首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of Ba2+ ions on twitches, K+-induced contractures, and on intracellularly recorded membrane potentials (Em) and depolarizations of frog skeletal muscle fibres were investigated. Exposure of toe muscles to choline--Ringer's solution with 10(-3) M Ba2+ with Ca2+ (1.08 mM) eliminated or very greatly reduced contractures produced by 60 mM K+. In contrast, not only did the same concentration of Ba2+ ions fail to depress the twitch tension of isolated semitendinosus fibres when added to Ringer's with Ca2+, but it even restored twitches that had been eliminated in a zero Ca2+ Ringer's solution. The resting Em of sartorius muscle fibres in choline--Ringer's solution was reduced about 20 mV by 10(-3) M Ba2+. This Ba2+ ion concentration also antagonized the K+-induced depolarization. Thus in the presence of 1 mM Ba2+, 20 mM K+ hyperpolarized rather than depolarized the fibres and 60 or 123 mM K+ produced only very slowly developing, small depolarizations. These results suggest that the loss of the K+-induced contracture in choline-Ringer's caused by Ba2+ ions is due to an inhibition of the K+-induced depolarization. The latter result is consistent with previous findings of other workers that Ba2+ ions block membrane K+ channels.  相似文献   

2.
The contractile force of the myocardial strip of the frog ventricle stimulated by impulses of 0.5 Hz was diminished to 3--5% of the initial value when perfused with Ringer's solution containing 2.5 mM manganese. Under this condition the action potential duration was significantly decreased. An increase in frequency of stimulation up to 5 Hz leads to the development of contracture. The amplitude of contracture was about 30% of the initial contractile force in normal perfusion solution. The amplitude of contracture was more than doubled under the effect of ouabain (2 X X 10(-6) g/ml). Similar experiments with lanthanum failed to discover contracture produced by the increase of the stimulation frequency. In these experiments ouabain was also ineffective. It is supposed that contracture observed in the presence of manganese was caused by nonelectrogenic calcium transport into the muscle fibers.  相似文献   

3.
Some morphological, physiological, and pharmacological properties of the retractor bulbi muscle of the frog were tested. The enzyme-histochemical investigation shows that the retractor bulbi muscle contains twitch muscle fibres only. Two types of twitch muscle fibres, which are especially different in their diameter and in the content of mitochondria, build the muscle in an irregular arrangement; tonic muscle fibres were not observed. On the average, the isolated retractor bulbi muscle has at room temperature a contraction time of 26 ms, a half-relaxation time of 28 ms, a fusion frequency of 75 stimuli/s, and a twitch-tetanus ratio of 0.28. The fatigability of this muscle is higher than in oculorotatory eye muscles but lower than in skeletal muscles of the frog. An increase of the extracellular K+-concentration elicits in retractor bulbi muscles a quickly transient contracture; the mechanical threshold of the muscle fibres is found in a range between 20 and 25 mM K+ in Ringer solution. Similar short-lasting contractures, which are probably caused by twitch fibres, rich in mitochondria, are also evoked by application of depolarizing drugs like acetylcholine. The properties of the retractor bulbi muscle are compared with those of the sartorius muscle of the frog, which likewise contains twitch muscle fibres only.  相似文献   

4.
1. Frog nerves immersed in Ringer's solution lose on the average 23 per cent more potassium if the solution is equilibrated with pure nitrogen than if equilibrated with oxygen. 2. Tying off the ends of the nerves during immersion increased rather than diminished the loss of potassium. 3. There was some evidence that nerves tended to regain potassium if they were returned to oxygen after a period of anoxia. 4. Addition of acetylcholine to the solution increases the loss of potassium. 5. Equilibration of the solution and nerves with 20 per cent CO2 in O2 increases the loss of K from nerves in Ringer's solution but decreases it in frog blood.  相似文献   

5.
Chen KY  Zhu PH 《生理学报》1999,(2):153-160
用蛙胫前肌小束为材料, 研究了提高胞外钾[K+]O对咖啡因挛缩的作用.[K+]O从2 mmol/L提高到10或25 mmol/L, 由3 mmol/L咖啡因引起的挛缩明显增强.以PKC/PC (PKC和PC分别为在高钾和正常钾条件下的咖啡因挛缩)表示的咖啡因挛缩增强, 依赖[K+]O和高钾作用时间.随着10 mmol/L [K+]O作用时间延长, 直至10 min, 增强逐渐增加.但是, 25 mmol/L [K+]O作用1 min时增强达到最大, 然后下降到对照.PKC/PC变化时程不能用高钾引起的去极化解释, 而与由相似[K+]O引起的胞浆自由钙变化时程相符.提示, 至少在蛙骨骼肌, 高钾引起的咖啡因挛缩增强主要是由胞浆自由钙升高引起的.  相似文献   

6.
A comparative pharmacological analysis of relative contributions of different signal transduction pathways in the activation of contraction (excitation-contraction coupling, ECC) in intact fast striated muscles of frog and lamprey was performed. It was found that the major mechanism responsible for the ECC in muscles of both animals is Ca2+ release from the sarcoplasmic reticulum through the ryanodine-sensitive channels. However, the ECC in lamprey muscle displays some important differences in the units of electromechanical coupling, which precede the calcium release from sarcoplasmic reticulum. The maximum contraction force in frog muscle develops during caffeine-induced contracture, which indicates that all Ca2+ stored in sarcoplasmic reticulum is released through ryanodine-sensitive channels. In contrast, in lamprey muscle, the maximum force develops not in response to high caffeine concentration, but in response to repetitive electrical stimulation. Hence, in addition to stores liberated by ryanodine-sensitive channels, some other sources of calcium ions should exist, which contribute to the contraction activation. A source of this additional Ca2+ ions can be external medium, because acetylcholine contracture is abolished in a calcium-free medium. In frog muscle, the acetylcholine contracture was abolished in a Na(+)-free solution. It was concluded that in frog muscle ECC can be triggered by changes in the transmembrane potential (depolarization-induced calcium release), while in lamprey muscle the entry of calcium ions into myoplasm as the trigger in ECC (calcium-induced calcium release). The lamprey muscle was found to be more resistant to tetrodotoxin and tetracaine, which is indicative of a role in the activation of contraction of tetrodotoxin-resistant Na+ and/or Ca2+ channels. It was concluded, that ECC mechanism in striated muscles of low vertebrates is not limited by the generally accepted scheme of depolarization-induced calcium release but can include some other schemes, which require the Ca2+ influx into the cell.  相似文献   

7.
The membrane potential of frog sartorius muscle fibers in a Cl- and Na-free Ringer's solution when sucrose replaces NaCl is about the same as that in normal Ringer's solution. The K+ efflux is also about the same in the two solutions but muscles lose K and PO4 in sucrose Ringer's solutions. The membrane potential in sucrose Ringer's solution is equal to that given by the Nernst equation for a K+ electrode, when corrections are made for the activity coefficients for K+ inside and outside the fiber. For a muscle in normal Ringer's solution, the measured membrane potential is within a few millivolts of EK. This finding is incompatible with a 1:1 coupled Na-K pump. It is consistent with either no coupling of Na efflux to K influx, or a coupling ratio of 3 or greater.  相似文献   

8.
Effects of trypsin and pronase on D-xylose uptake were studied on isolated frog sartorius muscle. Trypsin and pronase exerted insulin-like effects on the transport of sugar. The acceleration of xylose transport by insulin was reduced by a prior incubation of muscles with trypsin or pronase. The inhibition of insulin effect was not due to destruction of the hormone. Proteases had no effect upon the sugar transport stimulated by DNP or potassium contracture. A conclusion is made of the availability in the frog muscle membrane of some insulin receptor similar to that reported for muscle tissue and fat cells of mammals.  相似文献   

9.
Mixed muscles of adult frogs respond to the increase in external potassium and to Ach by polyphasic contracture which is due to asynchronous activity of various groups of muscle fibers (fast phasic, intermediate and tonic ones). In the developing in vivo hindlimb muscles, the predominance of phasic contractile response and relatively weak tonic one were noted. In contrast to definitive muscles, in which maximum potassium and acetylcholine contractures are identical, growing muscles produce weak contractile reaction to Ach. Ach sensitivity of the developing muscles (as revealed by the contracture) is lower than in the definitive ones. Histochemical (studies on the lipid content and the activity of succinate dehydrogenase) and morphometric (the ratio of muscle fibers of different types at different stages of development, comparison of their diameters, relative size of tonic bundle, etc.) studies indicate that the development of morphological substrate for tonic contractions (tonic and intermediate muscle fibers) takes place at a lower rate as compared to the development of the substrate for phasic contractions. However, histochemically tonic fibers may be revealed already at the stage of myotubes.  相似文献   

10.
This is an investigation of the effects on the late after-potential of immersing frog sartorius muscles in three kinds of modified Ringer's fluid; hypertonic, low chloride, and potassium-free. The late after-potential has been attributed to the depolarizing effect of an accumulation of potassium, during a preceding train of impulses, in the intermediary space of the model of a muscle fiber proposed by Adrian and Freygang. Both the hypertonic and low chloride solutions prolonged the late after-potential reversibly and the potassium-free solution shortened it. The effect of the low potassium solution fitted those data calculated from the model, but the effect of the hypertonic and low chloride solutions required an increase in size of the intermediary space of the model in order to fit the calculated data. An electron microscopic study of the muscles showed that the size of the transverse tubular system changed reversibly in the hypertonic and low chloride solutions in almost the amount necessary to fit the experimental data to the calculated data. This agreement between the change in size of the transverse tubular system and that of the intermediary space indicates that the intermediary space may be the transverse tubular system.  相似文献   

11.
The effect of high hydrostatic pressure (100-1400 at) on frog skeletal muscle was studied. Superthreshold pressures (above 600 at) accompanied by muscle contracture results in the intensification of sorption of both basic (neutral red) and acid (phenol red) dyes, and in the growth of the number of oxidated forms of respiratory metabolic components--flavoproteins and pyridine nucleotides under study. Subthreshold pressures reduce the tinctorial ability of muscles and decrease oxidative processes caused by the maintenance of muscle in small volume of the Ringer solution.  相似文献   

12.
1.The contractility of isolated muscles of the frog (and in some instances of the rat) was investigated at room temperature in Ringer's solutions containing homologous alkanoic acids (100 mM C4 to 0.4 mM C10). 2. Free fatty acids decrease the contraction amplitudes evoked by direct stimulation. The effects increase with concentration, exposure, and chain length of the fatty acids. In Ringer's solution the changes are totally or partly reversible. 3. The depression of contraction amplitude induced by free fatty acids is removed by small concentrations of caffeine (2--5 mM) in Ringer's solution. 4. Interactions of fatty acids with different structures of skeletal muscle (mitochondria, sarcolemma and membranes of sarcoplasmic vesicles) are discussed. The distinct effect of fatty acids on stimulated muscles and the importance of membranes in the regulation of the calcium ion concentration in the cytoplasm suggest that fatty acids interact with membrane lipids.  相似文献   

13.
In frog twitch muscle fibres, Na-octanoate (NaC8) shifted the relation between potassium induced tension and membrane potential to the right. The present study has been carried out to investigate the effect of this fatty acid on frog tonic fibres. Potassium contractures measured on bundles of 30-40 fibres of ileofibularis muscles were less decreased by NaC8 (2.5-10 mmol/l) than those of twitch fibre bundles. In denervated muscles the sensitivity to NaC8 was increased, probably due to the development of sodium channels in the membranes. Experiments with mixed fibre bundles also showed a lower influence of NaC8 on potassium contracture of tonic fibres. On the other hand, tonic fibres showed a lower threshold of the potassium induced tension as well as a lower K+ concentration for maximal activation. This lower threshold was further lowered by NaC8, corresponding to a shift of the relation between potassium concentration and tension to the left. The membrane resting potentials were -58 +/- 9 mV in tonic fibres and -83 +/- 5 mV in twitch fibres. Five mmol/l NaC8 only induced depolarization of the membrane of tonic fibres. This depolarization (by about 20 mV) may be responsible for the threshold shift to lower K+ concentration in NaC8-exposed tonic fibres. In addition to the effects of NaC8 on sodium channels, interactions with Ca2+ binding sites are discussed.  相似文献   

14.
1. The purpose of this investigation was to determine if alterations in extracellular calcium (Ca2+) influx by the dihydropyridine derivatives Bay K 8644 and nifedipine affected skeletal muscle fatigue. 2. Tetanic contractions (80 Hz, 100 msec) of frog sartorius muscles were evoked every sec for 3 min. Muscles were fatigued in normal Ringer's solution (NR), in NR containing 1 microM nifedipine of 10 microM Bay K 8644 or in low Ca2+ Ringer's. 3. In each case, the experimental conditions increased the rate and magnitude of fatigue. Rate constants of fatigue obtained during Bay K 8644, nifedipine and low Ca2+ conditions (-.0122 +/- .0016, -.0397 +/- 0022 and 0.0169 +/- .0064 sec-1, respectively) were significantly greater than NR (-.0104 +/- .0006 sec-1, p less than .05). In addition, tetanic forces developed at the end of the stimulation period under the experimental conditions (3.90 +/- 0.81, 1.21 +/- 1.40 and 2.04 +/- 1.10% of initial) were significantly less than NR (7.18 +/- 1.27%, p less than .05). 4. Caffeine contracture forces (10 mM) evoked immediately after stimulation were not significantly different between conditions. 5. These results suggest that alterations in sarcolemmal Ca2+ exchange has some influence on the fatigue process.  相似文献   

15.
Isolated auricles or ventricles from the frog continue to contract, either spontaneously or when stimulated, for from 2 to 4 hours after they are placed in isotonic sucrose solution. After the muscles stop contracting in sucrose solution, contractility is partially restored when the muscles are placed in chloride Ringer's. However, contractility is usually not restored if the muscles are placed in sulfate Ringer's. Ventricles soaked in sucrose solution at 4–7°C continue to contract for 12 to 24 hours and during the first few hours in sucrose solution the contractions often are enhanced. Several types of experiment indicate that the sucrose solution does replace the Ringer's in the extracellular space. Auricles and ventricles also continue to conduct action potentials, with an overshoot, for from 30 to 360 minutes after being placed in sucrose solution. Muscles soaked in sucrose until they are inexcitable rapidly recover in chloride Ringer's but often fail to recover in sulfate Ringer's. The results are discussed in relation to theories about the generation of the action potential in cardiac muscle, and the role of the extracellular fluid in contraction.  相似文献   

16.
Sodium exchange was studied in the arterially perfused papillary muscle of the dog. Three kinetically defined phases accounted for all the myocardial sodium: phase 0 (vascular)-λo (exchange constant) = 3.6 min-1 phase 1 (interstitial)-λ1 = 0.62 min-1; phase 2 (intracellular)-λ2 < 0.020 min-1 in quiescent muscles. The phase 2 exchange rate was proportional to frequency of contraction and increased by approximately 0.004 min-1 for each 1 beat/min increment in rate in muscles demonstrating stable function. A sudden increase in frequency of contraction was followed by a marked increase in phase 2 sodium exchange if muscle function did not deteriorate. This increased exchange required 14 min to achieve a steady state. During this time active tension increased (positive staircase) and then declined to become stable as the sodium exchange stabilized. In muscles in which increased frequency of contraction produced a progressive decrease in active tension and contracture, sodium exchange failed to increase. The characteristics of sodium exchange are compared to those previously defined for calcium and potassium in the perfused dog papillary muscle. It is proposed that alteration in sodium exchange is a primary determinant of calcium and potassium movements and thereby plays a significant role in the control of myocardial contractility.  相似文献   

17.
Using area under the contracture curve to quantitate contractures, the diffusion coefficient of calcium ions within the frog toe muscle during washout in a calcium-free solution and subsequent recovery after reintroduction of calcium to the bathing solution was calculated to be about 2 x 10-6 cm2/sec. The diffusion coefficient measured during washout was found to be independent of temperature or initial calcium ion concentration. During recovery it was found to decrease if the temperature was lowered. This was likely due to the repolarization occurring after the depolarizing effect of the calcium-free solution. The relation between contracture area and [Ca]o was found to be useful over a wider range than that between maximum tension and [Ca]o. The normalized contracture areas were larger at lower calcium concentrations if the contractures were produced with cold potassium solutions or if NO3 replaced Cl in the bathing solutions. Decreasing the potassium concentration of the contracture solution to 50 mM from 115 mM did not change the relation between [Ca]o and the normalized area. If the K concentration of the bathing solution was increased, the areas were decreased at lower concentrations of Ca.  相似文献   

18.
The effect of increasing the osmotic strength of the extracellular solution on the fifament lattice of living frog sartorius and semitendinosus muscle has been studied using low-angle x-ray diffraction to measure the lattice spacing. As the extracellular osmotic strength is increased, the filament lattice shrinks like an osmometer until a minimal spacing between the thick filaments is reached. This minimal spacing varies from 20 to 31 nm, depending on the sarcomere length. Further increase in the osmotic strength produces little further shrinkage. The osmotic shrinkage curve indicates, for both muscles, an osmotically-inactive volume of approximately 30% of the volume in normal Ringer's solution. Shrinkage appears to be independent of temperature and the type of particle used to increase the osmotic strength (glucose, sucrose, small ions). The rate at which osmotic equilibruim is reached depends on muscle size, being slower for greater muscle diameters. Equilibrium spacings are approached exponentially with time constants ranging from 20 to 60 min. Independent of osmotic equilibrium, the lattice tends to shrink slowly by approximately 3% over the first few hours after dissection, probably because of a leakage of K+ ions from inside the muscle cells. This can be partly prevented by using an extracellular solution which contains a higher concentration of K+ ions or which is hypoosmotic. The volume of the muscle filament lattice (1.155d10(2) . S) is constant over a very wide range of sarcomere lengths, and is equal to approximately 3.6 x 10(6) nm3 for a range of amphibian muscle types.  相似文献   

19.
In experiments on isolated frog ventricle, it has been demonstrated that the dose-response curve for negative inotropic reaction of the myocardium to acetylcholine exhibits a sigmoid form, Hill's coefficient (nH) of this reaction being more than 1. The value of nH depends on the interval from isolation of the ventricle and on the duration of perfusion of the latter with Ringer's solution. It was shown that ATP, UTP, UDP and GTP in physiological concentrations induce both the increase in nH and the increase of K50 (acetylcholine concentration evoking the effect which is equal to half of the maximal one) of the investigated physiological reaction. Similar effects are produced by lysolecithin. Possible causes of "physiological cooperativity" of negative inotropic reaction of the myocardium to acetylcholine and the role of energy-rich nucleotides in this process are discussed.  相似文献   

20.
Desheathed frog (R. pipiens) sciatic nerves were soaked in Na-deficient solutions, and measurements were made of their Na and K contents and of the movements of K42. When a nerve is in Ringer's solution, the Na fluxes are equal to the K fluxes, and about 75 per cent of the K influx is due to active transport. The Na content and the Na efflux are linearly related to the Na concentration of the bathing solution, while the K content and the K fluxes are not so related. When a nerve is in a solution in which 75 per cent of the NaCl has been replaced by choline chloride or sucrose, the active K influx exceeds the active Na efflux, and the K content is maintained. When a nerve is soaked in a solution that contains Li, the K42 uptake is inhibited, and the nerve loses K and gains Li. When a Li-loaded nerve recovers in a Li-free solution, K is taken up in exchange for Li. This uptake of K requires Na in the external solution. It is concluded that the active transports of K and of Na may be due to different processes, that an accumulation of K occurs only in exchange for an intracellular cation, which need not be Na, and that Na plays a specific, but unknown, role in K transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号