首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sonic Hedgehog (Shh) signaling is crucial for growth, cell fate determination, and axonal guidance in the developing nervous system. Although the receptors Patched (Ptch1) and Smoothened (Smo) are required for Shh signaling, a number of distinct co-receptors contribute to these critical responses to Shh. Several membrane-embedded proteins such as Boc, Cdo, and Gas1 bind Shh and promote signaling. In addition, heparan sulfate proteoglycans (HSPGs) have also been implicated in the initiation of Shh responses. However, the attributes of HSPGs that function as co-receptors for Shh have not yet been defined. Here, we identify HSPGs containing a glypican 5 core protein and 2-O-sulfo-iduronic acid residues at the nonreducing ends of the glycans as co-receptors for Shh. These HSPG co-receptors are expressed by cerebellar granule cell precursors and promote Shh binding and signaling. At the subcellular level, these HSPG co-receptors are located adjacent to the primary cilia that act as Shh signaling organelles. Thus, Shh binds to HSPG co-receptors containing a glypican 5 core and 2-O-sulfo-iduronic acid to promote neural precursor proliferation.  相似文献   

3.
Heparan sulfate proteoglycans (HSPGs), a class of glycosaminoglycan-modified proteins, control diverse patterning events via their regulation of growth-factor signaling and morphogen distribution. In C. elegans, zebrafish, and the mouse, heparan sulfate (HS) biosynthesis is required for normal axon guidance, and mutations affecting Syndecan (Sdc), a transmembrane HSPG, disrupt axon guidance in Drosophila embryos. Glypicans, a family of glycosylphosphatidylinositol (GPI)-linked HSPGs, are expressed on axons and growth cones in vertebrates, but their role in axon guidance has not been determined. We demonstrate here that the Drosophila glypican Dally-like protein (Dlp) is required for proper axon guidance and visual-system function. Mosaic studies revealed that Dlp is necessary in both the retina and the brain for different aspects of visual-system assembly. Sdc mutants also showed axon guidance and visual-system defects, some that overlap with dlp and others that are unique. dlp+ transgenes were able to rescue some sdc visual-system phenotypes, but sdc+ transgenes were ineffective in rescuing dlp abnormalities. Together, these findings suggest that in some contexts HS chains provide the biologically critical component, whereas in others the structure of the protein core is also essential.  相似文献   

4.
Proteoglycans, the molecules of extracellular matrix, carry a highly negative charge due to their glycosaminoglycan (GAG) chains and large volumes. They were considered to play a secondary role in activities like cell division, adhesion, blood coagulation, etc. until the importance of their sugar chains in the fibroblast growth factor (FGF) signalling was discovered (Science 252 (1991) 1705; Cell 64 (1991) 841). Studies of mutations in the genes sugarless(sgl) and sulfateless (sfl) have proved that the proteoglycans involved in Wg signalling contain heparan sulfate GAG chains (Development 124 (1997) 2623; Development 124 (1997) 3055; Development 124 (1997) 3565; Development 126 (1999) 3715). This has led to the attribution of specific functions to these molecules (J. Cell Biol. 148 (2000) 227). The Glypican family of heparan sulfate proteoglycans (HSPGs) is characterized by core proteins with conserved cysteine residues and attachment to the cell surface by a glycosylphosphatidyl inositol (GPI) anchor. This may lead to endocytic pathways that are different from other HSPGs, higher lateral mobility and possible apical localisation in a cell (Proc. Natl. Acad. Sci, USA 85 (1988) 9557). Variations in their HS contents may effect binding properties and localisation (J. Cell Biol. 124 (1994) 149; J. Cell Biol. 132 (1996) 487), thus specialising each member for a unique biological function. Glypicans play important roles in morphogenetic pathways, e.g. human glypican 3 (GPC3) is mutated in Simpson-Golabi-Behmel syndrome making an individual prone to tumours (Nat. Genet. 12 (1996) 241). Dally, the first Drosophila member of the family, is essential for the wingless and decapentaplegic signalling pathways (Development 121 (1995) 3687; Development 124 (1997) 4113). Here, we report a new Drosophila glypican, dally-like protein (dlp) with all the features of a glypican. Based on expression studies we report its colocalisation with Wg.  相似文献   

5.
The alphaherpesvirus pseudorabies virus (PrV) has been shown to attach to cells by interaction between the viral glycoprotein gC and cell membrane proteoglycans carrying heparan sulfate chains (HSPGs). A secondary binding step requires gD and presumably another, hitherto unidentified cellular receptor. By use of a virus overlay protein binding assay (VOPBA), cosedimentation analyses, and affinity chromatography, we identified three species of cell membrane constituents that bind PrV. By treatment with EDTA, peripheral HSPGs of very high apparent molecular mass (>200 kDa) could be extracted from Madin-Darby bovine kidney cells. Binding of PrV to these HSPGs in the VOPBA was sensitive to enzymatic digestion with heparinase or papain. Cosedimentation analyses indicated that binding between PrV and high-molecular-weight HSPG depended on the presence of gC in the virion. In addition, adsorption of radiolabeled PrV virions to cells could be inhibited by the addition of purified high-molecular-weight HSPG. By using urea extraction buffer, a second species of HSPG of approximately 140 kDa could be solubilized. Binding of PrV to this HSPG in the VOPBA was also dependent on the presence of heparan sulfate, since reactivity was abolished after suppression of glycosaminoglycan biosynthesis with NaClO3 and after heparinase treatment. In addition to HSPG, in cellular membrane extracts obtained by treatment with mild detergent, a 85-kDa membrane protein was demonstrated to bind PrV in the VOPBA and affinity chromatography. In summary, we identified three species of cell membrane constituents that bind PrV: a peripheral HSPG of high molecular weight, an integral HSPG of approximately 140 kDa, and an integral membrane protein of 85 kDa. It is tempting to speculate that interaction between PrV and the two species of HSPG mediates primary attachment of PrV and that the 85-kDa protein is involved in a subsequent attachment step.  相似文献   

6.
Heparan sulfate Proteoglycans (HSPG) are ubiquitous molecules with indispensable functions in various biological processes. Glypicans are a family of HSPG’s, characterized by a Gpi-anchor which directs them to the cell surface and/or extracellular matrix where they regulate growth factor signaling during development and disease. We report the identification and expression pattern of glypican genes from zebrafish. The zebrafish genome contains 10 glypican homologs, as opposed to six in mammals, which are highly conserved and are phylogenetically related to the mammalian genes. Some of the fish glypicans like Gpc1a, Gpc3, Gpc4, Gpc6a and Gpc6b show conserved synteny with their mammalian cognate genes. Many glypicans are expressed during the gastrulation stage, but their expression becomes more tissue specific and defined during somitogenesis stages, particularly in the developing central nervous system. Existence of multiple glypican orthologs in fish with diverse expression pattern suggests highly specialized and/or redundant function of these genes during embryonic development.  相似文献   

7.
The terminal differentiation of Schwann cells is dependent on contact with basement membrane. The present study was undertaken to investigate the role of cell surface heparan sulfate proteoglycans (HSPGs) in mediating Schwann cell responses to extracellular matrix contact. Phosphatidylinositol-specific phospholipase C-releasable cell surface HSPGs purified from cultures of neonatal rat Schwann cells were subjected to affinity chromatography on immobilized laminin and fibronectin. Binding of the HSPG to both affinity matrices was observed. The strength of the association, however, was sensitive to the ionic strength of the buffer. In 0.1 M Tris-HCl, HSPG binding was essentially irreversible whereas in physiological ionic strength buffer (e.g. 0.142 M NaCl, 10 mM Tris), weaker binding was detected as a delay in elution of the HSPG from the affinity columns. Further studies of HSPG-laminin binding suggested that the binding was mediated by the glycosaminoglycan chains of the proteoglycans. Results of equilibrium gel filtration chromatography provided additional evidence for a reversible association of the HSPG and laminin with a Kd of approximately 1 x 10(-6) M. When Schwann cells were plated on plastic dishes coated with laminin, the cells attached and extended long slender processes. Inclusion of heparin, but not chondroitin sulfate, in the assay medium resulted in partial inhibition of process extension, but at concentrations of heparin which were higher than that needed to disrupt laminin-HSPG association in vitro. Addition of anti-integrin receptor antibodies resulted in more extensive inhibition of laminin-dependent process extension. Anti-integrin antibodies plus heparin essentially totally inhibited laminin-dependent process extension. These results demonstrate that cell surface HSPGs are capable of reversible association with extracellular matrix molecules and suggest that HSPG-laminin interactions play a role in laminin-dependent Schwann cell spreading.  相似文献   

8.
Cell surface heparan sulfate proteoglycans (HSPGs) play important roles in morphogen gradient formation and cell signaling. Bone morphogenetic protein (BMP) signaling is dysregulated in fibrodysplasia ossificans progressiva (FOP), a disabling disorder of progressive heterotopic bone formation. Here, we investigated the role of HSPG glycosaminoglycan (GAG) side chains on BMP signaling and found increased total and HSPG-specific GAG chain levels and dysregulation in HSPG modulation of BMP signaling in FOP lymphoblastoid cells (LCLs). Specifically, HSPG profiling demonstrated abundant mRNA and protein levels of glypican 1 and syndecan 4 on control and FOP LCLs, with elevated core protein levels on FOP cells. Targeted downregulation of glypican 1 core protein synthesis by siRNA enhanced BMP signaling in control and FOP cells, while reduction of syndecan 4-core protein synthesis decreased BMP signaling in control, but not FOP cells. These results suggest that FOP cells are resistant to the stimulatory effects of cell surface HSPG GAG chains, but are susceptible to the inhibitory effects, as shown by downregulation of glypican 1. These data support that HSPG modulation of BMP signaling is altered in cells from patients with FOP and that altered HSPG-related BMP signaling may play a role in the pathogenesis of the disease.  相似文献   

9.
Artemin (ART) promotes the growth of developing peripheral neurons by signaling through a multicomponent receptor complex comprised of a transmembrane tyrosine kinase receptor (cRET) and a specific glycosylphosphatidylinositol-linked co-receptor (GFRalpha3). Glial cell line-derived neurotrophic factor (GDNF) signals through a similar ternary complex but requires heparan sulfate proteoglycans (HSPGs) for full activity. HSPG has not been demonstrated as a requirement for ART signaling. We crystallized ART in the presence of sulfate and solved its structure by isomorphous replacement. The structure reveals ordered sulfate anions bound to arginine residues in the pre-helix and amino-terminal regions that were organized in a triad arrangement characteristic of heparan sulfate. Three residues in the pre-helix were singly or triply substituted with glutamic acid, and the resulting proteins were shown to have reduced heparin-binding affinity that is partly reflected in their ability to activate cRET. This study suggests that ART binds HSPGs and identifies residues that may be involved in HSPG binding.  相似文献   

10.
(35)S-Radiolabeled cultured Sertoli cells from immature rat testis were extracted with detergent and the different proteoheparan sulfate (HSPG) forms of the extract were discriminated and quantified on the basis of their high anionic charge, hydrodynamic size, lipophilic properties, susceptibility to trypsin and phosphatidylinositol phospholipase C (PI-PLC). Trypsin released 50% of total cellular HSPG corresponding to 80% of total hydrophobic HSPG. Trypsin-accessible HSPG were presumed to be integral membrane species. Trypsin-resistant HSPG, probably intracellular, distributed into non-lipophilic (37.5%) and lipophilic (12.5%) populations. Biochemical analysis of PG copurified with plasma membrane confirmed the existence of hydrophobic HSPG integrated into this structure. Among hydrophobic HSPG accessible to trypsin, 35% were PI-PLC released and radiolabeled by [(3)H]inositol indicating that about one third of integral membrane HSPG were intercalated into the plasma membrane through a phosphatidylinositol anchor (glypican type). PI-PLC-resistant forms represented HSPG inserted into the membrane through a hydrophobic segment of the core protein (syndecan type). No lipophilic PG was present in other cell compartments (culture medium, cell periphery, extracellular matrix). (125)I-Iodinated hydrophobic HSPG were deglycanated and submitted to SDS-polyacrylamide gel electrophoresis. In the glypican family, a core protein (64--65 kDa) was detected, whereas in the syndecan family, bands of 60 and 68 kDa were observed which may correspond to self-association of different core proteins. In Sertoli cell, specific functional attributes of different integral membrane HSPG forms remain to be investigated.  相似文献   

11.
We have previously shown that asymmetric collagen-tailed acetylcholinesterase (AChE) is anchored to the extracellular matrix (ECM) by heparan sulfate proteoglycans (HSPGs). Here we present our studies on the characterization of such PGs from the ECM of rat skeletal muscles. After radiolabeling with 35SO4 for 24h, PGs were extracted from the muscle ECM with 4.0 M guanidine-HCl containing protease inhibitors. PGs were subsequently isolated using sequential DEAE-Sephacel chromatography, digestion with chondroitinase ABC, and Sepharose CL-4B. Two different hydrodynamic size species of HSPGs were found. One type had a Mr of 4-6 X 10(5) (Kav = 0.25) as estimated by gel chromatography in the presence of 1% SDS and accounted for 75% of the total HSPGs. The other HSPG had a Mr 1.5-2.5 X 10(5) (Kav = 0.41). The glycosaminoglycan (GAG) side chains (Mr 20,000 and 12,000) were found composed only of heparan sulfate as determined by nitrous acid oxidation and heparitinase treatment. The large-sized HSPG, which is concentrated in synaptic regions, contains only GAG chains of Mr 20,000, suggesting that each HSPG contains only one kind of heparan sulfate chain in its structure. Our results definitively establish by biochemical criteria that the basement membrane of mammalian skeletal muscle contains HSPGs, the likely matrix receptor for the immobilization of the asymmetric collagen-tailed AChE at the neuromuscular junction.  相似文献   

12.
Confluent testicular peritubular cells derived from immature rats were used to study membrane associated proteoglycans (PG) Peripheral material (heparin releasable), membrane and intracellular material (Triton X-100 releasable) were collected, purified by anion exchange chromatography then characterized by gel filtration and by hydrophobic interaction chromatography, followed by enzymatic digestion and chemical treatment. The peripheral material was constituted of two populations of PG (Kav=0 and 0.10 on Superose 6 column), each containing both heparan sulfate proteoglycans (HSPG) and chondroitin proteoglycans (CSPG) and perhaps a hybrid PG (HSCSPG). These PG being not retained on an octyl Sepharose column they were devoided of hydrophobic properties. The integral membrane proteoglycans isolated on the basis of their hydrophobic properties represented 20% of the Triton X-100 releasable material, and were exclusively constituted of proteoheparan sulfate. There were no relationships between this membrane HSPG and the peripheral HSPG as evidenced by pulse chase experiments. The mode of intercalation of the hydrophobic HSPG in the cell membrane was studied. The majority of these macromolecules (80%) were sensitive to trypsin and only a minor proportion (20%) were sensitive to phosphatidylinositol specific phospholipase C. Thus, about 80% of the hydrophobic HSPG were intercalated in the cell membrane by a hydrophobic segment of the core protein whereas about 20% were associated with the cell membrane via a phosphatidylinositol residue covalently bound to the core protein of the PG.Abbreviations PG Proteoglycans - CSPG Chondroitin Sulfate Proteoglycans - HSPG Heparan Sulfate Proteoglycans - HSCSPG Heparan and Chondroitin Sulfate Proteoglycans - DNAse I Deoxyribonuclease I - DMEM Dulbeccos modified Eagle's medium - H/D HAM F12/DMEM - ECM Extracellular Matrix - PBS Phosphate Buffered Saline - PI Phosphatidylinositol - GPI Glycosyl Phosphatidylinositol - PI-PLC Phosphatidylinositol Specific Phospholipase C - TBS Tris Buffered Saline - STI Soybean Trypsin Inhibitor - GAG Glycosaminoglycans - HA Hyaluronic Acid  相似文献   

13.
The glypicans compose a family of glycosylphosphatidylinositol (GPI)-anchored heparan sulfate proteoglycans that play a role in the control of cell division and growth regulation. So far, six members (GPC1-6) of this family are known in vertebrates. The rat glypican gene 3 (Gpc3) was previously assigned to chromosome Xq36 (Shen et al., 1997). Using standard and radiation cell hybrids, we localized the five other rat glypican genes.  相似文献   

14.
We have investigated the nature and distribution of different populations of heparan sulfate proteoglycans (HSPGs) in several cell lines in culture. Clone 9 hepatocytes and NRK and CHO cells were biosynthetically labeled with 35SO4, and proteoglycans were isolated by DEAE-Sephacel chromatography. Heterogeneous populations of HSPGs and chondroitin/dermatan proteoglycans (CSPGs) were found in the media and cell layer extracts of all cultures. HSPGs were further purified from the media and cell layers and separated from CSPGs by ion exchange chromatography after chondroitinase ABC digestion. In all cell types, HSPGs were found both in the cell layers (20-70% of the total) as well as the medium. When the purified HSPG fractions were further separated by octyl-Sepharose chromatography, very little HSPG in the incubation media bound to the octyl-Sepharose, whereas 40-55% of that in the cell layers bound and could be eluted with 1% Triton X-100. This hydrophobic population most likely consists of membrane-intercalated HSPGs. Basement membrane-type HSPGs were identified by immunoprecipitation as a component (30-80%) of the unbound (nonhydrophobic) HSPG fraction. By immunofluorescence, basement membrane-type HSPGs were distributed in a reticular network in Clone 9 and NRK cell monolayers; by immunoelectron microscopy, these HSPGs were localized to irregular clumps of extracellular matrix located beneath and between cells. The cells did not produce a morphologically recognizable basement membrane layer under these culture conditions. When membrane-associated HSPGs were localized by immunoelectron microscopy, they were found in a continuous layer along the cell membrane of all cell types. The results demonstrate that two antigenically distinct populations of HSPG--an extracellular matrix and a membrane-intercalated population--are found at the surface of several different cultured cells lines; these populations can be distinguished from one another by differences in their distribution in the monolayers by immunocytochemistry and can be separated by hydrophobic chromatography; and basement membrane-type HSPGs are secreted and deposited in the extracellular matrix by cultured cells even though they do not produce a bona fide basement membrane-like layer.  相似文献   

15.
A heparan sulfate proteoglycan (HSPG) synthesized by murine parietal yolk sac (PYS-2) cells has been characterized and purified from culture supernatants. A monospecific polyclonal antiserum was raised against it which showed activity against the HSPG core protein and basement membrane specificity in immunohistochemical studies on frozen tissue sections from many rat organs. However, there was no reactivity with some basement membranes, notably those of several smooth muscle types and cardiac muscle. In addition, it was found that pancreatic acinar basement membranes also lacked the HSPG type recognized by this antiserum. Those basement membranes that lacked the HSPG strongly stained with antisera against laminin and type IV collagen. The striking distribution pattern is possibly indicative of multiple species of basement membrane HSPGs of which one type is recognized by this antiserum. Further evidence for multiple HSPGs was derived from the finding that skeletal neuromuscular junction and liver epithelia also did not contain this type of HSPG, though previous reports have indicated the presence of HSPGs at these sites. The PYS-2 HSPG was shown to be antigenically related to the large, low buoyant density HSPG from the murine Engelbreth-Holm swarm tumor. It was, however, confirmed that only a single population of antibodies was present in the serum. Despite the presence of similar epitopes on these two proteoglycans of different hydrodynamic properties, it was apparent that the PYS-2 HSPG represents a basement membrane proteoglycan of distinct properties reflected in its restricted distribution in vivo.  相似文献   

16.
17.
Myogenesis in the embryo and the adult mammal consists of a highly organized and regulated sequence of cellular processes to form or repair muscle tissue that include cell proliferation, migration, and differentiation. Data from cell culture and in vivo experiments implicate both FGFs and HGF as critical regulators of these processes. Both factors require heparan sulfate glycosaminoglycans for signaling from their respective receptors. Since syndecans, a family of cell-surface transmembrane heparan sulfate proteoglycans (HSPGs) are implicated in FGF signaling and skeletal muscle differentiation, we examined the expression of syndecans 1-4 in embryonic, fetal, postnatal, and adult muscle tissue, as well as on primary adult muscle fiber cultures. We show that syndecan-1, -3, and -4 are expressed in developing skeletal muscle tissue and that syndecan-3 and -4 expression is highly restricted in adult skeletal muscle to cells retaining myogenic capacity. These two HSPGs appear to be expressed exclusively and universally on quiescent adult satellite cells in adult skeletal muscle tissue, suggesting a role for HSPGs in satellite cell maintenance or activation. Once activated, all satellite cells maintain expression of syndecan-3 and syndecan-4 for at least 96 h, also implicating these HSPGs in muscle regeneration. Inhibition of HSPG sulfation by treatment of intact myofibers with chlorate results in delayed proliferation and altered MyoD expression, demonstrating that heparan sulfate is required for proper progression of the early satellite cell myogenic program. These data suggest that, in addition to providing potentially useful new markers for satellite cells, syndecan-3 and syndecan-4 may play important regulatory roles in satellite cell maintenance, activation, proliferation, and differentiation during skeletal muscle regeneration.  相似文献   

18.
Heparan sulfate (HS) sugar chains attached to core proteoglycans (PGs) termed HSPGs mediate an extensive range of cell–extracellular matrix (ECM) and growth factor interactions based upon their sulfation patterns. When compared with non‐osteogenic (maintenance media) culture conditions, under established osteogenic culture conditions, MC3T3‐E1 cells characteristically increase their osteogenic gene expression profile and switch their dominant fibroblast growth factor receptor (FGFR) from FGFR1 (0.5‐fold decrease) to FGFR3 (1.5‐fold increase). The change in FGFR expression profile of the osteogenic‐committed cultures was reflected by their inability to sustain an FGF‐2 stimulus, but respond to BMP‐2 at day 14 of culture. The osteogenic cultures decreased their chondroitin and dermatan sulfate PGs (biglycan, decorin, and versican), but increased levels of the HS core protein gene expression, in particular glypican‐3. Commitment and progress through osteogenesis is accompanied by changes in FGFR expression, decreased GAG initiation but increased N‐ and O‐sulfation and reduced remodeling of the ECM (decreased heparanase expression) resulting in the production of homogenous (21 kDa) HS chain. With the HSPG glypican‐3 expression strongly upregulated in these processes, siRNA was used to knockdown this gene to examine the effect on osteogenic commitment. Reduced glypican‐3 abrogated the expression of Runx2, and thus differentiation. The reintroduction of this HSPG into Runx2‐null cells allowed osteogenesis to proceed. These results demonstrate the dependence of osteogenesis on specific HS chains, in particular those associated with glypican‐3. J. Cell. Physiol. 220: 780–791, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Characteristics of the chondroitin sulfate/dermatan sulfate proteoglycans (CS/DSPGs) and heparan sulfate proteoglycans (HSPGs) from retinas of 14-day chicken embryos were examined following specific lyase digestion of the HSPG and CS/DSPG glycosaminoglycans, respectively. On the basis of gel exclusion chromatography the prevalent CS/DSPGs in the tissue were above Mr 400 X 10(3) with two or three glycosaminoglycan chains of Mr 60-70 X 10(3). The HSPGs existed in two distinct populations in the tissue. Those in the dominant population appeared to be in the range of Mr 250-300 X 10(3) with 9 to 12 glycosaminoglycan chains of Mr 15-25 X 10(3). The other population consisted of free heparan sulfate chains of Mr 15-25 X 10(3). The HSPGs in the medium tended to be intermediate in size. To examine the distribution of proteoglycans, tissues were sequentially homogenized and extracted in saline and reextracted with 4 M guanidine HCl (GdnHCl) and Triton X-100 (TX), or they were washed in heparin solution and dissociated to single cells with trypsin before sequential extraction in saline and GdnHCl with TX. Through comparison of the results of these two extraction methods, CS/DSPGs were found to be almost entirely within the medium or matrix or loosely associated with the cell surface, and most HSPGs were associated with either the basal lamina or the plasma membrane. The single heparan sulfate glycosaminoglycan chains appeared to be intracellular degradation products. These results support reports that CS/DSPGs may be present in the retina interphotoreceptor matrix and that HSPGs may be present in regions of synaptogenesis, associated with cell membranes.  相似文献   

20.
Ovarian granulosa cells synthesize heparan sulfate proteoglycans (HSPGs), that have anticoagulant properties. Moreover, HSPGs greatly increase in the granulosa cells during follicular atresia. However, the species of ovarian HSPGs have not yet been identified. Syndecan-4 (ryudocan, amphiglycan) is a membrane-spanning HSPG and a member of the syndecan family. Herein, we demonstrate that syndecan-4 is expressed in the granulosa cells of type 4-5b follicles and, most intensely, in those of the atretic follicles in the mouse ovary, as revealed by in situ hybridization. There is no relationship between syndecan-4 expression and age or sexual cycle stage. Compared with syndecan-4 expression, syndecan-1 and -3 are expressed more abundantly in postovulatory follicles and the corpora lutea, but less in the type 4-5b follicles and much less in the atretic follicles. Immunohistochemistry also demonstrates syndecan-4 expression in atretic follicles with apoptosis. The present study has revealed the distinct modes of expression of the syndecan family members, and the association of syndecan-4 expression and apoptosis in ovarian atretic follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号