首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aim:  To evaluate the influence of water activity ( a w), temperature and pH on the radial growth and lag phase of Physisporinus vitreus (E-642), a basidiomycete was used in the biotechnological process of bioincising.
Methods and Results:  Radial growth was monitored for 20 days on malt extract agar medium. Five levels of a w (0·998, 0·982, 0·955, 0·928, 0·892) were combined with three incubation temperatures (10, 15, 20°C) and three pH values (4, 5, 6). Data analyses showed a highly significant effect of a w and temperature ( P <  0·0001) and a significant effect of pH ( P <  0·05). The radial growth rate and lag phase of P. vitreus were very sensitive to a w reduction. Although P. vitreus was able to grow at all the selected temperatures and pH values, the lag phase increased with decreasing a w and growth became inhibited at a w = 0·955. Optimal conditions for growth of P. vitreus were a w = 0·998, 20°C and pH 5. The response surface model provided reliable estimates of these growth parameters and confirmed a greater dependence on a w than on temperature or pH under in vitro conditions.
Conclusions:  Low levels of a w can prevent growth of P. vitreus , so wood moisture content should be adjusted accordingly.
Significance and Impact of the Study:  Implementation of these results should contribute towards the optimization and efficiency of bioincising.  相似文献   

2.
Aims: To predict the risk factors for building infestation by Serpula lacrymans, which is one of the most destructive fungi causing timber decay in buildings. Methods and Results: The growth rate was assessed on malt extract agar media at temperatures between 1·5 and 45°C, at water activity (aw) over the range of 0·800–0·993 and at pH ranges from 1·5 to 11·0. The radial growth rate (μ) and the lag phase (λ) were estimated from the radial growth kinetics via the plots radius vs time. These parameters were then modelled as a function of the environmental factors tested. Models derived from the cardinal model (CM) were used to fit the experimental data and allowed an estimation of the optimal and limit values for fungal growth. Optimal growth rate occurred at 20°C, at high aw level (0·993) and at a pH range between 4·0 and 6·0. The strain effect on the temperature parameters was further evaluated using 14 strains of S. lacrymans. The robustness of the temperature model was validated on data sets measured in two different wood‐based media (Quercus robur L. and Picea abies). Conclusions: The two‐step procedure of exponential model with latency followed by the CM with inflection gives reliable predictions for the growth conditions of a filamentous fungus in our study. The procedure was validated for the study of abiotic factors on the growth rate of S. lacrymans. Significance and Impact of the Study: This work describes the usefulness of evaluating the effect of physico‐chemical factors on fungal growth in predictive building mycology. Consequently, the developed mathematical models for predicting fungal growth on a macroscopic scale can be used as a tool for risk assessment of timber decay in buildings.  相似文献   

3.
AIMS: Growth modes predicting the effect of pH (3.5-5.0), NaCl (2-10%), i.e. aw (0.937-0.970) and temperature (20-40 degrees C) on the colony growth rate of Monascus ruber, a fungus isolated from thermally-processed olives of the Conservolea variety, were developed on a solid culture medium. METHODS AND RESULTS: Fungal growth was measured as colony diameter on a daily basis. The primary predictive model of Baranyi was used to fit the growth data and estimate the maximum specific growth rates. Combined secondary predictive models were developed and comparatively evaluated based on polynomial, Davey, gamma concept and Rosso equations. The data-set was fitted successfully in all models. However, models with biological interpretable parameters (gamma concept and Rosso equation) were highly rated compared with the polynomial equation and Davey model and gave realistic cardinal pHs, temperatures and aw. CONCLUSIONS: The combined effect of temperature, pH and aw on growth responses of M. ruber could be satisfactorily predicted under the current experimental conditions, and the models examined could serve as tools for this purpose. SIGNIFICANCE AND IMPACT OF THE STUDY: The results can be successfully employed by the industry to predict the extent of fungal growth on table olives.  相似文献   

4.
Aims: To evaluate and model the growth of Streptococcus iniae affect by temperatures (10–45°C), water activity (Aw; 0·995–0·957), and pH (5–8). Methods and Results: Temperatures, Aw, and pH were adjusted. The behaviour of S. iniae was studied and modelled. Growth curves were fitted by using logistic, Gompertz, and Baranyi models. The maximum growth rates obtained from the primary model were then modelled as a function of temperature, Aw, and pH using the Belehradek‐type models for secondary model. The optimum values for growth were found to be in the range of 35–40°C, Aw 0.995–1, and pH 6–7. The statistical characteristics of the models were validated by r2, mean square error, bias, and accuracy factors. The results of validation indicated that Baranyi model performed the best. Conclusions: The effect of temperature, Aw/NaCl, pH control of S. iniae in tilapia could be satisfactorily predicted under current experimental conditions, and the proposed models could serve as a tool for this purpose. Significance and Impact of the Study: The suggested predictive model can be used for risk assessment concerning S. iniae in tilapia.  相似文献   

5.
Anthracnose disease is a major constraint for the production of cowpea, accounting for significant yield losses in Nigeria. Trials were conducted in 2016 and 2017 to evaluate an integrated approach in the management of anthracnose disease on cowpea. The experiment was conducted in a screenhouse with ten treatments and three replications in a completely randomised design using a susceptible cowpea variety IT07K-298-9. Ten varieties of cowpea were evaluated for seed-to-plant transmission of pathogen with respect to disease incidence, severity, and yield. The highest yield of 12–14 pods per plant was observed in treatment of Trichoderma asperellum and poultry manure combined. Seed treatments using T. asperellum and soil amendment with poultry manure had a significantly (P?=?0.05) lower disease incidence of 8.4–10.5%. This study showed the potential of combining naturally occurring organic products in the ecosystem that compete favourably with synthetic fungicides in the management of anthracnose disease of cowpea.  相似文献   

6.
The influence of temperature (T) and water activity (a w) on the growth rate (μ) of seven moulds (Alternaria alternata, Aspergillus flavus, Cladosporium cladosporioides, Mucor racemosus, Penicillium chrysogenum, Rhizopus oryzae and Trichoderma harzianum) was assessed in suboptimal conditions. Firstly, the dependence of fungal growth on temperature, at a w 0.99, was modelled through an approach described previously for bacteria. A dimensionless growth rate variable: μ dimα=μ/μ optα depended on the following normalised temperature: T dim=(TT min)/(T optT min) according to a power function: μ dimα=[T dim] α , where α was an exponent to be estimated. Secondly, the same approach was used to describe the influence of a w on fungal growth, at the respective optimum temperatures for each mould. Similarly, μ dimβ=μ/μ optβ depended on the following normalised water activity: a wdim=(a wa wmin)/(a wopta wmin) according to a power function: μ dimβ=[a wdim]β. Results show: (i) for each mould, the α-value is significantly less than the β-value, confirming that water activity has a greater influence than temperature on fungal development; (ii) the α-values and the β-values depend on the mould; (iii) the α-value is less than 1 for the mesophilic mould A. flavus, whereas the other moulds are characterised by higher α-values ranging from 1.10 to 1.54; (iv) the mesophilic A. flavus exhibits a low β-value, 1.50, compared to the hydrophilic T. harzianum, β=2.44, while β-values are within the range (1.71–2.37) for the other moulds. Journal of Industrial Microbiology & Biotechnology (2002) 28, 311–315 DOI: 10.1038/sj/jim/7000248 Received 27 June 2001/ Accepted in revised form 04 February 2002  相似文献   

7.
8.
Trichoderma spp. are regularly found as a constituent of the mycoflora of many soils and are noted for their antagonistic activity against bacteria and other fungi. This latter property is the basis for the widespread interest in their use in the biological control of soil-borne fungal plant pathogens. This antagonism is partly based on their ability to produce an impressive inventory of secondary metabolites. An important group of bioactive metabolites produced by Trichoderma spp. are the non-ribosomal peptides (NRPs), especially the peptaibols. A virulent antagonistic strain, T. asperellum, which had been used in biological control strategies in Malaysia and previously examined for mycolytic enzyme production, has been studied for its potential for peptaibol production. The present research demonstrated the ability of T. asperellum to produce at least two metabolites which were identified as acid trichotoxin 1704E (Ac-Aib-Gly-Aib-Leu-Aib-Gln-Aib-Aib-Aib-Ala-Ala-Aib-Pro-Leu-Aib-Iva-Glu-Vol) and neutral trichotoxin 1717A (Ac-Aib-Gly-Aib-Leu-Aib-Gln-Aib-Aib-Aib-Ala-Aib-Aib-Pro-Leu-Aib-Iva-Gln-Vol). Addition of free Aib to the culture medium enhanced the production of trichotoxins. Biological activity of these substances was investigated against Bacillus stearothermophilus. The general characteristics of peptaibols, also found in the trichotoxins, include the presence of high proportions of the uncommon amino acid Aib, the protection of the N- and C-termini by an acetyl group and reduction of the C-terminus to 2-amino alcohols, respectively, amphipathy and microheterogeneity.  相似文献   

9.
AIMS: The fate of Listeria monocytogenes Scott A, was studied in broth, at different a(w)s (by adding NaCl or KCl from 0.0 to 1.4 mol l(-1)), pHs (from 4.0 to 7.3 by adding lactic acid), and nisin concentrations (from 0 to 100 IU ml(-1)). METHODS AND RESULTS: Increasing salt and nisin concentrations and decreasing pH resulted in lower growth rates and extended lag phases. At pH 4.5 no growth was observed while in presence of nisin and/or 1 mol l(-1) salts of both kinds, L. monocytogenes Scott A was inactivated. Equal-molar concentrations of NaCl or KCl (similar a(w)), exerted similar effects against L. monocytogenes in terms of lag phase duration, growth or death rate. The growth boundaries of L. monocytogenes Scott A at 5 degrees C were also estimated by growth/no growth turbidity data, modeled by logistic polynomial regression. The concordance of logistic models, were 99.6 and 99.8% for NaCl and KCl, respectively. CONCLUSIONS: The growth interfaces derived by both NaCl and KCl models were almost identical. Hence, NaCl can be replaced by KCl without risking the microbiological safety of the product. Increasing nisin concentrations markedly affected the interface resulting in a more inhibitory environment for L. monocytogenes Scott A. Low to medium salt concentrations (0.3-0.7 mol l(-1) of either NaCl or KCl) provided a protective effect against inhibition of L. monocytogenes Scott A by nisin. SIGNIFICANCE AND IMPACT OF THE STUDY: Modelling the growth boundaries not only contributes to the development of safer food by providing useful data, but can also be used to study interactions between factors affecting initiation of growth of pathogenic micro-organisms.  相似文献   

10.
Year-class strength in northern populations of smallmouth bass is strongly influenced by winter starvation of young-of-the-year. We examined starvation among young bass under both winter and summer light and temperature conditions. During starvation, body condition declines to a specific level and then the fish dies. Body condition at death is a well defined function of body size that remains relatively constant over a wide range of environmental conditions. Starvation rate varies systematically with body size, temperature, pH and water hardness. Available stored energy increases more rapidly with body size than starvation rate. Therefore, lifetime under starvation conditions tends to increase with increasing body size. The Q10 for starvation rate over the temperature range 2.5-8° C is 2.2. Starvation rate increases as pH declines from 7.0-4.9: the rate at pH 4.9 is ∼ 1.25 times the rate at pH 7 Starvation rate decreases as Ca concentration increases from 1 mgl−1 to 80mgl−1: the rate at 80 mg Ca 1−1 is ∼0.80 times the rate at 1 mgl−1.  相似文献   

11.
为研制复方棘孢木霉菌肥制剂,在大田条件下将等浓度(5×103cfu·cm-3土)不同组合的棘孢木霉(Trichoderma asperellum)分生孢子T1(Ta536+Ta4)、T2(Ta536+Ta4+Ta492)和T3(Ta536+Ta4+Ta492+Ta650)根施山新杨(Populus davidiana×P.alba var. Pyramidalis)组培移栽苗,研究棘孢木霉组合施用对山新杨生长及光合特性的影响。方差分析结果表明,诱导时间和不同处理对苗高、地径、叶绿素含量、叶绿素a/b值、Pn、Cond、Ci和Tr均有显著影响(P<0.05):处理组的山新杨苗高、地径及干物质量均在不同程度上高于对照组(CK),作用效果为T3 >T2 >T1 >CK;60d时,T3、T2和T1组杨树苗生物量分别比CK增加17.99%、14.28%和10.54%;15d时叶绿素含量比CK分别提高7.79%,6.91%和4.17%;叶绿素a/b值分别比CK提高7.79%、5.84%和4.73%。此外,处理组净光合速率(Pn)、胞间CO2浓度(Ci)、气孔导度(Cond)、蒸腾速率(Tr)均高于CK,并且处理组的最大净光合速率、表观量子效率以及光饱和点均高于CK。同时,诱导时间和不同处理的交互作用对检测的多数指标(除Pn和Ci外)均具有显著影响(P<0.05)。说明4个棘孢木霉菌株组合施用具有协同作用,能提高菌株对环境条件的适应性,增强促生长和改善光合的作用效果。并且T3组对山新杨苗的影响最大、作用速度最快。  相似文献   

12.
Aims: This study was conducted to characterize the growth of and aflatoxin production by Aspergillus flavus on paddy and to develop kinetic models describing the growth rate as a function of water activity (aw) and temperature. Methods and Results: The growth of A. flavus on paddy and aflatoxin production were studied following a full factorial design with seven aw levels within the range of 0·82–0·99 and seven temperatures between 10 and 43°C. The growth of the fungi, expressed as colony diameter (mm), was measured daily, and the aflatoxins were analysed using HPLC with a fluorescence detector. The maximum colony growth rates of both isolates were estimated by fitting the primary model of Baranyi to growth data. Three potentially suitable secondary models, Rosso, polynomial and Davey, were assessed for their ability to describe the radial growth rate as a function of temperature and aw. Both strains failed to grow at the marginal temperatures (10 and 43°C), regardless of the aw studied, and at the aw level of 0·82, regardless of temperature. Despite that the predictions of all studied models showed good agreement with the observed growth rates, Davey model proved to be the best predictor of the experimental data. The cardinal parameters as estimated by Rosso model were comparable to those reported in previous studies. Toxins were detected in the range of 0·86–0·99 aw with optimal aw of 0·98 and optimal temperature in the range of 25–30°C. Conclusions: The influences of aw and temperature on the growth of A. flavus and aflatoxin production were successfully characterized, and the models developed were found to be capable of providing good, related estimates of the growth rates. Significance and Impact of the Study: The results of this study could be effectively implemented in minimizing the risk of aflatoxin contamination of the paddy at postharvest.  相似文献   

13.
AIMS: The influence of temperature, water activity and pH on the growth of Aeromonas hydrophila, and on its survival after transfer in nutrient-poor water were assessed. METHODS AND RESULTS: Experiments were carried out according to a Box-Behnken matrix at 10-30 degrees C, 0.95-0.99 water activity (aw) and pH 5-9. The effect of each factor on the kinetic parameters of growth (i.e. the maximal specific growth rate, mumax, and the lag time, lambda) and on the decline of the bacteria in microcosm water (time to obtain a reduction of 5 log, T5 log) were studied by applying central composite design. CONCLUSIONS: The major effect of temperature and water activity on the growth of A. hydrophila was highlighted, whereas the effect of pH in these experimental conditions was not significant. Models describing the effect of environmental parameters on the growth of A. hydrophila were proposed. The effect of the growth environment, and particularly the incubation temperature, have an influence on the survival ability of the bacteria in nutrient-poor water. SIGNIFICANCE AND IMPACT OF THE STUDY: The Box-Behnken design was well suited to determine the influence of environmental factors on the growth of A. hydrophila and to investigate the effect of previous growth conditions on its survival in microcosm water.  相似文献   

14.
AIMS: To develop a model for the combined effect of water activity (a(w)) and temperature on growth of strains of Aspergillus niger, and comparison with data on food spoilage moulds in the literature. METHODS AND RESULTS: An extended combined model describing the growth of two strains of A. niger, as a function of temperature (25-30 degrees C) and a(w) (0.90-0.99) was developed. The growth rate (micro) was expressed as the increase in colony radial growth per unit of time. This extends the previous square root model showing the relationship between temperature and bacterial growth rate developed by Ratkowsky et al. (1983) and the parabolic relationship between the logarithm of the growth rate and a(w) developed by Gibson et al. (1994). A good correlation between the experimental data and the model predictions was obtained, with regression coefficients (r(2)) > 0.99. In addition, the use of this model allowed predictions of the cardinal a(w) levels: a(w(min)), and a(w(opt)). The estimation of the minimum a(w) levels (a(w(min))) was in accordance with data in the literature for similar and a range of other Aspergillus and related species, regardless of the solutes used for a(w) modification. The estimation of the optimal a(w) (a(w(opt))) and the optimal growth rate (micro(opt)) were in good agreement with the experimental results and data from the literature. CONCLUSIONS: This approach enables accurate prediction of the combined effects of environmental factors on growth of spoilage fungi for rapid prediction of cardinal limits using surface response curves. SIGNIFICANCE AND IMPACT OF THE STUDY: This approach is a rapid method for predicting optimal and marginal conditions for growth of a wide range of spoilage micro-organisms in relation to interacting environmental conditions and will have applications for improving shelf-life of intermediate moisture foods.  相似文献   

15.
Relationships between the growth of certain fungi isolated from city waste and pH and temperature were examined by two methods. The tested isolates showed their maximum growth and sporulation at different pHs while temperature requirements were the same (28°C), except forHumicola grisea (43°C).Cladosporium herbarum andH. grisea showed double pH optima. The ranges of pH and temperature for sporulation were more limited than those for the vegetative growth. Although all the tested isolates showed wide tolerances to pH and temperature, the degree of tolerance varied with the isolates. A considerable change from the initial pH of the liquid medium was noted at the end of the experiment.  相似文献   

16.
In the laboratory we examined the effect of pH (5–10 with one interval) on survival, reproduction, egg viability and growth rate (intrinsic growth rate—r m and population growth rate—r) of five Brachionus rotifer species (Bcalyciflorus, Bquadridentatus, Burceolaris, B. patulus and Bangularis). The pH was shown to exert a major influence on egg viability and growth rate (r m and r) for each species. The age-specific survivorship curves within a species were not significantly different at pH 6–10. The optimal pH for each species is near-neutral pH (pH 6–8), and the fecundity decreased as the pH deviated from these values. For each Brachionus species, there was no significant difference between age-specific fecundity curves at pH 7 and 8. At acid pH (pH 5 or 6) higher egg mortality was observed for each species. The r m and population r of the five Brachionus species incubated at different pHs were significantly influenced by pH. The pH supporting the highest r m or r was obtained at pH 6–8, but varied due to species. In this study Burceolaris and Bpatulus could tolerate a broad range of pH, while the populations of Bcalyciflorus, Bquadridentatus and Bangulari declined at acid conditions.  相似文献   

17.
18.
温度、盐度和pH对马氏珠母贝稚贝清滤率的联合效应   总被引:2,自引:0,他引:2  
朱晓闻  王辉  刘进  刘志刚  栗志民 《生态学报》2012,32(12):3729-3736
清滤率(Clearance rate, CR)与滤食性贝类生长发育密切相关,采用Box-Behnken设计(BBD)和响应曲面法,在实验室条件下研究了温度(18-34℃)、盐度(20-40)和pH(6.5-9.5)对马氏珠母贝(Pinctada martensii)稚贝清滤率(CR)的联合效应,旨在建立温度、盐度和pH对马氏珠母贝稚贝清滤率的定量关系模型,并通过统计优化方法得出温度、盐度和pH的最佳组合。结果表明:温度的一次效应、温度和pH的互作效应、盐度和pH的互作效应以及温度、盐度和pH的二次效应对马氏珠母贝稚贝清滤率的影响均极显著(P<0.01);盐度的一次效应、pH的一次效应以及温度和盐度的互作效应对清滤率无显著影响 (P>0.05)。实验得出的清滤率模型决定系数为0.9950,预测决定系数为0.9284,表明该模型建立有效并可用于预测马氏珠母贝稚贝的清滤率。通过采用优化方法得出,在温度26.95℃,盐度29.69,pH8.09时,稚贝清滤率达到最大,最大值为1.4894×10-3L/h,满意度为0.9886。研究结果可为马氏珠母贝滤食生理研究及稚贝培育提供理论依据。  相似文献   

19.
AIMS: This study compares the effect of temperature (4-37 degrees C) and water activity (aw: 0.99-0.87) and their interactions on the germination rates, lag times prior to germination and mycelial growth 'in vitro' of Penicillium digitatum, P. italicum and Geotrichum candidum, the main postharvest pathogens affecting citrus fruits. METHODS AND RESULTS: Germination and growth were markedly influenced by temperature and aw. Generally, lag times were longer and germination and growth rates were slower when conditions of temperature and aw were far from optimum. All the studied species were able to germinate over a range of 4-30 degrees C at 0.995 aw, although in non-optimal conditions P. digitatum only reached 40-60% of germinated conidia. At low temperatures, P. italicum germinated and grew faster than P. digitatum and G. candidum, particularly at 0.95 aw. Penicillium italicum was also able to germinate and grow in the driest studied conditions (0.87 aw), while G. candidum did not germinate under 0.95 aw. CONCLUSIONS: Knowledge of the ecological requirements of these fungi is important in order to understand their behaviour in natural situations and to predict fungal spoilage on citrus fruits.  相似文献   

20.
Effects of light and temperature, on the growth of three freshwater green algae isolated from an eutrophic lake and identified as Selenastrum minutum, Coelastrum microporum f. astroidea and Cosmarium subprotumidumwere studied in batch cultures under non-nutrient limited conditions. Experiments were performed to determine the growth rate over a wide range of light intensities (30–456 mol m–2 s–1) and temperature (15–35°C), using a 15/9 (light/dark) photoperiod cycle. The maximum growth rates and the optimum light intensities at a temperature of 35°C were 1.73 d–1 and 420 mol m–2 s–1for Selenastrum minutum, 1.64 d–1 and 400 mol m–2 s–1 for Coelastrum microporum and 1.00 d–1 and 400 mol m–2 s1 for Cosmarium subprotumidum. The results were fitted with the mathematical models of Steele (1965), Platt & Jassby (1976) and Peeters & Eilers (1978). Steele's function and equation of Platt & Jassby don't describe correctly the relationship between the growth and light intensity. In the opposite, the equation of Peeters & Eilers provides the best fit for the three species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号