride solution (0, 1.375 mg/kg, 5.5 mg/kg, 22 mg/kg) for 14 days. The characteristic indexes of serum lipid metabolism were analyzed. Afterwards, untargeted metabolomics analysis was applied to explore the adverse effects of Cd on rats by liquid chromatography coupled with mass spectrometry (LC-MS). The results revealed that Cd exposure obviously decreased the average serum of triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) and caused an imbalance of endogenous compounds in the 22 mg/kg Cd-exposed group. Compared with the control group, 30 metabolites with significant differences were identified in the serum. Our results indicated that Cd caused lipid metabolic disorders in rats by disrupting linoleic acid and glycerophospholipid metabolism pathways. Furthermore, there were three kinds of remarkable differential metabolites—9Z,12Z-octadecadienoic acid, PC(20:4(8Z,11Z,14Z,17Z)/0:0), and PC(15:0/18:2(9Z,12Z)), which enriched the two significant metabolism pathways and could be the potential biomarkers.  相似文献   

11.
The biosynthesis of methionine from 5′-methylthioadenosine was examined in a number of human and mouse cell lines. 5′-Methylthioadenosine added to the culture medium was rapidly converted to methionine, accumulating in cell protein. J111 cells and mouse spleen fibroblasts grew significantly in a medium in which 5′-methylthioadenosine replaced methionine. L1210 cells, which lack 5′-methylthioadenosine phosphorylase, did not grow in this medium, and human breast fibroblasts did not grow either, even though these cells have normal levels of 5′-methylthioadenosine phosphorylase.  相似文献   

12.
13.
Background aimsObesity and its associated diseases demand better therapeutic strategies. Regenerative medicine combined with gene therapy has emerged as a promising approach in various clinical applications. Adiponectin (ApN) and its receptors have been demonstrated to play beneficial roles in modulating glucose and lipid homeostasis. In the current study, we tested such an approach by transplanting mesenchymal stromal cells (MSCs) from porcine ApN receptor (pAdipoR) 1-transgenic mice into high-fat/sucrose diet (HFSD)-fed mice.MethodsTwenty 6-week-old Friend virus B/NJNarl male mice were randomly assigned into four groups with the control fed a chow diet (chow) and others HFSD for 10 months. The HFSD groups were then intraperitoneally injected once per week for 8 weeks with placebo (200 μL phosphate-buffered saline), wild-type MSC (WT-MSC, 2 × 106 cells/200 μL phosphate-buffered saline) or pAdipoR1-transgenic MSC (pR1-tMSC, 2 × 106 cells/200 μL phosphate-buffered saline), respectively. Body weights, blood samples, tissue histology, and gene expression and protein levels of metabolism-associated genes were analyzed.ResultsBoth WT-MSC and pR1-tMSC transplantations restored the messenger RNA expression of AdipoR1, with those of glucose transporter 4 and 5′-adenosine monophosphate-activated protein kinase catalytic subunit α-1 and protein levels of pyruvate kinase induced by pR1-tMSC in the muscles of HFSD-fed mice. In the liver, both WT-MSC and pR1-tMSC ameliorated HFSD-induced hepatosteatosis, with the gene expression of lipoprotein lipase and hormone-sensitive lipase upregulated by the latter. Lastly, pR1-tMSC transplantation reduced fatty acid synthase mRNA levels in the adipose tissues of HFSD-fed mice.ConclusionsThis study demonstrates the modulatory actions of MSC and pR1-tMSC on genes associated with glucose and lipid metabolism and provides insights into its therapeutic application for obesity-associated metabolic complication.  相似文献   

14.
Diacylglycerol kinases (DGKs) catalyze the phosphorylation and conversion of diacylglycerol (DAG) into phosphatidic acid. DGK isozymes have unique primary structures, expression patterns, subcellular localizations, regulatory mechanisms, and DAG preferences. DGKε has a hydrophobic segment that promotes its attachment to membranes and shows substrate specificity for DAG with an arachidonoyl acyl chain in the sn-2 position of the substrate. We determined the role of DGKε in the regulation of energy and glucose homeostasis in relation to diet-induced insulin resistance and obesity using DGKε-KO and wild-type mice. Lipidomic analysis revealed elevated unsaturated and saturated DAG species in skeletal muscle of DGKε KO mice, which was paradoxically associated with increased glucose tolerance. Although skeletal muscle insulin sensitivity was unaltered, whole-body respiratory exchange ratio was reduced, and abundance of mitochondrial markers was increased, indicating a greater reliance on fat oxidation and intracellular lipid metabolism in DGKε KO mice. Thus, the increased intracellular lipids in skeletal muscle from DGKε KO mice may undergo rapid turnover because of increased mitochondrial function and lipid oxidation, rather than storage, which in turn may preserve insulin sensitivity. In conclusion, DGKε plays a role in glucose and energy homeostasis by modulating lipid metabolism in skeletal muscle.  相似文献   

15.
It is now widely recognized that the tumor microenvironment promotes cancer cell growth and metastasis via changes in cytokine secretion and extra-cellular matrix remodeling. However, the role of tumor stromal cells in providing energy for epithelial cancer cell growth is a newly emerging paradigm. For example, we and others have recently proposed that tumor growth and metastasis is related to an energy imbalance. Host cells produce energy-rich nutrients via catabolism (through autophagy, mitophagy and aerobic glycolysis), which are then transferred to cancer cells, to fuel anabolic tumor growth. Stromal cell derived L-lactate is taken up by cancer cells and is used for mitochondrial oxidative phosphorylation (OXPHOS), to produce ATP efficiently. However, “parasitic” energy transfer may be a more generalized mechanism in cancer biology than previously appreciated. Two recent papers in Science and Nature Medicine now show that lipolysis in host tissues also fuels tumor growth. These studies demonstrate that free fatty acids produced by host cell lipolysis are re-used via β-oxidation (β-OX) in cancer cell mitochondria. Thus, stromal catabolites (such as lactate, ketones, glutamine and free fatty acids) promote tumor growth by acting as high-energy onco-metabolites. As such, host catabolism via autophagy, mitophagy and lipolysis may explain the pathogenesis of cancer-associated cachexia and provides exciting new druggable targets for novel therapeutic interventions. Taken together, these findings also suggest that tumor cells promote their own growth and survival by behaving as a “parasitic organism.” Hence, we propose the term “parasitic cancer metabolism” to describe this type of metabolic-coupling in tumors. Targeting tumor cell mitochondria (OXPHOS and β-OX) would effectively uncouple tumor cells from their hosts, leading to their acute starvation. In this context, we discuss new evidence that high-energy onco-metabolites (produced by the stroma) can confer drug resistance. Importantly, this metabolic chemo-resistance is reversed by blocking OXPHOS in cancer cell mitochondria, with drugs like Metformin, a mitochondrial “poison.” In summary, parasitic cancer metabolism is achieved architecturally by dividing tumor tissue into at least two well-defined opposing “metabolic compartments:” catabolic and anabolic.Key words: mitochondria, cancer metabolism, autophagy, mitophagy, aerobic glycolysis, lipolysis, oxidative phosphorylation, beta-oxidation, Metformin, drug discovery, drug resistance, chemo-resistance, Warburg effect, oncometabolite, parasite, metabolic compartments  相似文献   

16.
Both in Western countries and in third world countries there is an increasing incidence of obesity. Obesity per se or insulin resistance associated with obesity may increase cardiovascular risk factors including dyslipidemia, hypertension and Type 2 diabetes. Over the past decade the understanding has increased of specific mediators in the hypothalamus that are involved in regulating food intake and body weight. In obese humans fasting plasma lipids can be normal but postprandial lipid metabolism is abnormal with an accumulation of triglyceride-rich remnant lipoproteins. In viscerally obese men chylomicron remnant catabolism was markedly decreased when compared with lean individuals. The decreased clearance of chylomicron remnants in viscerally obese subjects may be explained by competition between chylomicron remnants and the increased hepatic production of VLDL for clearance by low density lipoprotein receptors. Increased food intake in rodent models of obesity was shown to be associated with a delay in the catabolism of remnant lipoprotein particles. Prevention of hyperphagia was found to correct the impairment in the metabolism of remnant lipoproteins. Under fasting and food restricted conditions the improvement of remnant metabolism was associated with an increased oxidation of remnant lipids as determined by a novel stable isotope breath test. Anti-obesity and lipid lowering drugs have been used for the treatment of obesity. Inhibitors of cholesterol synthesis inhibitors (statins) have been shown to be effective in treating dyslipidemia. Inhibition of cholesterol synthesis with Atorvastatin was shown to improve chylomicron metabolism by increasing chylomicron remnant catabolism in obese subjects as assessed by the newly developed stable isotope breath test.  相似文献   

17.
Cancer represents a heterogeneous disease with multiple levels of regulation and a dynamic environment that sustains the evolution of the malignant mass. This dynamic is in part sustained by a class of extracellular vesicles termed exosomes that are able to imprint the pathological state by incorporating differential cargos in order to facilitate cell-to-cell communication. Exosomes are stable within the extracellular medium and function as shuttles secreted by healthy or pathological cells, being further taken by the accepting cell with direct effects on its phenotype. The exosomal trafficking is deeply involved in multiple levels of cancer development with roles in all cancer hallmarks. Nowadays, studies are constantly exploring the ability of exosomes to sustain the malignant progression in order to attack this pathological trafficking and impair the ability of the tumor mass to expand within the organisms. As important, the circulatory characteristics of exosomes represent a steady advantage regarding the possibility of using them as minimally invasive diagnosis tools, where cancer patients’ present modified exosomal profiles compared to the healthy ones. This last characteristic, as novel diagnosis tools, has the advantage of a possible rapid transition within the clinic, compared to the studies that evaluate the therapeutic meaning.  相似文献   

18.
19.
We have previously documented that naked antisense CK2α ODN can potently induce apoptosis in cancer cells in culture and in mouse xenograft human prostate cancer. The effects of the antisense CK2α are related to downregulation of CK2α message and rapid loss of the CK2 from the nuclear compartment. Here we demonstrate that downregulation of CK2 elicited by diverse methods leads to inhibition of cell growth and induction of apoptosis. The various approaches to downregulation of CK2 employed were transfection with kinase-inactive plasmid, use of CK2α siRNA, use of inhibitors of CK2 activity, and use of antisense CK2α ODN packaged in sub-50 nm nanocapsules made from tenascin. In all cases, the downregulation of CK2 is associated with loss in cell survival. We have also described preliminary observations on an approach to targeting CK2 in cancer cells. For this, sub-50 nm tenascin-based nanocapsules bearing the antisense CK2α ODN were employed to test that the antisense is delivered to the cancer cells in vivo. The results provide the first preliminary evidence that such an approach may be feasible for targeting CK2 in cancer cells. Together, our results suggest that CK2 is potentially a highly plausible target for cancer therapy.  相似文献   

20.
Li M  Bahn SC  Guo L  Musgrave W  Berg H  Welti R  Wang X 《The Plant cell》2011,23(3):1107-1123
The release of fatty acids from membrane lipids has been implicated in various plant processes, and the patatin-related phospholipases (pPLAs) constitute a major enzyme family that catalyzes fatty acid release. The Arabidopsis thaliana pPLA family has 10 members that are classified into three groups. Group 3 pPLAIII has four members but lacks the canonical lipase/esterase consensus catalytic sequences, and their enzymatic activity and cellular functions have not been delineated. Here, we show that pPLAIIIβ hydrolyzes phospholipids and galactolipids and additionally has acyl-CoA thioesterase activity. Alterations of pPLAIIIβ result in changes in lipid levels and composition. pPLAIIIβ-KO plants have longer leaves, petioles, hypocotyls, primary roots, and root hairs than wild-type plants, whereas pPLAIIIβ-OE plants exhibit the opposite phenotype. In addition, pPLAIIIβ-OE plants have significantly lower cellulose content and mechanical strength than wild-type plants. Root growth of pPLAIIIβ-KO plants is less sensitive to treatment with free fatty acids, the enzymatic products of pPLAIIIβ, than wild-type plants; root growth of pPLAIIIβ-OE plants is more sensitive. These data suggest that alteration of pPLAIIIβ expression and the resulting lipid changes alter cellulose content and cell elongation in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号