首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gentian violet is a triphenylmethane dye that is an antifungal/antiparastic agent. GV is similar to malachite green that has been used in the aquaculture industry for treatment or prevention of external fungal and parasitic infections in fish and fish eggs although it (MG) is not approved for this use. For these reasons, GV’s potential for misuse by the aquaculture industry is high. The uptake and depletion of gentian violet (GV) were determined in channel catfish (Ictalurus punctatus) after water-borne exposure (100 ng ml−1, 1 h) under simulated aquaculture farming conditions. Leucogentian violet (LGV) was rapidly formed, concentrated in the muscle tissue, and very slowly eliminated from muscle tissue. An isocratic (60% acetonitrile–40% water; 0.05 M ammonium acetate buffer, pH 4.5) HPLC system consisting of a 5 μm LC–CN 250×4.6 mm I.D. column, a 20×2.0 mm I.D. PbO2 oxidative post-column, and a UV–VIS detector set at 588 nm were used to determine uptake and depletion of tissue residues of GV and LGV with time. GV was rapidly depleted and converted to its major metabolite, LGV, which was detected out to 79 days. Therefore, LGV is the appropriate target analyte for monitoring exposure of channel catfish to GV.  相似文献   

2.
Development of mariculture and its impacts in Chinese coastal waters   总被引:3,自引:0,他引:3  
China has a long history of aquaculture. Since the 1980s, mariculture has been considered by the government as an increasingly important sub-sector of aquaculture. Mariculture provides nutritional and economic benefits, and decreases the intensity of exploitation on declining wild living resources. China now has the highest mariculture production in the world. Kelp made up 50–60% the total Chinese mariculture production in 1967–1980. Production of Laminaria japonicaAresch, the leading species, reached 252, 907 t (dry wet) in 1980. The percentage of kelp production decreased after 1981 because of proportionally greater production of molluscs, shrimps and finfish. Marine finfish and mollusc production increased sharply after 1990. In 2001, the total mariculture production reached 11,315,000 t from a production area of 1,286,000 ha. The rapid development and changes in mariculture species have aroused increasing concern about maricultures impact on the coastal environment. The impact of coastal aquaculture, such as water quality deterioration and contaminants, will have a significant bearing on the expansion of mariculture. The key of improving and maintaining the long-term health of mariculture zones lies in adopting sustainable culture systems. It is imperative that the density of stocking fish and other economically important organisms such as oysters, and scallops, be controlled, in addition to restricting the total number of net-cages in the mariculture zones. The authors suggest moving rafts (cages) periodically and to development of a fallow system in which area fish culture will be suspended for 1–2 years to facilitate recovery of the polluted sediment. Moving fish culture offshore into deeper waters is also suggested. The authors also believe that large-scale seaweed cultivation will reduce eutrophication in coastal culture zones in China.  相似文献   

3.
About 70% of the shoots developed from nodal explants ofGentiana triflora flowered in vitroondouble strength WPM medium containing 3% (w/v) sucrose, 0.5mg/l BA after 12 weeks of culture in a growth room at 22°Cwith continuous illumination (PPFD=60molm–2 s–1). The influences oninvitro shoot development and flowering of several factors includingthe position of the explant, requirements for sucrose, cytokinin orGA3, variations of pH and photosynthetic photon flux density (PPFD)were investigated. In vitro flowering but not shootdevelopment of G. triflora decreased notably withincreaseddistance from the apex of the shoot, indicating the presence of a floralgradient in the micropropagated shoots. Conversely, as little as 0.01mg l–1 GA3 in the medium promotedshootdevelopment but even up to 0.2 mg l–1GA3 did not induce in vitro flowering.Even though BA could substitute GA3 for a high level of shootdevelopment, it also promoted a high level of in vitroflowering at the PPFD of 60 molm–2 s–1. Sucrose was required for shootdevelopment and flowering in vitro and higher levels ofPPFD could not compensate effectively for the omission of the sugar from themedium. In general, the effects of different concentrations of BA in the mediumor variations of pH on shoot development and flowering invitro were found to be influenced by PPFD. A novel observation isthat precocious flowering of micropropagated gentian shoots did not occur ifthey were first cultured for 5 weeks in the dark before transfer to the lightcondition.  相似文献   

4.
In August and September 2001, Kuwait Bay, a semi-enclosed embayment of the Arabian Gulf, experienced a massive fish kill involving over >2500 metric tons of wild mullet (Liza klunzingeri), due to the bacterium Streptococcus agalactiae. In the Bay, this event was preceded by a small fish kill (100–1000 dead fish per day) of gilthead sea bream (Sparus auratus) in aquaculture net pens associated with a bloom of the dinoflagellate Ceratium furca. Sea bream were found to be culture positive for S. agalactiae, but did not show any visible signs of disease. Unusually warm temperatures (up to 35 °C) and calm conditions prevailed during this period. As the wild fish kill progressed, various harmful algae were observed, including Gymnodinium catenatum, Gyrodinium impudicum, and Pyrodinium bahamense var. compressum. Cell numbers of G. catenatum and G. impudicum exceeded 106 l−1 in some locations. All fish tested below the limits of detection for paralytic shellfish poisoning (PSP) and brevetoxins. Clams (Circe callipyga) were positive for PSP but at levels below regulatory limits. Nutrient concentrations, both inorganic and organic, were highly variable with time and from site to site, reflecting inputs from sewage outfalls, the aquaculture operations, a high biomass of decomposing fish, and other sources. It is hypothesized that many factors contributed to the initial outbreak of the bacterial disease, including unusual warm and calm conditions. The same factors, as well as enriched nutrient conditions, also apparently were conducive to the subsequent HAB outbreaks. The detection of PSP, while below regulatory limits, warrants further monitoring to protect human health.  相似文献   

5.
Induction of rooting in microshoots of Psoraleacorylifolia was achieved within 6–8 days of cultureon half-strength basal Murashige and Skoog's(1962) medium supplemented with 0.005–0.01 mg/lindole-3-acetic acid (IAA) and 2% (w/v) sucrose. Rooting was drastically reduced and friable callusformed at the cut end of the microshoots when themedium was supplemented with a higher concentration ofauxin. Rooting was totally inhibited when themicroshoots were cultured in vitro undercontinuous light. However, the maximum percentage ofmicroshoots rooted when incubated in continuous lightfor 4 weeks before transfer to the rooting media.Peroxidase activity increased considerably duringroot induction indicating a key role of peroxidase inrooting of microshoots of Psoralea corylifolia invitro.  相似文献   

6.
Various fish protein hydrolysates (FPH) from sardinella (Sardinella aurita) were used as nitrogen sources for the production of extracellular lipase by the filamentous fungus Rhizopus oryzae. The best results were obtained with defatted meat–fish protein hydrolysates (DMFPH), indicating the presence in the lipid fraction of some constituents which may repress lipase synthesis. Furthermore, it was found that the extensive hydrolysis of fish proteins resulted in a higher lipase production. The use of 40 g DMFPH l–1 for the growth of Rhizopus oryzae in medium R1 resulted in a lipase production of 394 U ml–1, higher than the yield obtained with standard soy peptone as nitrogen source (373 U ml–1). The most appropriate medium for the growth and the production of lipase is composed only of 24 g DMFPH l–1 and 10 g glucose l–1, indicating that the strain can obtain its nitrogen and salts requirements directly from fish substrate.  相似文献   

7.
It has become almost a truism that success in intensive production of animals must be based in part on development of methods for disease diagnosis and control. Excellent progress has been made in methods of diagnosis for major pathogens of cultivated fish, crustacean and molluscan species. In many instances these have proved to be facultative pathogens, able to exert severe effects in populations of animals under other stresses (marginal physical or chemical conditions; overcrowding). The concept of stress management as a critical prophylactic measure is not new, but its significance is being demonstrated repeatedly. The particular relationship of water quality and facultative pathogens such asVibrio, Pseudomonas andAeromonas species has been especially apparent. Virus diseases of marine vertebrates and invertebrates — little known two decades ago — are now recognized to be of significance to aquaculture. Virus infections of oysters, clams, shrimps and crabs have been described, and mortalities have been attributed to them. Several virus diseases of fish have also been recognized as potential or actual problems in culture. In some instances, the pathogens seem to be latent in natural populations, and may be provoked into patency by stresses of artificial environments. One of the most promising approaches to disease prophylaxis is through immunization. Fish respond well to various vaccination procedures, and new non-stressing methods have been developed. Vibriosis — probably the most severe disease of ocean-reared salmon — has been controlled to a great extent through use of a polyvalent bacterin, which can be modified as new pathogenic strains are isolated. Prophylactic immunization for other bacterial diseases of cultivated fish has been attempted, especially in Japan, with some success. There is also some evidence that the larger crustaceans may be immunologically responsive, and that at least short-term protection may be afforded to cultured populations. Some progress has been made in marine disease control through chemical treatment in intensive culture systems, principally through application and modification of methods developed for freshwater aquaculture. Major constraints to use of chemicals are restrictions due to public health concerns about food contamination, and the negative effects of some chemicals on biological filters and on algal food production. There is a continuing need, however, for development of specific treatments for acute disease episodes — such as the nitrofurans, developed in Japan, which are effective for some bacterial diseases. The history of aquaculture — freshwater as well as marine — has been characterized by transfers and introductions of species to waters beyond their present ranges. The process continues, and carries with it the possibility of transfers of pathogens to native species and to the recipient culture environments. International groups are attempting to define codes of practice to govern such mass movements, but examples of introductions of real or potential pathogens already exist. The most recent and the most dramatic is the world wide transfer of a virus pathogen of penaeid shrimps. Earlier examples include the introduction of a protozoan pathogen of salmonids to the western hemisphere, and the introduction of a parasitic copepod from the Far East to the west coast of North America and to France. The conclusion is inevitable — diseases are substantial deterrents to aquaculture production. Diagnostic and control procedures are and will be important components of emerging aquaculture technology.  相似文献   

8.
Flower induction from shoot segments of buckwheat seedlings was examinedin vitro. Cytokinin, (especially kinetin at 0.1M), short day conditions and a high concentration ofsolidifying agent improved the flower induction from node segments invitro, in up to about 50% of node segments. The use of anaeration membrane on bottle caps and a high content of sucrose in the mediumimproved flower induction in vitro considerably. In theimproved conditions, flowers were induced from 100% cultures and 10bloomed flowers per explant were induced in vitro in 8weeks. Both long and short types of stigmas, and normal set of flowers wereobserved under the microscope. When pollen produced invitro was cultured on an artificial medium, 70% of the pollengrains germinated, indicating normal viability of in vitropollen, and indicating the potential for artificial pollination invitro. All the varieties examined flowered at a similar percentage,suggesting that the process was independent of variety and that flowers couldbeproduced in vitro. Flower induction from buckwheat plantsin vitro and possible cross breeding invitro are also discussed.  相似文献   

9.
The potential of fish production based on periphyton   总被引:3,自引:0,他引:3  
Periphyton is composed of attached plant andanimal organisms embedded in amucopolysaccharide matrix. This reviewsummarizes research on periphyton-based fishproduction and on periphyton productivity andingestion by fish, and explores the potentialof developing periphyton-based aquaculture.Important systems with periphyton arebrush-parks in lagoon areas and freshwaterponds with maximum extrapolated fish productionof 8 t ha–1 y–1 and 7 t ha–1y–1, respectively. Experiments with avariety of substrates and fish species havebeen done, sometimes with supplemental feeding.In most experiments, fish production wasgreater with additional substrates compared tocontrols without substrates. Colonization ofsubstrates starts with the deposition oforganic substances and attraction of bacteria,followed by algae and invertebrates. Afterinitial colonization, biomass density increasesto a maximum when competition for light andnutrients prevents a further increase. Often,more than 50% of the periphyton ash-free drymatter is of non-algal origin. Highest biomass(dm) in natural systems ranges from 0 to 700g m–2 and in aquaculture experiments wasaround 100 g m–2. Highest productivity wasfound on bamboo in brush-parks (7.9 gC m–2 d–1) and on coral reefs (3 gC m–2 d–1). Inorganic and organicnutrients stimulate periphyton production.Grazing is the main factor determiningperiphyton density, while substrate type alsoaffects productivity and biomass. Better growthwas observed on natural (tree branches andbamboo) than on artifical materials (plasticand PVC). Many herbivorous and omnivorous fishcan utilize periphyton. Estimates of periphytoningestion by fish range from 0.24 to 112 mg dm(g fish)–1 d–1. Ingestion rates areinfluenced by temperature, fish size, fishspecies and the nutritional quality of theperiphyton. Periphyton composition is generallysimilar to that of natural feeds in fishponds,with a higher ash content due to the entrapmentof sand particles and formation of carbonates.Protein/Metabolizable Energy (P/ME) ratios ofperiphyton vary from 10 to 40 kJ g–1.Overall assimilation efficiency of fish growingon periphyton was 20–50%. The limited work onfeed conversion ratios resulted in valuesbetween 2 and 3. A simple simulation model ofperiphyton-based fish production estimates fishproduction at approximately 2.8 t ha–1y–1. Together with other food resources infishponds, total fish production with thecurrent technology level is estimated at about5 t ha–1 y–1. Because grazingpressure is determined by fish stocking rates,productivity of periphyton is currently themain factor limiting fish production. Weconclude that periphyton can increase theproductivity and efficiency of aquaculturesystems, but more research is needed foroptimization. Areas for attention include theimplementation and control of periphytonproduction (nutrient levels, substate types andconformations), the ratio of fish to periphytonbiomass, options for utilizing periphyton inintensive aquaculture systems and with marinefish, and possibilities for periphyton-basedshrimp culture.  相似文献   

10.
A word-wide overview is presented of the current state of mass cultivation of seaweeds. In comparison with a total annual commercial production of fish, crustaceans and molluscs of about 120 × 106t, of which one-third is produced by aquaculture, the production of seaweeds is about 10 × 106t wet weight; the majoirty of this comes from culture-based systems. The Top Ten Species List is headed by the kelp Laminaria japonica with 4.2 × 106t fresh weight cultivated mainly in China. The productivity of a well-developed, multi-layered, perennial seaweed vegetation is as high as dense terrestrial vegetation, and even higher annual values for productivity have been reported for tank cultures of macroalgae. Epiphytes provide a major problem for the seaweed cultivator, but can be controlled by growing plants at high densities in rope cultures in the sea, or, more easily, in seaweed tank cultures on land. The main environmental problem of animal (fed) aquaculture is the discharge of nutrient loads into coastal waters, e.g., 35 kg N and 7 kg P t–1 aquacultured fish. Integration of fish and seaweed farming may help to solve this problem, since seaweeds can remove up to 90% of the nutrient discharge from an intensive fish farm. Mass culture of commercially valuable seaweed species is likely to play an increasingly important role as a nutrient-removal system to alleviate eutrophication problems due to fed aquaculture.  相似文献   

11.
High levels of anti-inflammatory activity have been detected in extractsprepared from Eucomis plants as well as from invitro plantlets. Callus was initiated from leaf explants andexperiments were conducted to maximise callus proliferation. Optimal callusgrowth occurred on an Murashige and Skoog medium supplemented with 100 mgamp;ell;–1 myo-inositol, 30 gamp;ell;–1 sucrose, 2 gamp;ell;–1 Gelrite®, and a hormone combination of 10mg amp;ell;–1 2,4-D and 2 mgamp;ell;–1 kinetin. Callus cultures maintained in the darkgrew best. Callus extracts tested in the cyclooxygenase (COX) assays (250g mamp;ell;–1) showed a greater inhibition ofCOX-2 inhibition (69%) than COX-1 inhibition (46%).  相似文献   

12.
13.
Lignans in plant cell and organ cultures: An overview   总被引:1,自引:0,他引:1  
Lignans are found in a wide variety of plant species. The lignan podophyllotoxin is of special interest, since its derivatives like e.g. etopophos® are used in anticancer therapy. As chemical synthesis of podophyllotoxin is not yet economic, it still has to be isolated from wild growing Podophyllum species, some of which are considered to be endangered species. Therefore plant in vitro cultures may serve as alternative sources for podophyllotoxin and for other types of lignans as well. This review describes the establishment of plant cell and tissue cultures for lignan production and the experiments to improve product yields by changing the cultivation parameters, addition of elicitors and feeding of precursors. It also summarizes the use of plant cell and organ cultures to study the biosynthesis of lignans on enzymological level. Abbreviations: DOP – deoxypodophyllotoxin; LARI – lariciresinol; MATAI – matairesinol; 6MPTOX – 6-methoxypodophyllotoxin; PINO – pinoresinol; PTOX – podophyllotoxin; SECO – secoisolariciresinol  相似文献   

14.
Microalgae aquaculture feeds   总被引:6,自引:0,他引:6  
Microalgae feeds are currently used in relatively small amounts in aquaculture, mainly for the production of larvae and juvenile shell- and finfish, as well as for raising the zooplankton required for feeding of juvenile animals. The blue-green algaSpirulina is used in substantial amounts (over 100 t y–1) as a fish and shrimp feed, and even larger markets can be projected if production costs could be reduced. Another potential large-scale application of microalgae is the cultivation ofHaematococcus for the production of the carotenoid astaxanthin, which gives salmon flesh its reddish color. In the long-term microalgae biomass high in lipids (omega-3 fatty acids) may be developed as substitutes for fish oil-based aquaculture feeds. In shrimp ponds the indigenous algal blooms supply a part of the dietary requirements of the animals, but it is difficult to maximize algal productivities. A separate algal production system could feed the shrimps and minimize the need for added feed. Bivalves feed essentially exclusively on marine microalgae throughout their life cycle. The development of cultivation technologies for such microalgae would allow the onshore production of these animals, with greatly improved product quality and safety.This paper was presented at the Symposium on Applied Phycology at the Fourth International Phycological Congress, Duke University.  相似文献   

15.
Aims: This work was aimed at identifying strains which can degrade quorum‐sensing (QS) molecules from fish gut, with properties suitable for use as probiotic in aquaculture. Methods and Results: A total of 200 strains were obtained from the intestine gut of Carassius auratus gibelio after enrichment in KG medium contained 500 μg l?1 of C6‐HSL as the sole source of carbon and nitrogen; one strain named QS inhibitor (QSI)‐1 was identified as the genus Bacillus spp. by morphological phenotypes, and the strain also possessed an aiiA homologue gene using PCR amplification. In vitro, QSI‐1 strongly interfered with violacein production by Chromobacterium violaceum. Coculture of QSI‐1 with fish pathogen effectively reduced the amount of acyl‐homoserine lactones (AHLs) and the extracellular proteases activity of Aeromonas hydrophila YJ‐1. The oral LD50 of QSI‐1 to fish was more than 1011 CFU shown that it was avirulent to fish. Fish fed diet supplemented with QSI‐1 had good survival, suggesting that QSI‐1 showed protection against Aer. hydrophila infection. Conclusions: The results indicate that the isolate QSI‐1 might have the potential possibility to be used as a probiotic in aquaculture. Significance and Impact of the Study: This is the first report to describe a bacterium isolated from the intestine gut of C. auratus gibelio which can degrade AHLs and has the probiotic characteristics for its use in aquaculture.  相似文献   

16.
Gum katira, an insoluble gum derived from the bark of Cochlospermum religiosum, has been successfully used as a gelling agent in tissue culture media for in vitro shoot formation and rooting in Syzygium cuminii and somatic embryogenesis in Albizzia lebbeck. The epicotyl segments, excised from in vitro grown seedlings of S. cuminii, developed shoots when cultured on MS medium (Murashige and Skoog, 1962), supplemented with 4% sucrose and 1 mg l–1 BA. The so-developed shoots were rooted on Knop's medium, augmented with 2% sucrose and 1 mg l–1 IAA. For somatic embryogenesis, hypocotyl segments derived from in vitro developed seedlings of A. lebbeck were cultured on B5 medium containing 2% sucrose. Media were gelled with either 3% gum or 0.9% agar. The quantitative response obtained on media fortified with either of the gelling agents was not significantly different. The media gelled with gum katira were almost as transparent as the liquid medium. However, viscosity of gum katira gelled medium was less than one-sixth of the viscosity of agar-gelled media, and therefore, shaking ofthe culture vessel often resulted in submersion of the explants. Nevertheless, even these submerged explants responded positively. To increase the firmness of the gum katira-gelled medium, various combinations of agar (0.2–0.6%) and gum (1–3%) were used. However, the viscosities of the media gelled with 3% gum katira as well as different concentrations of agar (0.2–0.6%) were lower than that of the medium containing only gum katira (3%). Moreover, the explant productivity obtained in neither of these combinations was more than those recorded on the control media, which were gelled either with 0.9% agar or 3% gum alone.  相似文献   

17.
A requirement for generating transgenic pigeonpea [Cajanuscajan (L.) Millsp] plants is the development of a highly efficientin vitro regeneration procedure. This goal was achieved byusing germinated seedlings grown on B5 medium supplemented with 10 mgl–1 6-benzylaminopurine, which induced differentiatingcallus formation in the cotyledonary node region. The calli were transferred onB5 medium with 0.2 mg l–1 6-benzylaminopurine toobtain shoot induction. Elongated shoots were then further cultured on a B5hormone-free medium for rooting. Using this regeneration system transgenicpigeonpea plants were obtained both by particle bombardment andAgrobacterium tumefaciens-mediated gene transfer. Thepresence of the transgenes in the pigeonpea genome was confirmed by GUS assays,PCR and Southern hybridisation. The transgenic rooted plants were successfullytransferred to soil in the greenhouse. GUS and PCR assays of T1 progeniesconfirmed that the transgenes were stably transmitted to the next generation.This is the first report of successful use ofAgrobacteriumas well as particle bombardment for production of transgenic pigeonpea plants.  相似文献   

18.
A complete in vitro plant regeneration systemvia adventitious shoot-bud formation from seedlinghypocotyls of adzukibean was developed. Cotyledonarynode (CN) and root explants from 4-d-old invitro-germinated seedlings of 4 cultivars werecultured on agar-solidified R medium consisting of MSsalts, B5 vitamins, 3.0% (w/v) sucrose and 4.4 µM6-benzyladenine (BA). Shoot buds arose adventitiouslyat the basipetal cut of the hypocotyl in 40 to 85%of type 1 CN (8–10 mm) explants 6 weeks later with cvsBansei aki azuki and Tanbadainagon azuki exhibitingsignificantly higher response. Shorter type 2 (4–5 mm) CN explants responded poorly (0–6%) in culturewhile intact roots were regenerative but at lowerfrequencies (5 to 31%). In cv Bansei aki azuki,optimum shoot initiation (78.7%) was achieved whentype 1 CN explants from BA-preconditioned seedlingswere re-cultured in R medium (SC0). BA supplied at8.8 µM during SC0 significantly reduced the shootinitiation response to 46.7%. In the same manner,substituting equimolar concentration (4.4 µM) ofkinetin (KN), zeatin (Z) or thidiazuron (TDZ) to BAduring SC0 yielded no or significantly lowerresponses. Mean shoot production ranged from 6.2 to9.8 shoots per explant 6 weeks after subculture (SC1)and varied significantly among the 4 cultivars used. Efficient rooting (93–96%) was achieved on excisedshoots transferred to MS salts + B5 vitamins basalmedium alone. The tissue culture system covered only16 weeks to completion. Regenerated plantlets weretransferred to soil with 86–100% survival rate andall surviving plants were morphologically normal andseed-fertile.  相似文献   

19.
Turkey’s natural and ecological situations are very suitable for aquaculture. Turkey also has a wide variety of freshwater and marine species comprising trout, carp, sea bass, sea bream, turbot, mussel, crayfish, etc. The total production of fish and shellfish was 646,310 tons in 2008. The contribution of freshwater catch to total fishery production is relatively small. Capture fisheries production amounted to 494,124 tons whilst aquaculture production was 152,186 tons in the same year. In Turkey, Engraulis encrasicholus (anchovy) is the main caught sea fish species. Fisheries in the Black Sea are the most important fishery by far and show the greatest variations in total catch. Alburnus tarichii (a local species belonging to Cyprinidae) and Cyprinus carpio (the common carp) are the most important species caught from freshwaters. Aquaculture is going to play an increasingly important role in the Turkish economy, as fishery products are the only products of animal origin that can be exported to the EU. There has been a fast increase in the aquaculture production in Turkey with the implementation of scientific and technological modernization. For example, total aquaculture production for 1986 and 2008 was 3,075 and 152,186 tons, respectively. The percentage of aquaculture in total fish production has been rising every year. The ratio of cultured fish production to total fish production was 1.5% in 1990 s, 13.57% in 2000 and more than 20% in 2005. It was 23.55% in 2008. Trouts are the main cultured freshwater fish species. Raceways and floating cages are employed in culture of trout. Carps are also important cultured freshwater fish species. Sea bass and gilthead sea bream are grown marine fish species. Floating cages, off-shore and earthen ponds are used for marine fish species culture. There has been an increase in fishery exports and imports in recent years. It was more than US500 million in 2008, but that of 2004 was just over US 500 million in 2008, but that of 2004 was just over US 233 million. However, aquaculture production is still far away from the production targets and fisheries sector is not an important part of the economy at present.  相似文献   

20.
In this work, in vitro clonal propagation of Drosophyllum lusitanicum (Dewy pine) was obtained from seedlings germinated in vitro. Seeds were collected in various populations identified in the Algarve region and germinated in vitro on MS medium supplemented with 0.5 mg l–1 BA (6-benzyladenine) and 0.1 mg l–1 GA3 (gibberellic acid). The obtained shoots were used in several multiplication assays. The best results were observed in MS medium supplemented with 0.2 or 0.5 mg l–1 zeatin. The highest rooting frequency (83%) was observed on 1/4MS medium supplemented with 0.2 mg l–1 IBA (indole-3-butyric acid). Fifty percent of the plantlets were successfully acclimatized to ex vitro conditions, exhibiting normal development. Plans are underway to reintroduce the in vitro produced plants from this study in selected locations in their natural habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号