首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The distribution of extracellular enzymatic activities (EEA) [leucine aminopeptidase (LAP), ?-glucosidase (GLU), alkaline phosphatase (AP)], as well as that of prokaryotic abundance (PA) and biomass (PB), dissolved organic carbon (DOC), particulate organic carbon and particulate total nitrogen (POC, PTN), was determined in the epi-, meso-, and bathypelagic waters of the Mediterranean Sea along a West-East transect and at one Atlantic station located outside the Strait of Gibraltar. This study represents a synoptical evaluation of the microbial metabolism during early summer. Decreasing trends with depth were observed for most of the parameters (PA, PB, AP, DOC, POC, PTN). Significant differences between the western and eastern basins of the Mediterranean Sea were found, displaying higher rates of LAP and GLU and lower C/N ratios more in the eastern than in the western areas. Conversely, in the epipelagic layer, PA and PB were found to be higher in the western than in the eastern basins. PB was significantly related to DOC concentration (all data, n = 145, r = 0.53, P < 0.01), while significant correlations of EEA with POC and PTN were found in the epipelagic layer, indicating an active response of microbial metabolism to organic substrates. Specific enzyme activities normalized to cell abundance pointed out high values of LAP and GLU in the bathypelagic layer, especially in the eastern basin, while cell-specific AP was high in the epi- and bathypelagic zone of the eastern basin indicating a rapid regeneration of inorganic P for both prokaryotes and phytoplankton needs. Low activity and abundance characterized the Atlantic station, while opposite trends of these parameters were observed along the Mediterranean transect, showing the uncoupling between abundance and activity data. In the east Mediterranean Sea, decomposition processes increased probably in response to mesoscale structures which lead to organic matter downwelling.  相似文献   

2.
Flow cytometry (FCM) was used to assess microbial community abundances and patterns in three natural, large and deep peri-alpine hydrosystems, i.e., lakes Annecy (oligotrophic), Bourget, and Geneva (mesotrophic). Picocyanobacteria, small eukaryotic autotrophs, heterotrophic prokaryotes, and viruses were studied in the 0–50 m surface layers to highlight the impact of both physical and chemical parameters as well as possible biotic interactions on the functioning of microbial communities. Some specificities were recorded according to the trophic status of each ecosystem such as the higher number of viruses and heterotrophic bacteria in mesotrophic environments (i.e., Lakes Geneva and Bourget) or the higher abundance of picocyanobacteria in the oligotrophic Lake Annecy. However, both seasonal (temperature) and spatial (depth) variations were comparatively more important than the trophic status in driving the microbial communities’ abundances in these three lakes, as revealed by principal component analysis (PCA). A strong viral termination of the heterotrophic bacterial blooms could be observed in autumn for each lake, in parallel to the mixing of the upper lit layers. As virus to bacteria ratio (VBR) was indeed very high at this period with values varying between 87 and 114, such important relationships between viruses and bacteria were likely. The magnitudes of seasonal variations in VBR, with the highest values ever reported so far, were largely greater than the magnitude of theoretical variations due to the trophic status, suggesting also a strong seasonality in virioplankton production associated to prokaryotic dynamics. FCM analyses allowed discriminating several viral groups. Virus-Like Particles group 1 (VLP1) and group 2 (VLP2) were always observed and significantly correlated to bacteria for the former and chlorophyll a and picocyanobacteria for the latter, suggesting that most of VLP1 and VLP2 could be bacteriophages and cyanophages, respectively. On the basis of these results, new ways of investigation emerge concerning the study of relationships between specific picoplanktonic groups; and overall these results provide new evidence of the necessity to consider further viruses for a better understanding of lake plankton ecology. Handling editor: Luigi Naselli-Flores  相似文献   

3.
A shallow, saline lake (Rookery Lake) close to the sea and surrounded by a penguin rookery was investigated during the austral spring and summer of 1996/1997. The proximity to the sea means that the lake is likely to have been formed recently during isostatic uplift. Inputs of carbon and nutrients from the penguin rookery have rendered Rookery Lake eutrophic compared with other brackish and saline lakes in the Vestfold Hills. Chlorophyll a concentration, bacterioplankton, heterotrophic nanoflagellate and phototrophic nanoflagellate abundances were all significantly higher than in other non-enriched lakes. The high productivity created seasonal anoxia during winter and spring below ice cover. The ciliate community resembled the marine community, and was dissimilar to that seen in older saline lakes within the Vestfold Hills. Thus Rookery Lake provides valuable evidence of the impact of natural eutrophication on an Antarctic lake, as well as of the evolution of the typical microbial community which dominates the older lakes of the Vestfold Hills. Accepted: 2 May 1999  相似文献   

4.
Estimation of microbial biomass depends on cell shape and size determinations, and thus, there is a wide biovolume variability among morphotypes. Nevertheless, data on morphology and morphometry of prokaryotic cells under different trophic status are seldom published, due to the methodological difficulties of cell measurements. The main question addressed in this paper concerns the suitability of prokaryotic size and shape for environmental characterization. Microbial biovolumes were compared among different ecosystems, located in temperate and tropical regions. Samples were taken from fresh, brackish, mixohaline, and estuarine waters that were classified as oligo-, meso-, eu-, and hypertrophic by comparing synoptically different trophic indices. Prokaryotic cell abundance and volume were quantified by Image Analysis, used to calculate biomass, and correlated to environmental variables. Some samples were analyzed by flow cytometry also, and data from sub-populations with a different apparent DNA content were available. Prokaryotic abundances generally increased from oligo- to hypertrophic waters while cell volumes increased from oligotrophic to eutrophic waters. Although significant correlations between cell volumes and environmental variables were detected (positive with salinity and negative with Chlorophyll-a), different morphotypes dominated each studied regions. Our results sustain the hypothesis that prokaryotic cell size and shape could be useful to ecosystem characterization.  相似文献   

5.
The autotrophic ammonium-oxidizing bacterium Nitrosococcus oceanus was studied in the brackish lake of Ganzirri by cultural and immunofluorescent methods. The preparation of the specific antiserum in rabbits is reported. The polyclonal antiserum for Nitrosococcus oceanus cross-reacted with other ammonia oxidizing strains, but not with other marine bacteria. Temporal changes were determined by taking monthly water samples from a station 6 m deep and the distribution in sediments was investigated in four stations. Isolation of a strain of Nitrosococcus sp. was obtained from a sediment sample collected in December. The abundance of Nitrosococcus spp. bacteria correlated positively with particulate organic carbon (POC), particulate organic nitrogen (PON), temperature and total bacteria, whereas there was a negative relationship with oxygen tension. No correlation was found between immunofluorescent and MPN counts of Nitrosococcus spp. bacteria.  相似文献   

6.
Empirical models derived from literature data were used to compare the factors controlling prokaryotic abundance (PN) and prokaryotic heterotrophic production (PHP) in solar salterns. These empirical relationships were generated as multiple linear regressions with PN or PHP as dependent variables, while the independent variables were chosen to reflect the likely sources of organic matter, inorganic nutrients and temperature. These variables were then measured in solar salterns and the predictions made by the general relationships were compared to actual saltern values of PN and PHP. Saltern ponds of salinity higher than 100 per thousand departed significantly from the general relationships, while the ponds of salinity lower than 100 per thousand fitted well within the range of values predicted by the general models. The most likely explanation for the discrepancy of the former was the absence of bacterivory. This hypothesis was tested with data from other very different aquatic systems: karstic lakes with anaerobic hypolimnia and two marine areas in the Mediterranean and the Southern Ocean. The anoxic regions of karstic lakes departed significantly from the predictions of the general model, while the oxic layers conformed to the predictions. As in the case of salterns, this difference could be explained by the presence of significant predation in the oxic, but not in the anoxic, layers of these lakes. Finally, two marine areas with similar predation pressure on prokaryotes but very different impacts of viral lysis were tested. In all cases, PN values conformed to the predictions, suggesting that lysis due to viruses is not the main factor controlling PN in aquatic systems, which is more likely to be determined by the balance between bacterivory and resource supply. The present work also demonstrates the usefulness of empirical comparative analyses to generate predictions and to draw inferences on the functioning of microbial communities.  相似文献   

7.
The major proportion of heterotrophic activity in running waters islocalized on the solid surfaces of sediments in the benthic and hyporheic zoneand is dominated by microorganisms. However, this assertion is based on thestudies of small streams, and little is known about the microbial metabolism oforganic matter in river ecosystems. We therefore explored the relationshipsbetween bacterial abundance and production and the gradients of organic matterquality and quantity in sediments of a sixth-order lowland river (Spree,Germany). We found vertical gradients of detrital variables (particulateorganicmatter (POM), particulate organic carbon (POC), nitrogen (PN), and protein) andof bacterial variables (abundance, production, turnover time, and proportion ofbacterial carbon in total POC) in two different sediment types. These gradientswere steeper in stratified sediments than in the shifting sediments. Detritalvariables correlated strongly with bacterial abundance and production. The bestcorrelation was found for detrital variables indicating substrate quantity andquality (rS = 0.90 for PN with abundance). Although bacterialbiomasscomprised only 0.7% of the POC (1.9% of PN, 3.4% of the protein) in sediments,the turnover of sedimentary organic carbon was fast (median = 62d), especially in the shifting sediments. Our findings demonstratethat sediment dynamics significantly foster organic carbon metabolism in riversystems. Thus, these sediments, which are typical for lowland rivers, stronglyinfluence the metabolism of the whole ecosystem.  相似文献   

8.
Understanding microbial food web dynamics is complicated by the multitude of competitive or interdependent trophic interactions involved in material and energy flow. Metabolic inhibitors can be used to gain information on the relative importance of trophic pathways by uncoupling selected microbial components and examining the net effect on ecosystem structure and function. A eukaryotic growth inhibitor (cycloheximide), a prokaryotic growth inhibitor (antibiotic mixture), and an inhibitor of photosynthesis (DCMU) were used to examine the trophodynamics of microbial communities from the tidal creek in North Inlet, a salt marsh estuary near Georgetown, South Carolina. Natural microbial communities were collected in the spring, summer, and fall after colonization onto polyurethane foam substrates deployed in the tidal creek. Bacterial abundance and productivity, heterotrophic ciliate and flagellate abundance, and phototrophic productivity, biomass, and biovolume were measured at five time points after inhibitor additions. The trophic responses of the estuarine microbial food web to metabolic inhibitors varied with season. In the summer, a close interdependency among phototrophs, bacteria, and protozoa was indicated, and the important influence of microzooplanktonic nutrient recycling was evident (i.e., a positive feedback loop). In the fall, phototroph and bacteria interactions were competitive rather than interdependent, and grazer nutrient regeneration did not appear to be an important regulatory factor for bacterial or phototrophic activities. The results indicate a seasonal shift in microbial food web structure and function in North Inlet, from a summer community characterized by microbial loop dynamics to a more linear trophic system in the fall. This study stresses the important role of microbial loops in driving primary and secondary production in estuaries such as North Inlet that are tidally dominated by fluctuations in nutrient supply and a summer phytoplankton bloom.  相似文献   

9.
The Western areas of the Adriatic Sea are subjected to inputs of inorganic nutrients and organic matter that can modify the trophic status of the waters and consequently, the microbiological processes involved in the carbon and phosphorus biogeochemical cycles, particularly in shallow coastal environments. To explore this topic, a survey was carried out during the spring of 2003 in a particular hydrodynamic area of the Gulf of Manfredonia, where the potential (P) and real (R) rates of four different microbial exoenzymatic activities (EEA) (α [αG] and ß glucosidases [ßG], leucine aminopeptidase [LAP], and alkaline phosphatase [AP]) as well as the P and R rates of prokaryotic heterotrophic production (PHP), AP as well as the P and R rates of PHP, primary production (PPnet), the prokaryotic and phototrophic stocks and basic hydrological parameters were examined. Three different water masses were found, with a thermohaline front (THF) being detected between the warmer and less saline coastal waters and colder and saltier offshore Adriatic waters. Under the general oligotrophic conditions of the entire Gulf, a decreasing gradient from the coastal toward the offshore areas was detected, with PHP, PPnet, stocks and EEA (αG, ßG, AP) being directly correlated with the temperature and inversely correlated with the salinity, whereas opposite relationships were observed for LAP activity. No enhancement of microbiological activities or stocks was observed at the THF. The use of P or R rates of microbiological activities, which decrease particularly for EEA, could result in discrepancies in interpreting the efficiency of several metabolic processes.  相似文献   

10.
We analyzed the regional distribution of bulk heterotrophic prokaryotic activity (leucine incorporation) and selected single-cell parameters (cell viability and nucleic acid content) as parameters for microbial functioning, as well as bacterial and archaeal community structure in the epipelagic (0 to 200 m) and mesopelagic (200 to 1,000 m) subtropical Northeast Atlantic Ocean. We selectively sampled three contrasting regions covering a wide range of surface productivity and oceanographic properties within the same basin: (i) the eddy field south of the Canary Islands, (ii) the open-ocean NE Atlantic Subtropical Gyre, and (iii) the upwelling filament off Cape Blanc. In the epipelagic waters, a high regional variation in hydrographic parameters and bacterial community structure was detected, accompanied, however, by a low variability in microbial functioning. In contrast, mesopelagic microbial functioning was highly variable between the studied regions despite the homogeneous abiotic conditions found therein. More microbial functioning parameters indicated differences among the three regions within the mesopelagic (i.e., viability of cells, nucleic acid content, cell-specific heterotrophic activity, nanoflagellate abundance, prokaryote-to-nanoflagellate abundance ratio) than within the epipelagic (i.e., bulk activity, nucleic acid content, and nanoflagellate abundance) waters. Our results show that the mesopelagic realm in the Northeast Atlantic is, in terms of microbial activity, more heterogeneous than its epipelagic counterpart, probably linked to mesoscale hydrographical variations.  相似文献   

11.
To evaluate trophic relationships between ciliates and bacterioplankton during the stratification period in a lake, samples from three different layers [the upper part of the metalimnion (UM), the base of the metalimnion (BM) and the hypolimnion] were studied. The autotrophic picoplankton numbers, phylogenetic composition of heterotrophic picoplankton (HPP), and HPP composition in ciliates' food vacuoles were analyzed. Additionally, in situ incubations in dialysis bags were performed at the same selected depths to assess potential changes in picoplankton composition related to ciliates' feeding activity. Among the in situ HPP assemblage, no phylogenetic group dominated in the selected layers within the course of the study. The ciliate assemblage was dominated by scuticociliates, haptorids, and hypotrichs. Comparing ciliates' food vacuole content and in situ HPP composition, a high preference for Alphaproteobacteria was found at all three depths. Planctomycetes, and Delta- and Gammaproteobacteria were selected at BM and hypolimnion, respectively. However, selection of a given phylogenetic group in the time course of this study was observed only for Alphaproteobacteria in the UM. Similar trends were found in the incubations, but no relationship was found between the vacuole content of the ciliates and changes in HPP composition.  相似文献   

12.
Sampling of the central region of the North Sea was carried out to study the spatial and seasonal changes of dissolved and particulate organic C (DOC and POC, respectively). The surface waters were collected during four cruises over a year (Autumn 2004–Summer 2005). DOC and POC concentrations were measured using high temperature catalytic oxidation methods. The surface water concentrations of DOC and POC were spatially and temporally variable. There were significantly different concentrations of DOC and POC between the inshore and offshore waters in winter and summer only, with no clear trend in autumn and spring. Highest mean concentrations of DOC were measured in spring with lower and similar mean concentrations for other seasons. POC showed a clear seasonal cycle throughout the year with highest surface mean concentrations found in autumn and spring, but lowest in winter and summer. The DOC distributions during autumn and spring were strongly correlated with chlorophyll suggesting extracellular release from phytoplankton was an important DOC source during these two seasons. The lower concentrations of DOC in summer were probably due to the heterotrophic uptake of labile DOC. The seasonal changes in the C:N molar ratios of surface DOM (dissolved organic matter) resulted in higher mean C:N molar ratios in spring and lower ratios in winter. These high ratios may indicate nutrient limitation of heterotrophic uptake immediately after the spring bloom. There is limited data available for DOC cycling in these productive shelf seas and these results show that DOC is a major component of the C cycle with partial decoupling of the DOC and DON cycling in the central North Sea during the spring bloom. Handling editor: Luigi Naselli-Flores  相似文献   

13.
In 1992 we examined the morphological characteristics and space-time distribution of picoplankton cells in Lake Maggiore, a subalpine lake in which oligotrophication is in progress. We measured by image analyser the biovolume of autotrophic (APP), eukaryotic and prokaryotic. and heterotrophic (HPP) picoplankton. Among the APP < 2μm the yellow fluoresceing are the dominating cells in the euphoric zone. The red cells, mainly eukaryotic, on average are only 11% of the total abundance of cells < 5μm. The APP cell numbers range from 9.5 × 103 cells ml−1 to 1.3 × 105 cells ml−1 (average: 5 × 104 cells ml−1). Their mean biovolume shows a minimum value of 7.8mm3 m−3 in March and a maximum of 186.3mm3 m-3 in September. The contribution of biovolume of yellow cells to total phytoplankton biovolume varies between 0.3% and 27%. suggesting that picocyanobacteria, at this stage of lake recovery, are not yet a dominant component. The HPP cell density is two order of magnitude higher than the APP with a mean value of 2.6 × 106 cells ml−1. APP mean cell size fluctuates from a minimum of 0.5 μm to a maximum of 1.4urn (0.26–1.69μm3 volume), while HPP range from 0.4 to 0.7 um (0.07–0.57 μm3 volume), making it easier to distinguish them on a dimensional basis for most of the year. During the period of thermal stratification, a peak in abundance was noted in the central part of the metalimnion at depths receiving less than 10% of surface irradiance. The total picoplanktonic carbon fraction (APP and HPP) varied from 38 to 384 μgC 1−1 with a mean value of 133μgC 1−1 which represents 42% of POC collected on GF/C filters. Most of the picoplankton carbon is made up of HPP cells (34% of the total POC).  相似文献   

14.
The occurrence and importance of photoautotrophic picoplankton (PPP, cells with a diameter <2 μm) was studied along a trophic and salinity gradient in hypersaline lakes of the Transylvanian Basin (Romania). The studied lakes were found to be rich in PPP, with abundances (maximum 7.6 × 106 cells mL?1) higher than in freshwater and marine environments of similar trophic conditions. The contribution of PPP to the total phytoplankton biovolume did not decrease with increasing trophic state as it was generally found in other aquatic environments. Regardless of the trophic conditions, the contribution of PPP could reach 90–100 % in these hypersaline lakes. We hypothesized that the PPP predominance might be the result of the low grazing pressure, since heterotrophic nanoflagellates (the main grazers of PPP) were absent in the studied samples. There were significant differences in community composition among the lakes along the salinity gradient. CyPPP predominated in less saline waters (mainly below 5 %), while EuPPP were present along the entire salinity range (up to 18.7 %), dominating the phytoplankton between 3 and 13 % salinity. Above 13 % salinity, the phytoplankton was composed mainly of Dunaliella species.  相似文献   

15.
AIM: Leucine aminopeptidase (LAP), an enzyme involved in the decomposition of natural peptides, was measured in different marine and brackish ecosystems, together with some environmental and microbiological parameters. METHODS AND RESULTS: The fluorogenic compound L-leucine-7-amido-4-methyl coumarin was specifically used for the determination of this in situ activity. The enzyme data obtained from this comparative study highlighted the strong spatial and temporal variability of the distribution of LAP in aquatic ecosystems, which was sometimes related to the course of environmental variables such as salinity and organic carbon content. CONCLUSIONS: LAP assay has proved to be a rapid method providing useful information on the microbial metabolic processes involved in the mineralization of organic matter. SIGNIFICANCE AND IMPACT OF THE STUDY: The determination of the potential rates of extracellular enzyme activity is of great ecological importance to extend knowledge on the role played by bacteria in aquatic biogeochemical cycles.  相似文献   

16.
The annual changes in bacterial numbers and diversity of the heterotrophic microflora in invertebrates and ambient water were studied. During the whole period of observation, bacterial cell numbers were higher in invertebrate specimens than in the ambient water. The highest number of bacterial cells was detected in trepangs and sea urchins, while the lowest number of cells was detected in starfish. Based on the results of phenotypic analysis and analysis of fatty acid composition of bacterial cell lipids, 487 strains (out of the total of 502 isolates) of heterotrophic bacteria were identified to the genus level. Morphological differences between the winter and summer isolates of vibrios and halomonads were analyzed. The seasonal dynamics of the cell numbers of vibrios and halomonads was revealed. The gram-positive microflora was most often present in animals during the winter, fall, and spring periods. The diversity of heterotrophic bacteria was greater in the water column than in animal tissues.  相似文献   

17.
The role of bottom-up (nutrient availability) and top-down (grazers and viruses mortality) controls on tropical bacterioplankton have been rarely investigated simultaneously from a seasonal perspective. We have assessed them through monthly samplings over 2 years in inshore and offshore waters of the central Red Sea differing in trophic status. Flow cytometric analysis allowed us to distinguish five groups of heterotrophic bacteria based on physiological properties (nucleic acid content, membrane integrity and active respiration), three groups of cyanobacteria (two populations of Synechococcus and Prochlorococcus), heterotrophic nanoflagellates (HNFs) and three groups of viruses based on nucleic acid content. The dynamics of bacterioplankton and their top-down controls varied with season and location, being more pronounced in inshore waters. HNFs abundances showed a strong preference for larger prey inshore (r = −0.62 to −0.59, p = 0.001–0.002). Positive relationships between viruses and heterotrophic bacterioplankton abundances were more marked inshore (r = 0.67, p < 0.001) than offshore (r = 0.44, p = 0.03). The negative correlation between HNFs and viruses abundances (r = −0.47, p = 0.02) in shallow waters indicates a persistent seasonal switch between protistan grazing and viral lysis that maintains the low bacterioplankton stocks in the central Red Sea area.  相似文献   

18.
1. The seasonal and vertical distribution of the abundance of virus‐like particles (VLPs), together with the abundances of other microbial organisms (bacteria, unpigmented and pigmented nanoflagellates and ciliates), were determined in an oligomesotrophic lake (Pavin, France) and in a eutrophic lake (Aydat, France) between March and December 2000. 2. The abundance of the viral plankton and those of other microbial taxa were significantly higher in the more productive system. The same was for the virus‐to‐bacteria quotient (VBQ), which averaged seven in Lake Pavin and nine in Lake Aydat. 3. The abundance of viruses increased during the period of thermal stratification in both lakes, with the highest values being recorded at the end of summer/early autumn in the epi‐ and the metalimnion. The seasonal pattern of abundance of viruses in both lakes in the surface layer was similar, indicating that the dynamics of viruses may be controlled by environmental factors such as light conditions. 4. There was no correlation between the abundance of viruses and protists. We found correlations between viruses and heterotrophic bacteria in the whole water column in Lake Pavin, but only in the dark bottom waters in Lake Aydat. 5. Overall, the empirical findings in this study lead us to speculate that the weaker correlation between bacteria and viruses in Lake Aydat than in Lake Pavin, as well as the higher VBQ in the former, is a consequence of the increasing relative abundance of non‐bacteriophage VLPs along the trophic gradient of aquatic systems.  相似文献   

19.
Kufel  Lech 《Hydrobiologia》2001,443(1-3):59-67
Total phosphorus and total nitrogen explained a low percentage of summer chlorophyll variability in epilimnia of the Great Masurian Lakes. Division of the whole data set into two subgroups of lakes improved approximation of the chlorophyll nutrient relationship but revealed also functional differences between the lakes distinguished in that way. Chlorophyll in eutrophic lakes correlated well with nitrogen and phosphorus, that in mesotrophic lakes (those with summer chlorophyll <=22 mg m–3 as calculated in the model) was related to none of the nutrients. Higher summer chlorophyll content in epilimnetic waters was accompanied by higher chl:PP and chl:PN ratios. Algal adaptation to poor light conditions in eutrophic lakes is postulated as a possible reason for that difference.Chlorophyll – nutrient relationships varied with the trophic status of lakes. Epilimnetic chlorophyll strictly followed phosphorus changes in eutrophic lakes but did not do so in mesotrophic ones. Detailed comparison of selected meso- and eutrophic lakes showed marked differences in the seasonal changes of chlorophyll and nutrient concentrations and in sedimentation rates, especially in spring. Nutrient limitation rather than zooplankton grazing is suggested as a possible mechanism of controlling algal abundance and the sequence of spring events in a eutrophic lake. It is hypothesised that phosphorus turnover in eutrophic lakes is dominated by seasonal vertical fluxes, while in mesotrophic lakes it is more conservative with consumption and regeneration restricted mostly to metalimnion. Possible consequences of such conclusion are discussed in the paper.  相似文献   

20.
The interplay among microorganisms profoundly impacts biogeochemical cycles in the ocean. Culture-based work has illustrated the diversity of diatom–prokaryote interactions, but the question of whether these associations can affect the spatial distribution of microbial communities is open. Here, we investigated the relationship between assemblages of diatoms and of heterotrophic prokaryotes in surface waters of the Indian sector of the Southern Ocean in early spring. The community composition of diatoms and that of total and active prokaryotes were different among the major ocean zones investigated. We found significant relationships between compositional changes of diatoms and of prokaryotes. In contrast, spatial changes in the prokaryotic community composition were not related to geographic distance and to environmental parameters when the effect of diatoms was accounted for. Diatoms explained 30% of the variance in both the total and the active prokaryotic community composition in early spring in the Southern Ocean. Using co-occurrence analyses, we identified a large number of highly significant correlations between abundant diatom species and prokaryotic taxa. Our results show that key diatom species of the Southern Ocean are each associated with a distinct prokaryotic community, suggesting that diatom assemblages contribute to shaping the habitat type for heterotrophic prokaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号