首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 591 毫秒
1.
Vibrio vulnificus can be divided into three biotypes, and only biotype 2, which is further divided into serovars, contains eel-virulent strains. We compared the genomic DNA of a biotype 2 serovar E isolate (tester) with the genomic DNAs of three biotype 1 strains by suppression subtractive hybridization and then tested the distribution of the tester-specific DNA sequences in a wide collection of bacterial strains. In this way we identified three plasmid-borne DNA sequences that were specific for biotype 2 strains irrespective of the serovar and three chromosomal DNA sequences that were specific for serovar E biotype 2 strains. These sequences have potential for use in the diagnosis of eel vibriosis caused by V. vulnificus and in the detection of biotype 2 serovar E strains.  相似文献   

2.
Genetic relationships among 62 Vibrio vulnificus strains of different geographical and host origins were analyzed by multilocus enzyme electrophoresis (MLEE), random amplification of polymorphic DNA (RAPD), and sequence analyses of the recA and glnA genes. Out of 15 genetic loci analyzed by MLEE, 11 were polymorphic. Cluster analysis identified 43 distinct electrophoretic types (ETs) separating the V. vulnificus population into two divisions (divisions Ι and ΙΙ). One ET (ET 35) included all indole-negative isolates from diseased eels worldwide (biotype 2). A second ET (ET 2) marked all of the strains from Israel isolated from patients who handled St. Peter's fish (biotype 3). RAPD analysis of the 62 V. vulnificus isolates identified 26 different profiles separated into two divisions as well. In general, this subdivision was comparable (but not identical) to that observed by MLEE. Phylogenetic analysis of 543 bp of the recA gene and of 402 bp of the glnA gene also separated the V. vulnificus population into two major divisions in a manner similar to that by MLEE and RAPD. Sequence data again indicated the overall subdivision of the V. vulnificus population into different biotypes. In particular, indole-negative eel-pathogenic isolates (biotype 2) on one hand and the Israeli isolates (biotype 3) on the other tended to cluster together in both gene trees. None of the methods showed an association between distinct clones and human clinical manifestations. Furthermore, except for the Israeli strains, only minor clusters comprising geographically related isolates were observed. In conclusion, all three approaches (MLEE, RAPD, and DNA sequencing) generated comparable but not always equivalent results. The significance of the two divisions (divisions Ι and ΙΙ) still remains to be clarified, and a reevaluation of the definition of the biotypes is also needed.  相似文献   

3.
During the unusually warm summer in Denmark in 1994, 11 clinical cases of Vibrio vulnificus infection were reported. These reports initiated an investigation of the occurrence of V. vulnificus biotypes in Danish marine environments. Samples of coastal water, sediment, shellfish, and wild fish were analyzed by preenrichment in alkaline peptone water amended with polymyxin B (2.0 × 104 U/liter) followed by streaking onto modified cellobiose-polymyxin B-colistin agar. V. vulnificus-like colonies were tested with a V. vulnificus-specific DNA probe. Low densities of V. vulnificus were detected in water (0.8 to 19 CFU/liter) from June until mid-September and in sediment (0.04 to >11 CFU/g) from July until mid-November. The presence of V. vulnificus was strongly correlated with water temperature. However, we isolated V. vulnificus from water from a mussel farm at a lower temperature than previously reported (7°C). In 1 of the 13 locations studied, V. vulnificus was found in mussels in 7 of 17 samples analyzed; this is the first report of V. vulnificus in European shellfish. V. vulnificus was also isolated from gills, intestinal contents, and mucus from wild fish. Although biotyping of 706 V. vulnificus strains isolated during our investigations revealed that the majority of the strains (99.6%) belonged to biotype 1, biotype 2 was detected in seawater at a low frequency (0.4%). Our findings provide further evidence that seawater can serve as a reservoir and might facilitate spread of V. vulnificus biotype 2 to eels, with subsequent spread to persons handling eels. In conclusion, our data demonstrate that V. vulnificus is ubiquitous in a temperate marine environment and that V. vulnificus biotype 2 is not strictly confined to eels.  相似文献   

4.
The United States has federal regulations in place to reduce the risk of seafood-related infection caused by the estuarine bacteria Vibrio vulnificus and Vibrio parahaemolyticus. However, data to support the development of regulations have been generated in a very few specific regions of the nation. More regionally specific data are needed to further understand the dynamics of human infection relating to shellfish-harvesting conditions in other areas. In this study, oysters and water were collected from four oyster harvest sites in North Carolina over an 11-month period. Samples were analyzed for the abundances of total Vibrio spp., V. vulnificus, and V. parahaemolyticus; environmental parameters, including salinity, water temperature, wind velocity, and precipitation, were also measured simultaneously. By utilizing these data, preliminary predictive management tools for estimating the abundance of V. vulnificus bacteria in shellfish were developed. This work highlights the need for further research to elucidate the full suite of factors that drive V. parahaemolyticus abundance.  相似文献   

5.
Vibrio vulnificus is an aquatic bacterium and an important human pathogen. Strains of V. vulnificus are classified into three different biotypes. The newly emerged biotype 3 has been found to be clonal and restricted to Israel. In the family Vibrionaceae, horizontal gene transfer is the main mechanism responsible for the emergence of new pathogen groups. To better understand the evolution of the bacterium, and in particular to trace the evolution of biotype 3, we performed genome-wide SNP genotyping of 254 clinical and environmental V. vulnificus isolates with worldwide distribution recovered over a 30-year period, representing all phylogeny groups. A custom single-nucleotide polymorphism (SNP) array implemented on the Illumina GoldenGate platform was developed based on 570 SNPs randomly distributed throughout the genome. In general, the genotyping results divided the V. vulnificus species into three main phylogenetic lineages and an additional subgroup, clade B, consisting of environmental and clinical isolates from Israel. Data analysis suggested that 69% of biotype 3 SNPs are similar to SNPs from clade B, indicating that biotype 3 and clade B have a common ancestor. The rest of the biotype 3 SNPs were scattered along the biotype 3 genome, probably representing multiple chromosomal segments that may have been horizontally inserted into the clade B recipient core genome from other phylogroups or bacterial species sharing the same ecological niche. Results emphasize the continuous evolution of V. vulnificus and support the emergence of new pathogenic groups within this species as a recurrent phenomenon. Our findings contribute to a broader understanding of the evolution of this human pathogen.  相似文献   

6.
Vibrio vulnificus is a natural inhabitant of estuarine waters. The three known biotypes include (i) most human pathogens, (ii) primarily eel pathogens, and (iii) pathogens associated with fish and with human wound infections in Israel. Despite the frequently lethal consequences of V. vulnificus infections, the growth rates of the various biotypes and their response to environmental changes are not well characterized. We compared the specific growth rates (μ) of a representative of each biotype by culture and quantitative PCR (qPCR) analysis in a defined medium under varied pH, temperature, and salinity. Growth rates based on culturable concentrations were always higher than those based on qPCR estimates; however, both enumeration methods yielded comparable results on the influence of environmental factors on growth rates. Temperature (25°C, 30°C, 37°C), pH (7.0, 8.0), and salinity (5 to 40‰) all had significant effects on the μ of each biotype. Temperature had the greatest effect on the μ of biotype 1 (CMCP6), whereas salinity had the greatest effect on the μ of biotypes 2 (ATCC 33147) and 3 (302/99). The biotypes' growth rates varied significantly; biotype 1 grew most rapidly, while biotype 3 grew most slowly. The highest growth rates were achieved at 37°C, pH 7.0, and salinities of 15 to 30‰ (μ = 4.0, 2.9, and 2.4 generations h(-1) for biotypes 1, 2, and 3, respectively). Other strains of the biotypes yielded comparable results, suggesting that the physiological responses of the biotypes are differentially affected by parameters that are highly variable both in estuarine environments and between the free-living and pathogen states of V. vulnificus.  相似文献   

7.
The abundance of Vibrio vulnificus in coastal environments has been linked to water temperature, while its relationship to salinity is less clear. We have developed a culture-independent, most-probable-number quantitative PCR approach to examine V. vulnificus population dynamics in Barnegat Bay, N.J. Based on the combined analysis of our results from Barnegat Bay and from the literature, the present data show that (i) V. vulnificus population dynamics are strongly correlated to water temperature and (ii) although the general trend is for V. vulnificus abundance to be inversely correlated with salinity, this relationship depends on salinity levels. Irrespective of temperature, high abundances of V. vulnificus are observed at 5 to 10 ppt, which thus appears to be the optimal salinity regime for their survival. At 20 to 25 ppt, V. vulnificus abundances show a positive correlation to salinity. Unsuccessful attempts to resuscitate V. vulnificus, combined with our inability to detect cells during the winter despite an assay adapted to detect viable but nonculturable (VBNC) cells, suggest that the decline and eventual disappearance of V. vulnificus from the water column during the winter months is due primarily to a significant reduction in population size and is not only the consequence of cells entering the VBNC state. These findings are in line with the hypothesis that the sediment serves as a refuge for a subpopulation of V. vulnificus over the winter and weather-driven mixing events during the spring initiate a summer bloom in the water column.  相似文献   

8.
While several studies on the ecology of Vibrio vulnificus in Gulf Coast environments have been reported, there is little information on the distribution of this pathogen in East Coast waters. Thus, we conducted a multiyear study on the ecology of V. vulnificus in estuarine waters of the eastern United States, employing extensive multiple regression analyses to reveal the major environmental factors controlling the presence of this pathogen, and of Vibrio spp., in these environments. Monthly field samplings were conducted between July 2000 and April 2002 at six different estuarine sites along the eastern coast of North Carolina. At each site, water samples were taken and nine physicochemical parameters were measured. V. vulnificus isolates, along with estuarine bacteria, Vibrio spp., Escherichia coli organisms, and total coliforms, were enumerated in samples from each site by using selective media. During the last 6 months of the study, sediment samples were also analyzed for the presence of vibrios, including V. vulnificus. Isolates were confirmed as V. vulnificus by using hemolysin gene PCR or colony hybridization. V. vulnificus was isolated only when water temperatures were between 15 and 27°C, and its presence correlated with water temperature and dissolved oxygen and vibrio levels. Levels of V. vulnificus in sediments were low, and no evidence for an overwintering in this environment was found. Multiple regression analysis indicated that vibrio levels were controlled primarily by temperature, turbidity, and levels of dissolved oxygen, estuarine bacteria, and coliforms. Water temperature accounted for most of the variability in the concentrations of both V. vulnificus (47%) and Vibrio spp. (48%).  相似文献   

9.
10.
Nine phage isolates infectious for Vibrio vulnificus and falling into four morphological groups were isolated from estuarine waters collected in Louisiana. Of the 60 V. vulnificus strains tested, 87% were susceptible to one or more of the isolates. With the exception of V. fluvialis, Vibrio species other than vulnificus were resistant to infection. A spectrum of enteric bacterial strains were similarly resistant. Susceptibility differences were seen between opaque (virulent) V. vulnificus strains and those with translucent (nonvirulent) colony types, with the former being more susceptible. Susceptibility patterns to infection by the nine phage isolates among the V. vulnificus test strains suggest that the latter may fall into several groups. Other aspects relating to the phage isolates are presented.  相似文献   

11.
The eel pathogen Vibrio vulnificus biotype 2 comprises at least three serovars, with serovar E being the only one involved in both epizootics of eel vibriosis and sporadic cases of human infections. The virulent strains of this serovar (VSE) have only been recovered from clinical (mainly eel tissue) sources. The main objective of this work was to design and validate a new protocol for VSE-specific isolation from environmental samples. The key element of the new protocol is the broth used for the first step (saline eel serum broth [SEB]), which contains eel serum as a nutritive and selective component. This approach takes advantage of the ability of VSE cells to grow in eel serum and thus to separate themselves from the pool of competitors. The growth yield in SEB after 8 h of incubation was 1,000 times higher for VSE strains than for their putative competitors (including biotype 1 strains of the species). The selective and differential agar Vibrio vulnificus medium (VVM) was selected from five selective media for the second step because it gave the highest plating efficiency not only for the VSE group but also for other V. vulnificus groups, including biotype 3. The entire protocol was validated by field studies, with alkaline peptone water plus VVM as a control. V. vulnificus was isolated by both protocols, but serovar E was only recovered by the new method described here. All selected serovar E isolates were identified as VSE since they were virulent for both eels and iron-overloaded mice and resisted the bactericidal action of eel and iron-overloaded human sera. In conclusion, this new protocol is a suitable method for the isolation of VSE strains from environmental samples and is recommended for epidemiological studies of the pathogenic serovar E.  相似文献   

12.
Vibrio vulnificus, a marine bacterium, is of concern in Taiwan because it causes wound infections and sepsis with a high mortality rate every year. To examine forV. vulnificus, 13 samples of seawater or oysters were collected from nine sites in Yunlin, Chiayi, and Tainan. Seventy-seven strains ofV. vulnificus were isolated from 11 samples. Among these environmental isolates, 72 (91%) were indole-positive, a characteristic of biotype 1. The remaining five strains although indole-negative, a characteristic previously found exclusively in biotype 2 strains, were all ornithine decarboxylase- and mannitol-positive, which has never been reported for biotype 2 strains. Based on the overall biochemical reactions obtained using a commercial identification system, these indole-negative strains appeared to be more like biotype 1. Fifty-seven ribotypes were identified among these isolates, indicating the great genetic divergence in this species. Of the 30 environmental isolates tested, 17 (56.7%) exhibited virulence comparable to the clinical isolates in the mouse, implying that a high proportion of theV. vulnificus strains in the marine environments might be pathogenic to humans.  相似文献   

13.
The opportunistic pathogen Vibrio vulnificus occurs naturally in estuarine habitats and is readily cultured from water and oysters under warm conditions but infrequently at ambient conditions of <15°C. The presence of V. vulnificus in other habitats, such as sediments and aquatic vegetation, has been explored much less frequently. This study investigated the ecology of V. vulnificus in water by culture and quantitative PCR (qPCR) and in sediment, oysters, and aquatic vegetation by culture. V. vulnificus samples were taken from five sites around Tampa Bay, FL. Levels determined by qPCR and culture were significantly correlated (P = 0.0006; r = 0.352); however, V. vulnificus was detected significantly more frequently by qPCR (85% of all samples) compared to culture (43%). Culturable V. vulnificus bacteria were recovered most frequently from oyster samples (70%), followed by vegetation and sediment (∼50%) and water (43%). Water temperature, which ranged from 18.5 to 33.4°C, was positively correlated with V. vulnificus concentrations in all matrices but sediments. Salinity, which ranged from 1 to 35 ppt, was negatively correlated with V. vulnificus levels in water and sediments but not in other matrices. Significant interaction effects between matrix and temperature support the hypothesis that temperature affects V. vulnificus concentrations differently in different matrices and that sediment habitats may serve as seasonal reservoirs for V. vulnificus. V. vulnificus levels in vegetation have not been previously measured and reveal an additional habitat for this autochthonous estuarine bacterium.  相似文献   

14.
This study was conducted to understand the seasonal distribution of Vibrio vulnificus in oysters from two estuaries and the effect of environmental factors on the abundance of V. vulnificus in tropical waters. V. vulnificus was detected in 56.6% of the samples tested by colony hybridization with an alkaline phosphatase-labeled oligonucleotide probe (VV-AP), and the counts ranged from <10/g during the summer months to 103/g in the monsoon season at both sites. The density of V. vulnificus appeared to be controlled more by salinity than by temperature. A nested PCR used in this study detected V. vulnificus in 85% of the samples following 18 h of enrichment in alkaline peptone water.  相似文献   

15.
The human bacterial pathogen, Vibrio vulnificus, is found in brackish waters and is concentrated by filter-feeding molluscan shellfish, especially oysters, which inhabit those waters. Ingestion of raw or undercooked oysters containing virulent strains of V. vulnificus can result in rapid septicemia and death in 50 % of victims. This review summarizes the current knowledge of the environmental interactions between these two organisms, including the effects of salinity and temperature on colonization, uptake, and depuration rates of various phenotypes and genotypes of the bacterium, and host–microbe immunological interactions.  相似文献   

16.
Vibrio vulnificus is a naturally occurring marine bacterium that causes invasive disease of immunocompromised humans following the consumption of raw oysters. It is a component of the natural microbiota of Gulf Coast estuaries and has been found to inhabit tissues of oysters, Crassostrea virginica (Gmelin 1791). The interaction of V. vulnificus with oyster host defenses has not been reported in detail. We examined the interaction of V. vulnificus with phagocytic oyster hemocytes as a function of time, temperature, bacterial concentration, pretreatment with hemolymph, and V. vulnificus translucent and opaque colony morphotypes. Within these experimental parameters, the results showed that the association of V. vulnificus with hemocytes increased with time, temperature, and initial V. vulnificus/hemocyte ratio. Pretreatment of V. vulnificus with serum or an increased serum concentration did not enhance V. vulnificus-hemocyte associations, a result suggesting the absence of opsonic activity. More than 50% of hemocytes bound the translucent, avirulent morphotype, whereas 10 to 20% were associated with the opaque, virulent form, a result indicating that the degree of encapsulation was related to resistance to phagocytosis, as previously described for mammalian phagocytes. Understanding these cellular interactions may, in part, explain the persistence of V. vulnificus in oyster tissues and the ecology of V. vulnificus in estuarine environments.  相似文献   

17.
Vibrio vulnificus is an autochthonous estuarine bacterium and a pathogen that is frequently transmitted via raw shellfish. Septicemia can occur within 24 h; however, isolation and confirmation from water and oysters require days. Real-time PCR assays were developed to detect and differentiate two 16S rRNA variants, types A and B, which were previously associated with environmental sources and clinical fatalities, respectively. Both assays could detect 102 to 103 V. vulnificus total cells in seeded estuarine water and in oyster homogenates. PCR assays on 11 reference V. vulnificus strains and 22 nontarget species gave expected results (type A or B for V. vulnificus and negative for nontarget species). The relationship between cell number and cycle threshold for the assays was linear (R2 = >0.93). The type A/B ratio of Florida clinical isolates was compared to that of isolates from oysters harvested in Florida waters. This ratio was 19:17 in clinical isolates and 5:8 (n = 26) in oysters harvested from restricted sites with poor water quality but was 10:1 (n = 22) in oysters from permitted sites with good water quality. A substantial percentage of isolates from oysters (19.4%) were type AB (both primer sets amplified), but no isolates from overlying waters were type AB. The real-time PCR assays were sensitive, specific, and quantitative in water samples and could also differentiate the strains in oysters without requiring isolation of V. vulnificus and may therefore be useful for rapid detection of the pathogen in shellfish and water, as well as further investigation of its population dynamics.  相似文献   

18.
Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor.  相似文献   

19.
This study investigated the temperature and salinity parameters associated with waters and oysters linked to food-borne Vibrio vulnificus infections. V. vulnificus was enumerated in oysters collected at three northern Gulf Coast sites and two Atlantic Coast sites from July 1994 through September 1995. Two of these sites, Black Bay, La., and Apalachicola Bay, Fla., are the source of the majority of the oysters implicated in V. vulnificus cases. Oysters in all Gulf Coast sites exhibited a similar seasonal distribution of V. vulnificus: a consistently large number (median concentration, 2,300 organisms [most probable number] per g of oyster meat) from May through October followed by a gradual reduction during November and December to ≤10 per g, where it remained from January through mid-March, and a sharp increase in late March and April to summer levels. V. vulnificus was undetectable (<3 per g) in oysters from the North and South Carolina sites for most of the year. An exception occurred when a late-summer flood caused a drop in salinity in the North Carolina estuary, apparently causing V. vulnificus numbers to increase briefly to Gulf Coast levels. At Gulf Coast sites, V. vulnificus numbers increased with water temperatures up to 26°C and were constant at higher temperatures. High V. vulnificus levels (>103 per g) were typically found in oysters from intermediate salinities (5 to 25 ppt). Smaller V. vulnificus numbers (<102 per g) were found at salinities above 28 ppt, typical of Atlantic Coast sites. On 11 occasions oysters were sampled at times and locations near the source of oysters implicated in 13 V. vulnificus cases; the V. vulnificus levels and environmental parameters associated with these samples were consistent with those of other study samples collected from the Gulf Coast from April through November. These findings suggest that the hazard of V. vulnificus infection is not limited to brief periods of unusual abundance of V. vulnificus in Gulf Coast oysters or to environmental conditions that are unusual to Gulf Coast estuaries.  相似文献   

20.
During the summer of 1981, 3,887 sucrose-negative vibrios were isolated from seawater, sediment, plankton, and animal samples taken from 80 sites from Miami, Fla., to Portland, Maine. Of these, 4.2% were able to ferment lactose. The lactose-positive strains isolated from the various samples correlated positively with pH and turbidity of the water, vibrios in the sediment and oysters, and total bacterial counts in oysters. Negative correlations were obtained for water salinity. Numerical taxonomy was performed on 95 of the lactose-fermenting environmental isolates and 23 reference strains. Five clusters resulted, with the major cluster containing 33 of the environmental isolates and all of the Vibrio vulnificus reference strains. The 33 isolates, which produced an acid reaction in lactose broth within hours of initial inoculation, represented 20% of all lactose-fermenting vibrios studied. These isolates were nearly identical phenotypically to clinical strains of V. vulnificus studied by the Centers for Disease Control, Atlanta, Ga., and by our laboratory, and their identification was confirmed by DNA-DNA hybridization studies. V. vulnificus was isolated from all sample types and from Miami to Cape Cod, Mass., and comparison of the environmental parameters of the eight subsites yielding this species with those of all 80 subsites revealed no significant differences. The majority of the isolates were obtained from animals, with clams providing most (84%) of these. On injection into mice, 82% of the V. vulnificus isolates resulted in death. Members of the remaining four clusters contained strains which differed from V. vulnificus in such phenotypic traits as luminescence and in urease or H2S production. None of the other reference cultures, including nine other Vibrio species, were contained in the remaining clusters, and these isolates could not be identified. Most of these were also lethal for mice. Phenotypic differences, potential pathogenicity, and geographic distribution of the five clusters were examined. It is concluded that V. vulnificus is a ubiquitous organism, both geographically and in a variety of environmental sources, although it occurs in relatively low numbers. The public health significance of this organism and of the other unidentified lactose-fermenting Vibrio species is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号