首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-Galactosidase (α-Gal) enzyme, which is encoded by the melA gene hydrolyzes α-1,6 galactoside linkages found in sugars, such as raffinose and stachyose. These α-galacto-oligosaccharides (α-GOS), which are found in large quantities in vegetables, such as soy, can cause gastrointestinal disorders in sensitive individuals because monogastric animals (including humans) do not posses α-Gal in the gut. The use of microbial α-Gal is a promising alternative to eliminate α-GOS in soy-derived products. Using degenerate primers, the melA gene from Lactobacillus (L.) fermentum CRL722 was identified. The complete genomic sequence of melA (2223 bp), and of the genes flanking melA, were obtained using a combination of polymerase chain reaction–based techniques, and showed strong similarities with the α-Gal gene of thermophilic microorganisms. The α-Gal gene from L. fermentum CRL722 was cloned and the protein purified from cell-free extracts of the native and recombinant strains using various techniques (ion exchange chromatography, salt precipitation, sodium dodecyl sulfate–polyacrylamide gel electrophoresis, and ultra-filtration); Its main biochemical properties were determined. The enzyme was active at moderately high temperatures (55°C) and stable at wide ranges of temperatures and pH. The thermostable α-Gal from L. fermentum CRL722 could thus be used for technological applications, such as the removal of α-GOS found in soy products. The complete melA gene could also be inserted in other micro-organisms, that can survive in the harsh conditions of the gut to degrade α-GOS in situ. Both strategies would improve the overall acceptability of soy-derived products by improving their nutritional value.  相似文献   

2.
Summary A -galactosidase gene from Lactobacillus sake coding for lactose hydrolysis was cloned and expressed in Escherichia coli. Chromosomal DNA from L. sake was partially digested with the restriction enzyme Sau3AI, and the 3–6 Kb fragment was ligated to the cloning vector pSP72 digested with BamHI. One E. coli transformant expressing -galactosidase was isolated on X-gal plates. It contained a plasmid with an insertion of approx. 4 Kb. The restriction map of the recombinant plasmid was constructed. The characteristics of the recombinant -galactosidase were compared with those of the wild type. The optima pH and temperature for both enzymes was 6.5 and 50°C, respectively. Stability of the enzymes at different temperatures and activity on lactose were determined.  相似文献   

3.
A gene of β-galactosidase from Bacillus circulans ATCC 31382 was cloned and sequenced on the basis of N-terminal and internal peptide sequences isolated from a commercial enzyme preparation, Biolacta®. Using the cloned gene, recombinant β-galactosidase and its deletion mutants were overexpressed as His-tagged proteins in Escherichia coli cells and the enzymes expressed were characterized.  相似文献   

4.
M15 -Galactosidase was activated by heat-denatured wild-type -galactosidase, urea, and heat-denatured wild-type -galactosidase, a peptide made up of residues 6–44 of -galactosidase and CB2, the peptide that is normally used for complementation (residues 3–92 of -galactosidase). In each case roughly equal activation levels were attained. Heat-denatured wild-type -galactosidase was present as a finely divided visible white precipitate both before and after complementation. The heat-denatured protein by itself did not migrate on native PAGE and both the protein and the activity that occurred as a result of the complementation also remained at the point of application. The N-terminal ends of the heat-denatured wild-type -galactosidase must have been available for complementation and must have been mobile enough to allow tetramer to form despite being aggregated. -Galactosidase denatured by both urea and heat resulted in a streak of interacting protein on the native PAGE. Upon activation, a streak (indicating that interaction was still occurring) was still present, but it moves more slowly. Complementation using a peptide called XP (made up of residues 6–44 plus an additional nine C-terminal amino acids) resulted in three discrete forms of active enzyme at ratios of peptide to M15 -galactosidase monomer of less than 1:1. The fastest migrating of the three bands predominated at ratios near 1:1. A single active tetrameric form of M15 -galactosidase was formed with CB2. In both of these last two cases an active slow-moving diffuse band also formed (possibly a dimer of the tetramer). A quantitation of the amount of peptide bound to M15 -galactosidase by titration with XP and with CB2 and by using gel filtration after an excess of fluorescent-labeled XP was added showed that peptide bound in a 1:1 ratio (peptide/monomer) when full activity was achieved. These fluorescent studies also showed that peptide initially bound to dimer and that the tetramer was then formed.  相似文献   

5.
The putative β-galactosidase gene (lacZ) of Lactobacillus acidophilus has a very low degree of homology to the Escherichia coli β-galactosidase gene (lacZ) and locates in a special lac gene cluster which contains two β-galactosidase genes. No functional characteristic of the putative β-galactosidase has been described so far. In this study, the lacZ gene of L. acidophilus was hetero-expressed in E. coli and the recombinant protein was purified by a three-step procedure. The product of the lacZ gene was also extracted from L. acidophilus ATCC 4356 and active staining was carried out. The enzymatic properties of the purified recombinant LacZ were assayed. The results of hetero-expression showed the recombinant LacZ without tag had β-galactosidase activity. The purified recombinant LacZ had a specific activity of 43.2 U/mg protein. The result of active staining showed that the functional product of the lacZ gene did exist in L. acidophilus. The L. acidophilus β-galactosidase (LacZ) had an optimal pH of 6, an optimal temperature of 37°C and could hydrolyze 73% of lactose in milk in 30 h at 10°C. The L. acidophilus β-galactosidase (LacZ) was identified as cold-adapted β-galactosidase in this study for the first time, and may be useful for lactose removal from dairy products at low temperatures.  相似文献   

6.
β-Galactosidases can transfer the galactosyl from lactose or galactoside donors to various acceptors and thus are especially useful for the synthesis of important glycosides. However, these enzymes have limitations in the glycosylation of phenolic compounds that have many physiological functions. In this work, the β-galactosidase from Lactobacillus bulgaricus L3 was subjected to site-saturation mutagenesis at the W980 residue. The recombinant pET-21b plasmid carrying the enzyme gene was used as the template for mutation. The mutant plasmids were transformed into Escherichia coli cells for screening. One recombinant mutant, W980F, exhibited increased yield of glycoside when using hydroquinone as the screening acceptor. The enzyme was purified and the effects of the mutation on enzyme properties were determined in detail. It showed improved transglycosylation activity on novel phenolic acceptors besides hydroquinone. The yields of the glycosides produced from phenol, hydroquinone, and catechol were increased by 7.6% to 53.1%. Moreover, it generated 32.3% glycosides from the pyrogallol that could not be glycosylated by the wild-type enzyme. Chemical structures of these glycoside products were further determined by MS and NMR analysis. Thus, a series of novel phenolic galactosides were achieved by β-galactosidase for the first time. This was a breakthrough in the enzymatic galactosylation of the challenging phenolic compounds of great values.  相似文献   

7.
Acid production in milk by lactic streptococci was stimulated by added beta-galactosidase. Both glucose and galactose accumulated rapidly in the presence of this enzyme. Glucose accumulation ceased as the culture entered the most rapid period of acid production, whereas galactose accumulation continued. In cultures without added beta-galactosidase, a low concentration of galactose accumulated in the milk, whereas glucose was not detected after 2 hr of incubation. Cultures grew and produced acid faster in broth containing glucose rather than galactose or lactose. These observations suggest that the lactic streptococci do not metabolize the lactose in milk efficiently enough to permit optimum acid production and that a phenomenon such as catabolite repression functions to allow for a preferential use of glucose over either galactose or lactose. In addition to providing the culture with a more readily available energy source, it is possible that the culture produced more acidic metabolites as a result of preferentially utilizing the glucose released by the action of the beta-galactosidase.  相似文献   

8.
Unlike dairy lactic acid bacteria, Lactobacillus brevis cannot ferment milk. We characterized the lactose utilization by L. brevis KB290. In a carbohydrate fermentation assay using API 50 CHL, we showed during 7?days L. brevis did not ferment lactose. L. brevis grew to the stationary phase in 2?weeks in MRS broth containing lactose as the carbon source. L. brevis slowly consumed the lactose in the medium. L. brevis hydrolyzed lactose and a lactose analog, o-nitrophenyl-β-d-galactopyranoside (ONPGal). This β-galactosidase activity for ONPGal was not repressed by glucose, galactose, fructose, xylose, or maltose showing the microorganism may not have carbon catabolite repression. We purified the L. brevis β-galactosidase using ammonium sulfate precipitation and several chromatographies. The enzyme’s molecular weight is estimated at 72 and 37?kDa using SDS-PAGE analysis. The N-terminal amino acid sequence of the larger protein was 90?% similar to the sequence of the putative β-galactosidase (YP_796339) and the smaller protein was identical to the sequence of the putative β-galactosidase (YP_796338) in L. brevis ATCC367. This suggests the enzyme is a heterodimeric β-galactosidase. The specific activity of the purified enzyme for lactose is 55?U/mg. We speculate inhibition of lactose transport delays the lactose utilization in L. brevis KB290.  相似文献   

9.
Crystallins are very abundant structural proteins of the lens and are also expressed in other tissues. We have previously reported a spontaneous mutation in the rat βA3/A1-crystallin gene, termed Nuc1, which has a novel, complex, ocular phenotype. The current study was undertaken to compare the expression pattern of this gene during eye development in wild type and Nuc1 rats by in situ hybridization (ISH) and immunohistochemistry (IHC). βA3/A1-crystallin expression was first detected in the eyes of both wild type and Nuc1 rats at embryonic (E) day 12.5 in the posterior portion of the lens vesicle, and remained limited to the lens fibers throughout fetal life. After birth, βA3/A1-crystallin expression was also detected in the neural retina (specifically in the astrocytes and ganglion cells) and in the retinal pigmented epithelium (RPE). This suggested that βA3/A1-crystallin is not only a structural protein of the lens, but has cellular function(s) in other ocular tissues. In summary, expression of βA3/A1-crystallin is controlled differentially in various eye tissues with lens being the site of greatest expression. Similar staining patterns, detected by ISH and IHC, in wild type and Nuc1 animals suggest that functional differences in the protein, rather than changes in mRNA/protein level of expression, likely account for developmental abnormalities in Nuc1.  相似文献   

10.
11.
《Process Biochemistry》2014,49(12):2025-2029
Alkaline β-mannanase has important applications for specific industrial processes like pulp bleaching and the detergent industry. The low yield of alkaline β-mannanase produced from native microbes such as alkaliphilic Bacillus limits its applications. Pichia pastoris is the most efficient heterologous system to produce alkaline mannanase. However, the previous use of the AOX system required large amount of methanol and sophisticated operation strategy, which are undesirable in large scale production. In this study, we established a safe and simple constitutive expression process for mannanase production in P. pastoris. The mannanase gene was successfully expressed under the control of GAP promoter. Sequential optimization of the constructed strains was also performed including the copy number optimization and co-expression of chaperone genes. A two-stage feeding strategy was then applied for the finally optimized strain. After 96 h fermentation, a production level of 2980 U/mL was finally reached, illustrating the potential of the GAP constitutive expression system for industrial scale preparation of alkaline β-mannanase.  相似文献   

12.
13.
Soybean (Glycine max (L.) Merr.) seeds contain the storage protein -conglycinin, encoded by a multigene family. -Conglycinin consists of three subunits; , , and . A genomic clone for a -subunit of -conglycinin has been characterized by restriction-enzyme mapping and hybrid selected in-vitro translation followed by immunoprecipitation. In order to determine the developmental regulation of this -subunit gene, its expression was studied in seeds of transgenic petunia (Petunia hybrida) and tobacco (Nicotiana tabacum L.) plants. The -subunit expressed in seeds of petunia and tobacco was recognized by anti--conglycinin serum at a relative molecular mass of 53 000, equivalent to that of the native protein. Separation of the petunia-seed proteins by isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis showed that multiple isoelectric forms of the -subunit were produced. There was approximately a twofold variation in the accumulation of the -subunit protein in the mature seeds of transgenic petunia plants, each containing a single -subunit gene. However, the level of protein accumulation in mature seeds and the amount of -subunit mRNA in developing seeds was not correlated. Accumulation of the -subunit protein in transgenic seeds was less than the -subunit protein that accumulated in transgenic petunia seeds containing a single -subunit gene and less than the amount of the -subunit in mature soybean seeds which contain 8–13 -subunit genes. In transgenic tobacco plants, the accumulation of the -subunit protein in seeds was generally well correlated with the number of genes that were incorporated in the different transformants.Abbreviations kb kilobase - kDa kilodalton - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

14.
A heterodimeric β-galactosidase was discovered in the novel strain Lactobacillus curieae M2011381. The gene encoding the enzyme was expressed in Escherichia coli BL21 (DE3). The specific enzyme activities of the recombinant holoenzyme (LacLM) and large subunit (LacL) measured 11.4 U/mg and 3.8 U/mg, respectively. The kcat/Km values of LacLM and LacL were 740 mM−1 s−1 and 1.40 mM−1 s−1, respectively. LacLM showed maximum activity at pH 8.0 and 55 °C, and it could maintain its activity at a neutral pH and below 45 °C. LacLM displayed both hydrolysis and transgalactosylation activity on 200 g/L lactose. When LacLM was added to milk, the lactose was hydrolyzed after 6 h without galactooligosaccharide generation. The sequence alignment and homology modeling of the structures of the holoenzyme and subunits revealed that LacL has a catalytic domain with a catalytic dyad, Glu470 and Glu538, and small subunit LacM is a β-sheet domain with a conserved Trp294. The molecular docking of LacLM helped to illustrate the roles of both subunits in the reaction with lactose.  相似文献   

15.
β-Galactosidase from Aspergillus oryzae was immobilized in crosslinked polyacrylamide gel beads. The presence of the enzyme inhibitor, such as glucono-δ-lactone or galactono-γ-lactone, during polymerization procedure enhanced the residual enzymatic activity in the polymer beads, and activity yield attained up to 45%. Such enhancement effect was also observed when bovine serum albumin, dithiothreitol or glutathione was added during polymerization. Temperature and pH optima were not affected by the immobilization. The Michaelis constants for free and immobilized β-galactosidase were comparable. Lyophilized beads exhibited good stability without loss of enzymatic activity when stored at 4°C for 47 days.  相似文献   

16.
17.
18.
19.
A Streptococcus mitis genomic DNA fragment carrying the SMT1224 gene encoding a putative β-galactosidase was identified, cloned, and expressed in Escherichia coli. This gene encodes a protein 2,411 amino acids long with a predicted molecular mass of 268 kDa. The deduced protein contains an N-terminal signal peptide and a C-terminal choline-binding domain consisting of five consensus repeats, which facilitates the anchoring of the secreted enzyme to the cell wall. The choline-binding capacity of the protein facilitates its purification using DEAE-cellulose affinity chromatography, although its complete purification was achieved by constructing a His-tagged fusion protein. The recombinant protein was characterized as a monomeric β-galactosidase showing a specific activity of around 2,500 U/mg of protein, with optimum temperature and pH ranges of 30 to 40°C and 6.0 to 6.5, respectively. Enzyme activity is not inhibited by glucose, even at 200 mM, and remains highly stable in solution or immobilized at room temperature in the absence of protein stabilizers. In S. mitis, the enzyme was located attached to the cell surface, but a significant activity was also detected in the culture medium. This novel enzyme represents the first β-galactosidase having a modular structure with a choline-binding domain, a peculiar property that can also be useful for some biotechnological applications.Streptococcus mitis belongs to the viridans group of streptococci and is a relevant microorganism because it is both an opportunistic pathogen and phylogenetically close to Streptococcus pneumoniae, a major respiratory human pathogen. Although S. mitis isolates usually produce only mild infections, some S. mitis strains have acquired increased virulence and are one of the main causes of infectious endocarditis (15, 36). Remarkably, S. mitis, like only a few other streptococci, displays phosphorylcholine residues in its cellular envelope (3). This aminoalcohol is used for the anchorage of proteins belonging to the so-called “choline-binding proteins” (CBPs), which fulfill important physiological functions in these bacteria. CBPs bind to phosphorylcholine residues present in the teichoic and lipoteichoic acids located at the surface of S. pneumoniae and some streptococci of the mitis group. CBPs share a modular organization consisting of a biologically active domain and a conserved choline-binding domain (CBD), which contains 6 to 18 imperfect 20-amino-acid tandem repeats each located either at the carboxy- or amino-terminal ends of the proteins (26). This CBD is able to specifically bind to choline or its structural analogues like DEAE (diethylaminoethanol), which permits purification by affinity chromatography in a single step using DEAE-cellulose supports (38). Crystallographic studies of CBPs have shown that a typical CBD consists of several β-hairpins organized as a left-handed superhelix and that the linkage of CBPs to the choline-containing cell wall substrate is carried out through the binding of choline residues to the interface of two consecutive choline-binding repeats, named choline-binding sites (9, 13, 14).β-d-Galactosidases (β-d-galactoside galactohydrolase; EC 3.2.1.23) constitute a large family of proteins that cleave the glycosidic bond between two or more carbohydrates or between a carbohydrate and a noncarbohydrate moiety, e.g., lactose and related chromogens, like o-nitrophenyl-β-d-galactopyranoside (ONPG), p-nitrophenyl-β-d-galactopyranoside (PNPG), or 6-bromo-2-naphthyl-galactopyranoside. β-d-galactosidases belong to the glycosyl hydrolase (GH) superfamily, which contains 114 families (see http://www.CAZY.org) classified on the basis of amino acid sequence similarity (12). The enzymes exhibiting β-galactosidase activity are currently classified within four different families: GH-1, GH-2, GH-35, and GH-42. β-Galactosidases are widely distributed in nature and are present in numerous microorganisms (yeasts, fungi, bacteria, and archaea), plants, and animals (34, 44). These enzymes are of great interest for several industrial or biotechnological processes; the hydrolytic activity has been applied in the food industry for decades to reduce the lactose content of milk products in order to circumvent lactose intolerance, which is prevalent in more than half of the world''s population (27). More recently, interest in β-galactosidases has increased due to their ability to synthesize β-galactosyl derivatives that have received a great deal of attention owing to their important roles in many biological processes (27).In this study, we report the purification and biochemical characterization of a peculiar β-galactosidase encoded by the SMT1224 gene of S. mitis that represents a new type of β-galactosidase within this paradigmatic enzyme family.  相似文献   

20.
Fifty-one mutants of Kluyveromyces lactis that cannot grow on lactose (Lac-) were isolated and characterized. All of the mutations are in nuclear genes, are recessive in their wild-type allele and define seven complementation groups, which we designate lac3 through lac9. Strains bearing mutations in lac3, lac5, lac7, lac8 and lac9 are also unable to grow on galactose (Gal-). Since the Gal- and Lac- phenotype co-segregate, they are probably due to a single mutation. Strains bearing mutations in any of the seven complementation groups grow normally on glucose. However, strains bearing mutations in lac3, lac5 and lac6 do not grow on glucose if lactose is also present in the medium. Likewise, strains bearing mutations in lac3 and lac5 do not grow on glucose in the presence of galactose. Complementation groups lac4 and lac5 are loosely linked and map within a cluster of auxotrophic mutations on a chromosome that we designate chromosome 2. The remaining five groups are unlinked. Thus, there is no evidence for clustering of Lac genes into an operon-like regulatory unit.——To further characterize the nature of the Lac- phenotype, the basal and inducible level of β-galactosidase activity were measured. All mutants had nearly normal basal enzyme levels, except those in lac4, which had barely detectable levels. Inducible enzyme levels varied from barely detectable levels in mutants bearing lac4 mutations up to four-fold inducible levels in strains bearing mutations in other complementation groups. In all cases, however, induction levels were below the 30-fold level obtained in wild-type cells. Three strains bearing lac5 mutations contain increased enzyme activity in the absence of inducer, indicating constitutive synthesis of β-galactosidase. In summary, these data indicate that several genes are necessary for synthesis of β-galactosidase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号