首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By examining the consequences both of changes of [K+]o and of point mutations in the outer pore mouth, our goal was to determine if the mechanism of the block of Kv1.5 ionic currents by external Ni2+ is similar to that for proton block. Ni2+ block is inhibited by increasing [K+]o, by mutating a histidine residue in the pore turret (H463Q) or by mutating a residue near the pore mouth (R487V) that is the homolog of Shaker T449. Aside from a slight rightward shift of the Q-V curve, Ni2+ had no effect on gating currents. We propose that, as with Ho+, Ni2+ binding to H463 facilitates an outer pore inactivation process that is antagonized by Ko+ and that requires R487. However, whereas Ho+ substantially accelerates inactivation of residual currents, Ni2+ is much less potent, indicating incomplete overlap of the profiles of these two metal ions. Analyses with Co2+ and Mn2+, together with previous results, indicate that for the first-row transition metals the rank order for the inhibition of Kv1.5 in 0 mM Ko+ is Zn2+ (KD ~ 0.07 mM) ≥ Ni2+ (KD ~ 0.15 mM) > Co2+ (KD ~ 1.4 mM) > Mn2+ (KD > 10 mM).  相似文献   

2.
A fast and direct method for the monitoring of enzymatic DNA hydrolysis was developed using electrospray ionization mass spectrometry. We incorporated the use of a robotic chip-based electrospray ionization source for increased reproducibility and throughput. The mass spectrometry method allows the detection of DNA fragments and intact non-covalent protein–DNA complexes in a single experiment. We used the method to monitor in real-time single-stranded (ss) DNA hydrolysis by colicin E9 DNase and to characterize transient non-covalent E9 DNase–DNA complexes present during the hydrolysis reaction. The mass spectra showed that E9 DNase interacts with ssDNA in the absence of a divalent metal ion, but is strictly dependent on Ni2+ or Co2+ for ssDNA hydrolysis. We demonstrated that the sequence selectivity of E9 DNase is dependent on the ratio protein:ssDNA or the ssDNA concentration and that only 3′-hydroxy and 5′-phosphate termini are produced. It was also shown that the homologous E7 DNase is reactive with Zn2+ as transition metal ion and that this DNase displays a different sequence selectivity. The method described is of general use to analyze the reactivity and specificity of nucleases.  相似文献   

3.
We have recently reported a disease-causing substitution (+5G > C) at the donor site of NF-1 exon 3 that produces its skipping. We have now studied in detail the splicing mechanism involved in analyzing RNA–protein complexes at several 5′ splice sites. Characteristic protein patterns were observed by pulldown and band-shift/super-shift analysis. Here, we show that hnRNP H binds specifically to the wild-type GGGgu donor sequence of the NF-1 exon 3. Depletion analyses shows that this protein restricts the accessibility of U1 small nuclear ribonucleoprotein (U1snRNA) to the donor site. In this context, the +5G > C mutation abolishes both U1snRNP base pairing and the 5′ splice site (5′ss) function. However, exon recognition in the mutant can be rescued by disrupting the binding of hnRNP H, demonstrating that this protein enhances the effects of the +5G > C substitution. Significantly, a similar situation was found for a second disease-causing +5G > A substitution in the 5′ss of TSHβ exon 2, which harbors a GGgu donor sequence. Thus, the reason why similar nucleotide substitutions can be either neutral or very disruptive of splicing function can be explained by the presence of specific binding signatures depending on local contexts.  相似文献   

4.
CSP41 is a ubiquitous chloroplast endoribonuclease belonging to the short chain dehydrogenase/reductase (SDR) superfamily. To help elucidate the role of CSP41 in chloroplast gene regulation, the mechanisms that determine its substrate recognition and catalytic activity were investigated. A divalent metal is required for catalysis, most probably to provide a nucleophile for cleavage 5′ to the phosphodiester bond, and may also participate in cleavage site selection. This requirement distinguishes CSP41 from other Rossman fold-containing proteins from the SDR superfamily, including several RNA-binding proteins and endonucleases. CSP41 is active only in the presence of MgCl2 and CaCl2. Although Mg2+- and Ca2+-activated CSP41 cleave at identical sites in the single-stranded regions of a stem–loop-containing substrate, Mg2+-activated CSP41 was also able to cleave within the double-stranded region of the stem–loop. Mixed metal experiments with Mg2+ and Ca2+ suggest that CSP41 contains a single divalent metal-binding site which is non-selective, since Mn2+, Co2+ and Zn2+ compete with Mg2+ for binding, although there is no activity in their presence. Using site-directed mutagenesis, we identified three residues, Asn71, Asp89 and Asp103, which may form the divalent metal-binding pocket. The activation constant for Mg2+ (KA,Mg = 2.1 ± 0.4 mM) is of the same order of magnitude as the stromal Mg2+ concentrations, which fluctuate between 0.5 and 10 mM as a function of light and of leaf development. These changes in stromal Mg2+ concentration may regulate CSP41 activity, and thus cpRNA stability, during plant development.  相似文献   

5.
An NAD+-dependent DNA ligase from the hyperthermophilic bacterium Aquifex aeolicus was cloned, expressed in Escherichia coli and purified to homogeneity. The enzyme is most active in slightly alkaline pH conditions with either Mg2+ or Mn2+ as the metal cofactor. Ca2+ and Ni2+ mainly support formation of DNA–adenylate intermediates. The catalytic cycle is characterized by a low kcat value of 2 min–1 with concomitant accumulation of the DNAadenylate intermediate when Mg2+ is used as the metal cofactor. The ligation rates of matched substrates vary by up to 4-fold, but exhibit a general trend of T/A G/C < C/G < A/T on both the 3′- and 5′-side of the nick. Consistent with previous studies on Thermus ligases, this Aquifex ligase exhibits greater discrimination against a mismatched base pair on the 3′-side of the nick junction. The requirement of 3′ complementarity for a ligation reaction is reaffirmed by results from 1 nt insertions on either the 3′- or 5′-side of the nick. Furthermore, most of the unligatable 3′ mismatched base pairs prohibit formation of the DNAadenylate intermediate, indicating that the substrate adenylation step is also a control point for ligation fidelity. Unlike previously studied ATP ligases, gapped substrates cannot be ligated and intermediate accumulation is minimal, suggesting that complete elimination of base pair complementarity on one side of the nick affects substrate adenylation on the 5′-side of the nick junction. Relationships among metal cofactors, ligation products and intermediate, and ligation fidelity are discussed.  相似文献   

6.
The effects of 3′ single-strand dangling-ends of different lengths, sequence identity of hairpin loop, and hairpin loop biotinylation at different loop residues on DNA hairpin thermodynamic stability were investigated. Hairpins contained 16 bp stem regions and five base loops formed from the sequence, 5′-TAGTCGACGTGGTCC-N5-GGACCACGTCGACTAG-En-3′. The length of the 3′ dangling-ends (En) was n = 13 or 22 bases. The identities of loop bases at positions 2 and 4 were varied. Biotinylation was varied at loop base positions 2, 3 or 4. Melting buffers contained 25 or 115 mM Na+. Average tm values for all molecules were 73.5 and 84.0°C in 25 and 115 mM Na+, respectively. Average two-state parameters evaluated from van’t Hoff analysis of the melting curve shapes in 25 mM Na+ were ΔHvH = 84.8 ± 15.5 kcal/mol, ΔSvH = 244.8 ± 45.0 cal/K·mol and ΔGvH = 11.9 ± 2.1 kcal/mol. In 115 mM Na+, two-state parameters were not very different at ΔHvH = 80.42 ± 12.74 kcal/mol, ΔSvH = 225.24 ± 35.88 cal/K·mol and ΔGvH = 13.3 ± 2.0 kcal/mol. Differential scanning calorimetry (DSC) was performed to test the validity of the two-state assumption and evaluated van’t Hoff parameters. Thermodynamic parameters from DSC measurements (within experimental error) agreed with van’t Hoff parameters, consistent with a two-state process. Overall, dangling-end DNA hairpin stabilities are not affected by dangling-end length, loop biotinylation or sequence and vary uniformly with [Na+]. Consider able freedom is afforded when designing DNA hairpins as probes in nucleic acid based detection assays, such as microarrays.  相似文献   

7.
Oxanine (O) is a deamination product derived from guanine with the nitrogen at the N1 position substituted by oxygen. Cytosine, thymine, adenine, guanine as well as oxanine itself can be incorporated by Klenow Fragment to pair with oxanine in a DNA template with similar efficiency, indicating that oxanine in DNA may cause various mutations. As a nucleotide, deoxyoxanosine may substitute for deoxyguanosine to complete a primer extension reaction. Endonuclease V, an enzyme known for its enzymatic activity on uridine-, inosine- and xanthosine-containing DNA, can cleave oxanosine-containing DNA at the second phosphodiester bond 3′ to the lesion. Mg2+ or Mn2+, and to a small extent Co2+ or Ni2+, support the oxanosine-containing DNA cleavage activity. All four oxanosine-containing base pairs (A/O, T/O, C/O and G/O) were cleaved with similar efficiency. The cleavage of double-stranded oxanosine-containing DNA was ~6-fold less efficient than that of double-stranded inosine-containing DNA. Single-stranded oxanosine-containing DNA was cleaved with a lower efficiency as compared with double-stranded oxanosine-containing DNA. A metal ion enhances the binding of endonuclease V to double-stranded and single-stranded oxanosine-containing DNA 6- and 4-fold, respectively. Hypothetic models of oxanine-containing base pairs and deaminated base recognition mechanism are presented.  相似文献   

8.
A recJ homolog was cloned from the extremely thermophilic bacterium Thermus themophilus HB8. It encodes a 527 amino acid protein that has 33% identity to Escherichia coli RecJ protein and includes the characteristic motifs conserved among RecJ homologs. Although T.thermophilus RecJ protein (ttRecJ) was expressed as an inclusion body, it was purified in soluble form through denaturation with urea and subsequent refolding steps. Limited proteolysis showed that ttRecJ has a protease-resistant core domain, which includes all the conserved motifs. We constructed a truncated ttRecJ gene that corresponds to the core domain (cd-ttRecJ). cd-ttRecJ was overexpressed in soluble form and purified. ttRecJ and cd-ttRecJ were stable up to 60°C. Size exclusion chromatography indicated that ttRecJ exists in several oligomeric states, whereas cd-ttRecJ is monomeric in solution. Both proteins have 5′→3′ exonuclease activity, which was enhanced by increasing the temperature to 50°C. Mg2+, Mn2+ or Co2+ ions were required to activate both proteins, whereas Ca2+ and Zn2+ had no effects.  相似文献   

9.
ScaA lipoprotein in Streptococcus gordonii is a member of the LraI family of homologous polypeptides found among streptococci, pneumococci, and enterococci. It is the product of the third gene within the scaCBA operon encoding the components of an ATP-binding cassette (ABC) transporter system. Inactivation of scaC (ATP-binding protein) or scaA (substrate-binding protein) genes resulted in both impaired growth of cells and >70% inhibition of 54Mn2+ uptake in media containing <0.5 μM Mn2+. In wild-type and scaC mutant cells, production of ScaA was induced at low concentrations of extracellular Mn2+ (<0.5 μM) and by the addition of ≥20 μM Zn2+. Sca permease-mediated uptake of 54Mn2+ was inhibited by Zn2+ but not by Ca2+, Mg2+, Fe2+, or Cu2+. Reduced uptake of 54Mn2+ by sca mutants and by wild-type cells in the presence of Zn2+ was abrogated by the uncoupler carbonylcyanide m-chlorophenylhydrazone, suggesting that Mn2+ uptake under these conditions was proton motive force dependent. The frequency of DNA-mediated transformation was reduced >20-fold in sca mutants. The addition of 0.1 mM Mn2+ to the transformation medium restored only partly the transformability of mutant cells, implying an alternate role for Sca proteins in the transformation process. Cells of sca mutants were unaffected in other binding properties tested and were unaffected in sensitivity to oxidants. The results show that Sca permease is a high-affinity mechanism for the acquisition of Mn2+ and is essential for growth of streptococci under Mn2+-limiting conditions.  相似文献   

10.
Four different molecular dynamics (MD) simulations have been performed for ordered DNA decamers, d(5′-ATGCAGTCAG)·d(5′-TGACTGCATC). The counterions were the two natural polyamines spermidine3+ (Spd3+) and putrescine2+ (Put2+), the synthetic polyamine diaminopropane2+ (DAP2+) and Na+. The simulation set-up corresponds to an infinite array of parallel DNA mimicking the state in oriented DNA fibers or crystals. This work describes general properties of polyamine and Na+ binding to DNA. Simulated diffusion coefficients show satisfactory agreement with experimental NMR diffusion data of comparable systems. The interaction of the polyamines with DNA is dynamic in character and the cations mostly form short-lived contacts with the electronegative binding sites of DNA. Polyamines, Na+ and water interact most frequently with the charged phosphate atoms with preference for association from the minor groove side with O1P over O2P. There is a strong anti-correlation in the cation binding to the electronegative groups of DNA, i.e. the presence of a cation near one of the DNA sites repels other cations from binding to this and to the other sites separated by <7.5 Å from each other. In contrast to the other polyamines, DAP2+ is able to form ‘bridges’ connecting neighboring phosphate groups along the DNA strand. A small fraction of DAP2+ and Put2+ can be found in the major grooves, while Spd3+ is absent there. The results of the MD simulations reveal principal differences in the polyamine–DNA interactions between the natural (Spd3+, Put2+ and spermine4+) and synthetic (DAP2+) polyamines.  相似文献   

11.
Unlike all plant inward-rectifying potassium channels, the carrot channel KDC1 has two histidine pairs (H161,H162) in the S3–S4 and (H224,H225) in the S5–S6 linkers. When coinjected with KAT1 in Xenopus oocytes, KDC1 participates in the formation of heteromultimeric KDC1:KAT1 channels and the ionic current is potentiated by extracellular Zn2+. To investigate the potential interactions between KDC1 and zinc, a KDC1-KAT1 dimer was constructed. The dimeric and heteromeric channels displayed similar characteristics and the same sensitivity to zinc and other metals; this result suggests that zinc binding is mediated by residues in a single channel subunit. The KDC1:KAT1 currents were also potentiated by external Pb2+ and Cd2+ and inhibited by Ni2+. To investigate further the role of KDC1-histidines, these amino acids were mutated into alanines. The single mutations H225A, H161A, and H162A did not affect the response of the heteromeric channels to zinc. Conversely, the single mutant H224A and the double mutants (H224A,H225A) and (H161A,H162A) abolished zinc potentiation, but not that induced by Pb2+ or Cd2+. These results suggest that Zn2+ potentiation cannot be ascribed to simple electrostatic interactions between zinc and channel residues and that histidine 224 is crucial for zinc but not for lead potentiation of the current.  相似文献   

12.
We investigated the thermodynamic stability of double-stranded DNAs with an oxidative DNA lesion, 2-hydroxyadenine (2-OH-Ade), in two different sequence contexts (5′-GA*C-3′ and 5′-TA*A-3′, A* represents 2-OH-Ade). When an A*–N pair (N, any nucleotide base) was located in the center of a duplex, the thermodynamic stabilities of the duplexes were similar for all the natural bases except A (N = T, C and G). On the other hand, for the duplexes with the A*–N pair at the end, which mimic the nucleotide incorporation step, the stabilities of the duplexes were dependent on their sequence. The order of stability is T > G > C >> A in the 5′-GA*C-3′ sequences and T > A > C > G in the 5′-TA*A-3′ sequences. Because T/G/C and T/A are nucleotides incorporated opposite to 2-OH-Ade in the 5′-GA*C-3′ and 5′-TA*A-3′ sequences, respectively, these results agree with the tendency of mutagenic misincorporation of the nucleotides opposite to 2-OH-Ade in vitro. Thus, the thermodynamic stability of the A*–N base pair may be an important factor for the mutation spectra of 2-OH-Ade.  相似文献   

13.
The HNH motif was originally identified in the subfamily of HNH homing endonucleases, which initiate the process of the insertion of mobile genetic elements into specific sites. Several bacteria toxins, including colicin E7 (ColE7), also contain the 30 amino acid HNH motif in their nuclease domains. In this work, we found that the nuclease domain of ColE7 (nuclease-ColE7) purified from Escherichia coli contains a one-to-one stoichiometry of zinc ion and that this zinc-containing enzyme hydrolyzes DNA without externally added divalent metal ions. The apo-enzyme, in which the indigenous zinc ion was removed from nuclease-ColE7, had no DNase activity. Several divalent metal ions, including Ni2+, Mg2+, Co2+, Mn2+, Ca2+, Sr2+, Cu2+ and Zn2+, re-activated the DNase activity of the apo-enzyme to various degrees, however higher concentrations of zinc ion inhibited this DNase activity. Two charged residues located at positions close to the zinc-binding site were mutated to alanine. The single-site mutants, R538A and E542A, showed reduced DNase activity, whereas the double-point mutant, R538A + E542A, had no observable DNase activity. A gel retardation assay further demonstrated that the nuclease-ColE7 hydrolyzed DNA in the presence of zinc ions, but only bound to DNA in the absence of zinc ions. These results demonstrate that the zinc ion in the HNH motif of nuclease-ColE7 is not required for DNA binding, but is essential for DNA hydrolysis, suggesting that the zinc ion not only stabilizes the folding of the enzyme, but is also likely to be involved in DNA hydrolysis.  相似文献   

14.
Complexes formed by reduced glutathione (GSH) with metal cations (Cr2+, Mn2+,Fe2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+,Hg2+) were systematically investigated by the density functional theory (DFT). The results showed that the interactions of the metal cations with GSH resulted in nine different stable complexes and many factors had an effect on the binding energy. Generally, for the same period of metal ions, the binding energies ranked in the order of Cu2+>Ni2+>Co2+>Fe2+>Cr2+>Zn2+>Mn2+; and for the same group of metal ions, the general trend of binding energies was Zn2+>Hg2+>Cd2+. Moreover, the amounts of charge transferred from S or N to transition metal cations are greater than that of O atoms. For Fe2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+ and Hg2+ complexes, the values of the Wiberg bond indices (WBIs) of M-S (M denotes metal cations) were larger than that of M-N and M-O; for Cr2+ complexes, most of the WBIs of M-O in complexes were higher than that of M-S and M-N. Furthermore, the changes in the electron configuration of the metal cations before and after chelate reaction revealed that Cu2+, Ni2+,Co2+ and Hg2+ had obvious tendencies to be reduced to Cu+,Ni+,Co+ and Hg+ during the coordination process.  相似文献   

15.
The sensitivity of 12 Frankia strains to heavy metals was determined by a growth inhibition assay. In general, all of the strains were sensitive to low concentrations (<0.5 mM) of Ag1+, AsO21−, Cd2+, SbO21−, and Ni2+, but most of the strains were less sensitive to Pb2+ (6 to 8 mM), CrO42− (1.0 to 1.75 mM), AsO43− (>50 mM), and SeO22− (1.5 to 3.5 mM). While most strains were sensitive to 0.1 mM Cu2+, four strains were resistant to elevated levels of Cu2+ (2 to 5 mM and concentrations as high as 20 mM). The mechanism of SeO22− resistance seems to involve reduction of the selenite oxyanion to insoluble elemental selenium, whereas Pb2+ resistance and Cu2+ resistance may involve sequestration or binding mechanisms. Indications of the resistance mechanisms for the other heavy metals were not as clear.  相似文献   

16.
Endonuclease assays of the H-N-H proteins encoded by two group I introns in the Chlamydomonas moewusii chloroplast psbA gene revealed that the CmpsbA·1 intron specifies a site-specific DNA endonuclease, designated I-CmoeI. Like most previously reported intron-encoded endonucleases, I-CmoeI generates a double-strand break near the insertion site of its encoding intron, leaving 3′ extensions of 4 nt. This enzyme was purified from Escherichia coli as a fusion protein with a His tag at its N-terminus. The recombinant protein (rI-CmoeI) requires a divalent alkaline earth cation for DNA cleavage (Mg2+ > Ca2+ > Sr2+ > Ba2+). It also requires a metal cofactor for DNA binding, a property shared with H-N-H colicins but not with the homing endonucleases characterized to date. rI-CmoeI binds its recognition sequence as a monomer, as revealed by gel retardation assays. Km and kcat values of 100 ± 40 pM and 0.26 ± 0.04 min–1, respectively, were determined. Replacement of the first histidine of the H-N-H motif by an alanine residue abolishes both rI-CmoeI activity and binding to its substrate. We propose that this conserved histidine residue plays a role in binding the metal cofactor and that such binding induces a structural modification of the enzyme which is required for DNA recognition.  相似文献   

17.
Metal ions, and magnesium in particular, are known to be involved in RNA folding by stabilizing secondary and tertiary structures, and, as cofactors, in RNA enzymatic activity. We have conducted a systematic crystallographic analysis of cation binding to the duplex form of the HIV-1 RNA dimerization initiation site for the subtype-A and -B natural sequences. Eleven ions (K+, Pb2+, Mn2+, Ba2+, Ca2+, Cd2+, Sr2+, Zn2+, Co2+, Au3+ and Pt4+) and two hexammines [Co (NH3)6]3+ and [Ru (NH3)6]3+ were found to bind to the DIS duplex structure. Although the two sequences are very similar, strong differences were found in their cation binding properties. Divalent cations bind almost exclusively, as Mg2+, at ‘Hoogsteen’ sites of guanine residues, with a cation-dependent affinity for each site. Notably, a given cation can have very different affinities for a priori equivalent sites within the same molecule. Surprisingly, none of the two hexammines used were able to efficiently replace hexahydrated magnesium. Instead, [Co (NH3)4]3+ was seen bound by inner-sphere coordination to the RNA. This raises some questions about the practical use of [Co (NH3)6]3+ as a [Mg (H2O)6]2+ mimetic. Also very unexpected was the binding of the small Au3+ cation exactly between the Watson–Crick sites of a G-C base pair after an obligatory deprotonation of N1 of the guanine base. This extensive study of metal ion binding using X-ray crystallography significantly enriches our knowledge on the binding of middleweight or heavy metal ions to RNA, particularly compared with magnesium.  相似文献   

18.
Proline dipeptidase (prolidase) was purified from cell extracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus by multistep chromatography. The enzyme is a homodimer (39.4 kDa per subunit) and as purified contains one cobalt atom per subunit. Its catalytic activity also required the addition of Co2+ ions (Kd, 0.24 mM), indicating that the enzyme has a second metal ion binding site. Co2+ could be replaced by Mn2+ (resulting in a 25% decrease in activity) but not by Mg2+, Ca2+, Fe2+, Zn2+, Cu2+, or Ni2+. The prolidase exhibited a narrow substrate specificity and hydrolyzed only dipeptides with proline at the C terminus and a nonpolar amino acid (Met, Leu, Val, Phe, or Ala) at the N terminus. Optimal prolidase activity with Met-Pro as the substrate occurred at a pH of 7.0 and a temperature of 100°C. The N-terminal amino acid sequence of the purified prolidase was used to identify in the P. furiosus genome database a putative prolidase-encoding gene with a product corresponding to 349 amino acids. This gene was expressed in Escherichia coli and the recombinant protein was purified. Its properties, including molecular mass, metal ion dependence, pH and temperature optima, substrate specificity, and thermostability, were indistinguishable from those of the native prolidase from P. furiosus. Furthermore, the Km values for the substrate Met-Pro were comparable for the native and recombinant forms, although the recombinant enzyme exhibited a twofold greater Vmax value than the native protein. The amino acid sequence of P. furiosus prolidase has significant similarity with those of prolidases from mesophilic organisms, but the enzyme differs from them in its substrate specificity, thermostability, metal dependency, and response to inhibitors. The P. furiosus enzyme appears to be the second Co-containing member (after methionine aminopeptidase) of the binuclear N-terminal exopeptidase family.  相似文献   

19.
Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0′ = −410 mV) with NADH (E0′ = −320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0′ = −10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper.  相似文献   

20.
Two different Cd2+ uptake systems were identified in Lactobacillus plantarum. One is a high-affinity, high-velocity Mn2+ uptake system which also takes up Cd2+ and is induced by Mn2+ starvation. The calculated Km and Vmax are 0.26 μM and 3.6 μmol g of dry cell−1 min−1, respectively. Unlike Mn2+ uptake, which is facilitated by citrate and related tricarboxylic acids, Cd2+ uptake is weakly inhibited by citrate. Cd2+ and Mn2+ are competitive inhibitors of each other, and the affinity of the system for Cd2+ is higher than that for Mn2+. The other Cd2+ uptake system is expressed in Mn2+-sufficient cells, and no Km can be calculated for it because uptake is nonsaturable. Mn2+ does not compete for transport through this system, nor does any other tested cation, i.e., Zn2+, Cu2+, Co2+, Mg2+, Ca2+, Fe2+, or Ni2+. Both systems require energy, since uncouplers completely inhibit their activities. Two Mn2+-dependent L. plantarum mutants were isolated by chemical mutagenesis and ampicillin enrichment. They required more than 5,000 times as much Mn2+ for growth as the parental strain. Mn2+ starvation-induced Cd2+ uptake in both mutants was less than 5% the wild-type rate. The low level of long-term Mn2+ or Cd2+ accumulation by the mutant strains also shows that the mutations eliminate the high-affinity Mn2+ and Cd2+ uptake system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号