首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tritium-labeled acetyl-concanavalin A (3H-Con A) was used to study its kinetics of binding at 0 °C to murine neuroblastoma cells (clone neuro 2-A) grown in the differentiated (monolayer) and Undifferentiated (spinner) states. The binding of 3H-Con A to both cell types gives sigmoidal saturation curves, suggesting positively cooperative binding of the lectin. The Hill coefficient is 1.75 for differentiated and 1.36 for Undifferentiated cells. The maximal number of 3H-Con A molecules bound per cell is 2.3 × 107 and 3.4 × 107 for differentiated and Undifferentiated cells, respectively, and the apparent rate constants for formation of the lectin-cell complex are 6.13 × 102, m?1, s?1 for the Undifferentiated and 6.68 × 102, m?1, s?1 for the differentiated cells. The lectin bound to spinner cells does not dissociate spontaneously to any measurable extent over a 60-min period at 0 or 37 °C, but the lectin-cell complex dissociates rapidly after addition of α-methyl-d-mannopyranoside. At 37 °C, this sugar causes virtually complete dissociation of the cell-lectin complex within 30 min. The 3H-Con A dissociated from spinner cells is indistinguishable from the original 3H-Con A by sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis, gel filtration through Bio-Gels P-30 and P-100, and specific binding to spinner cells. Both the original and the dissociated 3H-Con A are dimers at pH 7.4. The sugar-induced dissociation of the labeled lectin from spinner cells is not accompanied by shedding or inactivation of the lectin binding sites of the cell surface.  相似文献   

2.
Murine neuroblastoma cultures were labeled externally with the cationic reagent N,N,N-[3H]-trimethylamino-beta-alanyl-N-hydroxy-succinimide ester ([3H]Me3N-beta Ala-NSuc) or with 125I/lactoperoxidase. The cells were labeled in the logarithmic and confluent growth phases as well as in a highly differentiated state following treatment with 2% dimethylsulfoxide. The labeled exterior membrane proteins were analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Major changes in the exterior membrane proteins were observed during maturation and differentiation of the cells. Most of these changes were clonal-specific, while others were common to several clones. Two proteins of Mr 55,000 and 65,000 were labeled by both 125I/lactoperoxidase and Me3N-[3H]-beta Ala-NSuc. The level of labeling was dependent on the clonal lines used and the state of the cell maturation. A group of proteins displaying a molecular weight between 150,000 and 200,000 was found to be related to the transition of a culture from logarithmic to confluent growth phases. An additional protein, with an apparent molecular weight of 95,000, was common to differentiated cells of the two inducible clones used. In general the maturation of logarithmic phase cells into confluent cells resulted in a less complex electrophoretic distribution of the pattern of labeling. After dimethyl-sulfoxide treatment, further reduction in the complexity of the externally labeled proteins was observed.  相似文献   

3.
A simple method is described that permitted rapid isolation of plasma membranes from mouse N-18 neuroblastoma cells. The purified plasma membranes gave a 10-fold increase in the specific activity of incorporated [3H]fucose over that of the cell homogenate. The specific activities of two other membrane markers, 5′-nucleotidase and alkaline phosphatase, increased 11-fold and 15-fold, respectively. Metabolic labeling with [3H]fucose identified a major fucosyl glycoprotein with apparent molecular weight of 92 000. Three surface labeling methods together with SDS-polyacrylamide gel electrophoresis and fluorography were used to characterize and compare the surface glycoproteins of undifferentiated and differentiated N-18 cells. The galactose oxidase/NaB3H4 method labeled two major galactoproteins (Mr = 52 000, 42 000) in both undifferentiated and differentiated cells. The neuraminidase/galactose oxidase/NaB3H4 method revealed many sialylgalactoproteins. Among them, the 220-kdalton, 150-kdalton and 130-kdalton bands were at least 100% more prominently labeled in the differentiated calls whereas the 76-kdalton and 72-kdalton bands were less prominently labeled in the differentiated cells when compared to their undifferentiated counterparts. The prominently iodinated protein bands in the undifferentiated cells had apparent molecular weights of 130 000, 92 000, 76 000 and 72 000 as compared to 150-, 130-, 92- and 76-kdalton bands in the differentiated cells. The labeling data obtained will enable us to further study the changes of these identified surface glycoproteins, both quantitatively and topologically, during the differentiation of neuroblastoma cells.  相似文献   

4.
Clostridiumhistolyticum collagenase has been chemically modified with a series of reagents to identify essential amino acid residues. The activity of the enzyme is not significantly altered by the seryl reagents diisopropylfluorophosphate and phenylmethylsulfonyl fluoride, the cysteinyl reagents p-chloromercuribenzoate and iodoacetamide, or the arginyl reagents butanedione and phenylglyoxal. The enzyme is inactivated by 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide and N-ethyl-5-phenylisoxazolium-3′-sulfonate, indicating the presence of an essential carboxyl residue. Both acetylimidazole and tetranitromethane inactivate the enzyme and the acetylimidazole reaction is reversed by hydroxylamine, indicating that collagenase contains an essential tyrosyl residue. In addition, acylation of the enzyme by diethylpyrocarbonate, diketene and acetic anhydride markedly lowers activity, which cannot be restored by hydroxylamine. This indicates that collagenase contains an essential lysyl residue, a conclusion supported by the fact that trinitrobenzene sulfonate also inactivates the enzyme.  相似文献   

5.
A highly differentiated thyroid cell line (FR-RL) was compared with a less differentiated (FR-T Cl1) and an undifferentiated (1-5G) cell line. FR-TL is modulated in vivo and in vitro by thyrotropin and has the lowest adenylate cyclase and guanylate cyclase and the highest phosphodiesterase activities. In contrast, 1-5G tumor cells do not respond to thyrotropin and have the highest adenylate cyclase guanylate cyclase and lowest hydrolyzing enzyme activities. Intermediate enzyme activities were found in FR-T Cl1 cells. The differences between the two normal rat thyroid cell lines are not due to differences in the composition of the growth medium.  相似文献   

6.
Rabbit skeletal muscle creatine kinase is inactivated when stored at ?17 °C in the presence of either chloride or nitrate. Other anions are not effective. Associated with the inactivation is an altered electrophoretic mobility and the loss of four out of the eight titratable thiol groups in the dimeric catalytic protein of molecular weight 82,600. The altered inactive form is separated from the native active enzyme by electrofocusing, and its catalytic activity is restored by treatment with 2-mercaptoethanol. Gel electrophoresis in the presence and absence of 2-mercaptoethanol establishes that solutions of the inactive enzyme are heterogeneous, containing mostly a protomeric polypeptide of molecular weight 41,000, but also significant amounts of disulfide-linked dimers, trimers, and tetramers. Sedimentation equilibrium analysis confirms the existence of higher molecular weight aggregates along with the preponderant protein species of molecular weight 43,000.  相似文献   

7.
Significant differences in the rate of reduction of two spin labels, 5-doxylstearic acid and TEMPOL, in the undifferentiated and differentiated NB-15 mouse neuroblastoma cells were demonstrated by using electron paramagnetic resonance (EPR) spectroscopy. The half-time (T1/2) values for decay of the EPR signal of 5-doxylstearic acid in the undifferentiated and differentiated neuroblastoma cells were 70 min and 290 min, respectively. The T1/2 values of TEMPOL in the undifferentiated and differentiated cells were 18 min and 34 min, respectively. The cellular reductant was characterized as non-protein-bound sulfhydryl groups. A corresponding difference in the cellular non-protein-bound sulfhydryl content, 19.30 nmol/mg protein for the undifferentiated cells and 6.78 nmol/mg protein for the differentiated cells, was observed. Comparison of the reduction rates of TEMPOL, 5-doxylstearic acid and 16-doxylstearic acid in the undifferentiated NB-15 cells suggested that the permeation of non-protein-bound sulfhydryl compounds from the cytosol to membrane may be responsible for the reduction of the lipid-soluble stearic acid spin labels.  相似文献   

8.
Plasma membranes prepared from clonal NB-15 mouse neuroblastoma cells were sequentially incubated with 125I-labeled insulin (10 nM) and the bifunctional cross-linking agent disuccinimidyl suberate. This treatment resulted in the cross-linking of 125I-labeled insulin to a polypeptide that gave an apparent Mr of 135 000 on a sodium dodecyl sulfate-polyacrylamide gel electrophoresed in the presence of 10% beta-mercaptoethanol. Affinity labeling of this polypeptide was inhibited by the presence of 5 microM unlabeled insulin, but not by 1 microM unlabeled nerve growth factor. Using the same affinity labeling technique, 125I-labeled nerve growth factor (1 nM) did not label any polypeptide appreciably in the plasma membranes of NB-15 cells but labeled an Mr 145 000 and an Mr 115 000 species in PC-12 rat pheochromocytoma cells. The number of insulin binding sites per cell in the intact differentiated NB-15 mouse neuroblastoma cells was approx. 6-fold greater than that in the undifferentiated NB-15 mouse neuroblastoma cells as measured by specific binding assay, suggesting an increase of the number of insulin receptors in NB-15 mouse neuroblastoma cells during differentiation.  相似文献   

9.
Plasma membranes prepared from clonal NB-15 mouse neuroblastoma cells were sequentially incubated with 125I-labeled insulin (10 nM) and the bifunctional cross-linking agent disuccinimidyl suberate. This treatment resulted in the cross-linking of 125I-labeled insulin to a polypeptide that gave an apparent Mr of 135 000 on a sodium dodecyl sulfate-polyacrylamide gel electrophoresed in the presence of 10% β-mercaptoethanol. Affinity labeling of this polypeptide was inhibited by the presence of 5 μM unlabeled insulin, but not by 1 μM unlabeled nerve growth factor. Using the same affinity labeling technique, 125I-labeled nerve growth factor (1 nM) did not label any polypeptide appreciably in the plasma membranes of NB-15 cells but labeled an Mr 145 000 and an Mr 115 000 species in PC-12 rat pheochromocytoma cells. The number of insulin binding sites per cell in the intact differentiated NB-15 mouse neuroblastoma cells was approx. 6-fold greater than that in the undifferentiated NB-15 mouse neuroblastoma cells as measured by specific binding assay, suggesting an increase of the number of insulin receptors in NB-15 mouse neuroblastoma cells during differentiation.  相似文献   

10.
11.
The plasma membranes of the cells of mouse neuroblastoma clone NB41A, were isolated without fixation by hardening procedures and were characterised by their enzyme activities and by their morphology in the light and electron microscopes. The membranes were prepared from two kinds of differentiated monolayer cultures; one in which the cells were induced to form long axon-like processes by the addition of N6,O2'-dibutyryladenosine 3':5'-monophosphate to the culture medium, and the other in which the cells were induced to form processes by the addition of 5-bromo-2'-deoxyuridine. The proteins from the solubilised membranes were compared with similar preparation from the membranes of undifferentiated cells, grown in suspension, by sodium dodecylsulphate polyacrylamide gel electrophoresis, using the incorporation of radioactive amino acids and L-fucose into proteins in the cultures to follow the differences in the patterns of polypeptide synthesis and glycosylation of the membrane proteins. The differentiated cells induced with either inducer show an increased incorporation of L-fucose into two distinct components with molecular weights of 60 000 and 70 000. The two types of induced cells differ from each other in that N6,O2'-dibutyryladenosine 3':5'-monophosphate stimulates both glycosylation and protein synthesis, with a relative increase in the low molecular weight proteins, but 5-bromo-2'-deoxyuridine stimulates mostly increased glycosylation of the membrane proteins.  相似文献   

12.
ABSTRACT: Liver infection with hepatitis B virus (HBV), a DNA virus of the Hepadnaviridae family, leads to severe disease, such as fibrosis, cirrhosis and hepatocellular carcinoma. The early steps of the viral life cycle are largely obscure and the host cell plasma membrane receptors are not known. HepaRG is the only proliferating cell line supporting HBV infection in vitro, following specific differentiation, allowing for investigation of new host host-cell factors involved in viral entry, within a more robust and reproducible environment. Viral infection generally begins with receptor recognition at the host cell surface, following highly specific cell-virus interactions. Most of these interactions are expected to take place at the plasma membrane of the HepaRG cells. In the present study, we used this cell line to explore changes between the plasma membrane of undifferentiated (-) and differentiated (+) cells and to identify differentially-regulated proteins or signaling networks that might potentially be involved in HBV entry. Our initial study identified a series of proteins that are differentially expressed in the plasma membrane of (-) and (+) cells and are good candidates for potential cell-virus interactions. To our knowledge, this is the first study using functional proteomics to study plasma membrane proteins from HepaRG cells, providing a platform for future experiments that will allow us to understand the cell-virus interaction and mechanism of HBV viral infection.  相似文献   

13.
14.
The brains of male Fisher 344 rats bearing 80-150 mg intracerebral 9L/Ro tumors were irradiated with doses of 1,250-5,000 rads of x- or gamma-rays. At various times after irradiation, the cerebellum and tumor were excised, dissociated into single cells and the DNA from these cells sedimented through alkaline sucrose gradients in zonal rotors with slow gradient reorienting capability. Quantitation of the DNA repair kinetics demonstrated that the process in both tumor cells and neurons has a fast and slow phase. Although all other alternatives cannot be completely eliminated, we suggest that these two phases are most reasonably interpreted as representing repair of lesions in very accessible and less accessible regions of the genome rather than 1) repair of different types of lesions such as single- or double-strand breaks or 2) removal of immediate breaks and breaks induced during excision repair of latent base damage. The slow repair phase is saturable, but not inducible in both tumor cells and neurons. The data suggest that tumor cells restore their chromosomal DNA structure to the unirradiated state faster than neurons because 1) they contain more of the repair system per unit of DNA and 2) a larger proportion of their genetic material is comprised of very accessible regions. The data also suggest that the entire tumor cell genome may be accessible to the repair enzyme(s), while it is possible that a portion of the neuronal genome may be completely inaccessible.  相似文献   

15.
Differentiated mouse neuroblastoma cells (line C 1300, clone N-18-TG2A1) were investigated by intracellular dialysis. A slow component was found in the potential-dependent inward current of these cells. The results of investigation of changes in amplitude of this component during variation of the ionic composition of the external and internal solutions showed that this component is due to transport of calcium ions. A calcium current was observed in all cells tested. The region of its activation was between –70 and –65 mV; maximal values of this current were reached when the membrane potential was between –30 and –40 mV. The kinetic characteristics of this current were examined. In its kinetics and potential-dependence, this calcium current of the mouse neuroblastoma cell membrane is analogous to the fast component of the calcium current in normal neurons of rat spinal ganglia.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 4, pp. 527–531, July–August, 1984.  相似文献   

16.
Anomalous choline metabolic patterns have been consistently observed in vivo using Magnetic Resonance Spectroscopy (MRS) analysis of patients with neurodegenerative diseases and tissues from cancer patient. It remains unclear; however, what signaling events may have triggered these choline metabolic aberrancies. This study investigates how changes in choline and phospholipid metabolism are regulated by distinct changes in the mitochondrial electron transport system (ETS). We used specific inhibitors to down regulate the function of individual protein complexes in the ETS of SH-SY5Y neuroblastoma cells. Interestingly, we found that dramatic elevation in the levels of phosphatidylcholine metabolites could be induced by the inhibition of individual ETS complexes, similar to in vivo observations. Such interferences produced divergent metabolic patterns, which were distinguishable via principal component analysis of the cellular metabolomes. Functional impairments in ETS components have been reported in several central nervous system (CNS) diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD); however, it remains largely unknown how the suppression of individual ETS complex function could lead to specific dysfunction in different cell types, resulting in distinct disease phenotypes. Our results suggest that the inhibition of each of the five ETS complexes might differentially regulate phospholipase activities within choline metabolic pathways in neuronal cells, which could contribute to the overall understanding of mitochondrial diseases. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Since resveratrol is considered to exert a unique dual effect, protective for normal cells but toxic to tumor cells, its action on undifferentiated (original) and differentiated PC12 cells was analyzed, because undifferentiated cells are tumorigenic and differentiated ones are neuronal in nature. Compared to resveratrol-untreated cells in both undifferentiated and differentiated cell groups, cells treated with different doses of resveratrol, at dosages of 1, 10 and 100 μM, showed the following alterations. Dying/dead cells were significantly increased in a dose-dependent manner in undifferentiated cells, but they were unchanged at doses of up to 10 μM resveratrol in differentiated cells. In living cells, neurites were short in undifferentiated cells, but drastically elongated with an increased number in differentiated cells. The expression of SIRT1 was drastically reduced in undifferentiated cells, but stable in differentiated cells. SIRT3 was significantly enhanced in a dose-dependent manner at resveratrol doses of up to 10 μM in both cells, with reduction and more enhanced at a dosage of 100 μM in undifferentiated and differentiated cells, respectively. Mitochondrial number and ATP synthase β subunit expression was unaltered at doses of up to 10 μM and were significantly reduced at doses of 100 μM in undifferentiated cells, but they were significantly increased in a dose-dependent manner, with a slight reduction in the ATP synthase at doses of 100 μM, in differentiated cells. In a dose-dependent manner, the number of autophagosomes and the LC3-II/LC3-I ratio were significantly less in undifferentiated cells and greater in differentiated cells. Also, in a dose-dependent manner, the expression of phosphorylated AMP-activated kinase (AMPK) was significantly less in undifferentiated cells and greater in differentiated cells. Resveratrol-induced AMPK suppression and activation, possibly through the modulation of SIRT protein activity, may thus be related to the inhibition and promotion of mitochondrial and autophagic functions, leading to cell death and survival in undifferentiated and differentiated cells, respectively.  相似文献   

18.
19.
Proliferation and differentiation of mammary epithelial cells are governed by hormonal stimuli, cell-cell, and cell-matrix interactions. Terminal differentiation of mammary epithelial cells depends upon the action of the lactogenic hormones, insulin, glucocorticoids, and prolactin that enable them to synthesize and secrete milk proteins. These differentiated cells are polarized and carry out vectorial transport of milk constituents across the apical plasma membrane. To gain additional insights into the mechanisms governing differentiation of mammary epithelial cells, we identified proteins whose expression distinguishes proliferating from differentiated mammary epithelial cells. For this purpose we made use of the HC11 mammary epithelial line, which is capable of differentiation in response to lactogenic hormones. Using two-dimensional gel electrophoresis and mass spectrometry, we found about 60 proteins whose expression levels changed in between these two differentiation states. Bioinformatic analysis revealed differential expression of cytoskeletal components, molecular chaperones and regulators of protein folding and stability, calcium-binding proteins, and components of RNA-processing pathways. The actin cytoskeleton is asymmetrically distributed in differentiated epithelial cells, and the identification of proteins involved in mRNA binding and localization suggests that asymmetry might in part be achieved by controlling cellular localization of mRNAs. The proteins identified provide insights into the differentiation of mammary epithelial cells and the regulation of this process.  相似文献   

20.
Comparative aspects of propionate metabolism   总被引:2,自引:0,他引:2  
1. The catabolism of propionate has been studied extensively in vertebrates and the major pathway has been shown to be its derivatization to propionyl-CoA, carboxylation to D-methylmalonyl-CoA, isomerization to L-methylmalonyl-CoA and then conversion to succinyl-CoA via a vitamin B12 dependent methylmalonyl-CoA mutase. 2. By contrast, in all insect species studied to date, many of which do not contain detectable levels of vitamin B12, the major metabolic pathway of propionate is its conversion to 3-hydroxypropionate and then to acetate. Carbon-3 of propionate becomes the carboxyl carbon of acetate and carbon-2 of propionate becomes the methyl carbon of acetate. 3. A number of species of non-insect arthropods and other invertebrates contain relatively high levels of vitamin B12 and catabolize propionate by the same pathway as that of vertebrates. Under anoxic conditions, some invertebrates, including bivalves, convert succinate to propionate. 4. In plants, evidence has been presented for the metabolism of propionate to both acetate and succinate. Micro-organisms possess a myriad of pathways by which they produce and catabolize propionate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号