首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
3.
Using a high degree of automation, the Southeast Collaboratory for Structural Genomics (SECSG) has developed high throughput pipelines for protein production, and crystallization using a two-tiered approach. Primary, or tier-1, protein production focuses on producing proteins for members of large Pfam families that lack a representative structure in the Protein Data Bank. Target genomes are Pyrococcus furiosus and Caenorhabditis elegans. Selected human proteins are also under study. Tier-2 protein production, or target rescue, focuses on those tier-1 proteins, which either fail to crystallize or give poorly diffracting crystals. This two tier approach is more efficient since it allows the primary protein production groups to focus on the production of new targets while the tier-2 efforts focus on providing additional sample for further studies and modified protein for structure determination. Both efforts feed the SECSG high throughput crystallization pipeline, which is capable of screening over 40 proteins per week. Details of the various pipelines in use by the SECSG for protein production and crystallization, as well as some examples of target rescue are described.  相似文献   

4.
Structural studies of membrane proteins are in constant evolution with the development of new improvements for their expression, purification, stabilization and crystallization. However, none of these methods still provides a universal approach to solve the structure of membrane proteins. Here we describe the crystallization of the human voltage-dependent anion channel-1 produced by a bacterial cell-free expression system. While VDAC structures have been recently solved, we propose an alternative strategy for producing the recombinant protein, which can be applied to other membrane proteins reluctant to expression, purification and crystallization by classical approaches. Despite a lot of efforts to crystallize a cell-free expressed membrane protein, this study is to our knowledge one of the first reports of a successful crystallization. Focusing on expression in a soluble and functional state, in a detergent environment, is the key to get crystals. Although the diffraction of VDAC crystals is limited, the simplicity and the rapidity to set-up and optimize this technology are drastic advantages in comparison to other methods.  相似文献   

5.
Plant storage proteins comprise a major part of the human diet. Sequence analysis has revealed that these proteins probably share a common ancestor with a fungal oxalate decarboxylase and/or related bacterial genes. Additionally, all these proteins share a central core sequence with several other functionally diverse enzymes and binding proteins, many of which are associated with synthesis of the extracellular matrix during sporulation/encystment. A possible prokaryotic relative of this sequence is a bacterial protein (SASP) known to bind to DNA and thereby protect spores from extreme environmental conditions. This ability to maintain cell viability during periods of dehydration in spores and seeds may relate to absolute conservation of residues involved in structure determination. Received: 25 April 1997 / Accepted: 29 July 1997  相似文献   

6.
The recombinant expression of integral membrane proteins is considered a major challenge, and together with the crystallization step, the major hurdle toward routine structure determination of membrane proteins. Basic methodologies for high-throughput (HTP) expression optimization of soluble proteins have recently emerged, providing statistically significant success rates for producing such proteins. Experimental procedures for handling integral membrane proteins are generally more challenging, and there have been no previous comprehensive reports of HTP technology for membrane protein production. Here, we present a generic and integrated parallel HTP strategy for cloning and expression screening of membrane proteins in their detergent solubilized form. Based on this strategy, we provide overall success rates for membrane protein production in Escherichia coli, as well as initial benchmarking statistics of parameters such as expression vectors, strains, and solubilizing detergents. The technologies were applied to 49 E. coli integral membrane proteins with human homologs and revealed that 71% of these proteins could be produced at sufficient levels to allow milligram amounts of protein to be relatively easily purified, which is a significantly higher success rate than anticipated. We attribute the high success rate to the quality and robustness of the methodology used, and to introducing multiple parameters such as different vectors, strains, and detergents. The presented strategy demonstrates the usefulness of HTP technologies for membrane protein production, and the feasibility of large-scale programs for elucidation of structure and function of bacterial integral membrane proteins.  相似文献   

7.
α-Helical membrane proteins (MPs) are the targets for many pharmaceutical drugs and play important roles in human physiology. In recent years, significant progress has been made in determining their atomic structure using X-ray crystallography. However, a major bottleneck in MP crystallography still remains, namely, the identification of conditions that give crystals that are suitable for structural determination. In 2008, we undertook an analysis of the crystallization conditions for 121 α-helical MPs to design a rationalized sparse matrix crystallization screen, MemGold. We now report an updated analysis that includes a further 133 conditions. The results reveal the current trends in α-helical MP crystallization with notable differences since 2008. The updated information has been used to design new crystallization and additive screens that should prove useful for both initial crystallization scouting and subsequent crystal optimization.  相似文献   

8.
Outer membrane proteins are structurally distinct from those that reside in the inner membrane and play important roles in bacterial pathogenicity and human metabolism. X-ray crystallography studies on >40 different outer membrane proteins have revealed that the transmembrane portion of these proteins can be constructed from either β-sheets or less commonly from α-helices. The most common architecture is the β-barrel, which can be formed from either a single anti-parallel sheet, fused at both ends to form a barrel or from multiple peptide chains. Outer membrane proteins exhibit considerable rigidity and stability, making their study through x-ray crystallography particularly tractable. As the number of structures of outer membrane proteins increases a more rational approach to their crystallization can be made. Herein we analyse the crystallization data from 53 outer membrane proteins and compare the results to those obtained for inner membrane proteins. A targeted sparse matrix screen for outer membrane protein crystallization is presented based on the present analysis.  相似文献   

9.
Determining the structure of the ligand-binding domain of the nicotinic acetylcholine receptor (nAChR) has been a long standing goal in the design of selective drugs useful in implicated diseases for this prevalent receptor family. Acetylcholine-binding proteins have proven to be valuable surrogates with structural similarity and sequence identity to the extracellular domain of the nicotinic receptor, yet these soluble proteins have their unique features and do not serve as exact replicates of the nAChRs of interest. Here we systematically modify the sequence of these proteins toward the homomeric human α7 nAChR. These chimeric proteins exhibit a shift in affinities to reflect α7 binding characteristics yet maintain expression levels and stability conducive for crystallization. We also present a pentameric humanoid nAChR extracellular domain with the structural determination of the α7 nAChR glycosylation site.  相似文献   

10.
Intrinsically disordered proteins (IDPs) and proteins with long disordered regions are highly abundant in various proteomes. Despite their lack of well-defined ordered structure, these proteins and regions are frequently involved in crucial biological processes. Although in recent years these proteins have attracted the attention of many researchers, IDPs represent a significant challenge for structural characterization since these proteins can impact many of the processes in the structure determination pipeline. Here we investigate the effects of IDPs on the structure determination process and the utility of disorder prediction in selecting and improving proteins for structural characterization. Examination of the extent of intrinsic disorder in existing crystal structures found that relatively few protein crystal structures contain extensive regions of intrinsic disorder. Although intrinsic disorder is not the only cause of crystallization failures and many structured proteins cannot be crystallized, filtering out highly disordered proteins from structure-determination target lists is still likely to be cost effective. Therefore it is desirable to avoid highly disordered proteins from structure-determination target lists and we show that disorder prediction can be applied effectively to enrich structure determination pipelines with proteins more likely to yield crystal structures. For structural investigation of specific proteins, disorder prediction can be used to improve targets for structure determination. Finally, a framework for considering intrinsic disorder in the structure determination pipeline is proposed.  相似文献   

11.
Structure determination of bacterial homologues of human disease-related proteins provides an efficient path to understanding the three-dimensional fold of proteins that are associated with human diseases. However, the precise locations of active-site residues are often quite different between bacterial and human versions of an enzyme, creating significant differences in the biological understanding of enzyme homologs. To study this hypothesis, phenylalanine hydroxylase from a bacterial source has been structurally characterized at high resolution and comparison is made to the human analog. The enzyme phenylalanine hydroxylase (PheOH) catalyzes the hydroxylation of l-phenylalanine into l-tyrosine utilizing the cofactors (6R)-l-erythro-5,6,7,8 tetrahydrobiopterin (BH(4)) and molecular oxygen. Previously determined X-ray structures of human and rat PheOH, with a sequence identity of more than 93%, show that these two structures are practically identical. It is thus of interest to compare the structure of the divergent Chromobacterium violaceum phenylalanine hydroxylase (CvPheOH) ( approximately 24% sequence identity overall) to the related human and rat PheOH structures. We have determined crystal structures of CvPheOH to high resolution in the apo-form (no Fe-added), Fe(III)-bound form, and 7,8-dihydro-l-biopterin (7,8-BH(2)) plus Fe(III)-bound form. The bacterial enzyme displays higher activity and thermal melting temperature, and structurally, differences are observed in the N and C termini, and in a loop close to the active-site iron atom.  相似文献   

12.
Structure determination of membrane proteins by crystallographic means has been facilitated by crystallization in lipidic mesophases. It has been suggested, however, that this so-called in meso method, as originally implemented, would not apply to small protein targets having ≤4 transmembrane crossings. In our study, the hypothesis that the inherent flexibility of the mesophase would enable crystallogenesis of small proteins was tested using a transmembrane pentadecapeptide, linear gramicidin, which produced structure-grade crystals. This result suggests that the in meso method should be considered as a viable means for high-resolution structure determination of integral membrane peptides, many of which are predicted to be coded for in the human genome.  相似文献   

13.
The process of experimental determination of protein structure is marred with a high ratio of failures at many stages. With availability of large quantities of data from high-throughput structure determination in structural genomics centers, we can now learn to recognize protein features correlated with failures; thus, we can recognize proteins more likely to succeed and eventually learn how to modify those that are less likely to succeed. Here, we identify several protein features that correlate strongly with successful protein production and crystallization and combine them into a single score that assesses "crystallization feasibility." The formula derived here was tested with a jackknife procedure and validated on independent benchmark sets. The "crystallization feasibility" score described here is being applied to target selection in the Joint Center for Structural Genomics, and is now contributing to increasing the success rate, lowering the costs, and shortening the time for protein structure determination. Analyses of PDB depositions suggest that very similar features also play a role in non-high-throughput structure determination, suggesting that this crystallization feasibility score would also be of significant interest to structural biology, as well as to molecular and biochemistry laboratories.  相似文献   

14.
The increasing interest in the structural arrangements and functional interdependencies of individual modules within large multidomain proteins requires the development of new methods allowing efficient production and purification of large human proteins. Heterologous expression in bacteria is still the most convenient and widely-used approach. However, most of the existing tools are not well suited to expression of cysteine-rich proteins in a native-like soluble form, and with the increasing protein size refolding may result in obtaining non-native conformations or improper disulfide bridging pattern. Here, we present an efficient method of expression and purification of muskelin, a large, multidomain, cysteine-rich eukaryotic protein involved in cell adhesion and regulation of cytoskeleton dynamics. Using a broad range of purification and solubility tags, expression strains and conditions we optimized the procedure to acquire a natively folded protein of crystallization-scale quantity and purity. The correct protein conformation and disulfide bonding were anticipated from the results of circular dichroism spectra and Ellman’s assay. Successful crystallization trials are a step towards muskelin crystal-structure determination, while the optimized expression and purification procedure can easily be applied to produce other eukaryotic proteins in the bacterial expression system.  相似文献   

15.
Polymer-driven crystallization   总被引:1,自引:0,他引:1  
Obtaining well-diffracting crystals of macromolecules remains a significant barrier to structure determination. Here we propose and test a new approach to crystallization, in which the crystallization target is fused to a polymerizing protein module, so that polymer formation drives crystallization of the target. We test the approach using a polymerization module called 2TEL, which consists of two tandem sterile alpha motif (SAM) domains from the protein translocation Ets leukemia (TEL). The 2TEL module is engineered to polymerize as the pH is lowered, which allows the subtle modulation of polymerization needed for crystal formation. We show that the 2TEL module can drive the crystallization of 11 soluble proteins, including three that resisted prior crystallization attempts. In addition, the 2TEL module crystallizes in the presence of various detergents, suggesting that it might facilitate membrane protein crystallization. The crystal structures of two fusion proteins show that the TELSAM polymer is responsible for the majority of contacts in the crystal lattice. The results suggest that biological polymers could be designed as crystallization modules.  相似文献   

16.
Despite a growing repertoire of membrane protein structures (currently ∼120 unique structures), considerations of low resolution and crystallization in the absence of a lipid bilayer require the development of techniques to assess the global quality of membrane protein folds. This is also the case for assessment of, e.g. homology models of human membrane proteins based on structures of (distant) bacterial homologues. Molecular dynamics (MD) simulations may be used to help evaluate the quality of a membrane protein structure or model. We have used a structure of the bacterial ABC transporter MsbA which has the correct transmembrane helices but an incorrect handedness and topology of their packing to test simulation methods of quality assessment. An MD simulation of the MsbA model in a lipid bilayer is compared to a simulation of another bacterial ABC transporter, BtuCD. The latter structure has demonstrated good conformational stability in the same bilayer environment and over the same timescale (20 ns) as for the MsbA model simulation. A number of comparative analyses of the two simulations were performed to assess changes in the structural integrity of each protein. The results show a significant difference between the two simulations, chiefly due to the dramatic structural deformations of MsbA. We therefore propose that MD could become a useful quality control tool for membrane protein structural biology. In particular, it provides a way in which to explore the global conformational stability of a model membrane protein fold.  相似文献   

17.
The arrival of genomic sequences to the database has provided a seemingly unlimited supply of targets for protein structure determination and the possibility of solving the structure of an entire proteome. Based on our experience with the proteomes of Pyrobaculum aerophilum and Mycobacterium tuberculosis, we have developed a simple strategy for the production of proteins for structural studies by X-ray crystallography. Our scheme demonstrates a strong protein target commitment and includes the expression of genes from these organisms in Escherichia coli. These proteins are expressed with affinity tags and purified for characterization and crystallization. We have identified protein solubility and crystallization as the two major bottlenecks in the process toward the determination of protein structures by X-ray diffraction. Strategies to overcome these bottlenecks are discussed.  相似文献   

18.
Membrane transporter proteins play critical physiological roles in the cell and constitute 5-10% of prokaryotic and eukaryotic genomes. High-resolution structural information is essential for understanding the functional mechanism of these proteins. A prerequisite for structural study is to overexpress such proteins in large quantities. In the last few years, over 20 bacterial membrane transporters were overexpressed at a level of 1 mg/l of culture or higher, most often in Escherichia coli. In this review, we analyzed those factors that affect the quantity and quality of the protein produced, and summarized recent progress in overexpression of membrane transporters from bacterial inner membrane. Rapid progress in genome sequencing provides opportunities for expressing several homologues and orthologues of the target protein simultaneously, while the availability of various expression vectors allows flexible experimental design. Careful optimization of cell culture conditions can drastically improve the expression level and homogeneity of the target protein. New sample preparation techniques for mass spectrometry of membrane proteins have enabled one to identity the rigid protein core, which can be subsequently overexpressed. Size-exclusion chromatography on HPLC has proven to be an efficient method in screening detergent, pH an other conditions required for maintaining the stability and monodispersity of the protein. Such high-quality preparations of membrane transporter proteins will probably lead to successful crystallization and structure determination of these proteins in the next few years.  相似文献   

19.
From G protein-coupled receptors to ion channels, membrane proteins represent over half of known drug targets. Yet, structure-based drug discovery is hampered by the dearth of available three-dimensional models for this large category of proteins. Other than efforts to improve membrane protein expression and stability, current strategies to improve the ability of membrane proteins to crystallize involve examining many orthologs and DNA constructs, testing the effects of different detergents for purification and crystallization, creating a lipidic environment during crystallization, and cocrystallizing with covalent or non-covalent soluble protein chaperones with an intrinsic high propensity to crystallize. In this review, we focus on this last category, highlighting successes of crystallization chaperones in membrane protein structure determination and recent developments in crystal chaperone engineering, including molecular display to enhance chaperone crystallizability, and end with a novel generic approach in development to target any membrane protein of interest.  相似文献   

20.
Membrane transporter proteins play critical physiological roles in the cell and constitute 5-10% of prokaryotic and eukaryotic genomes. High-resolution structural information is essential for understanding the functional mechanism of these proteins. A prerequisite for structural study is to overexpress such proteins in large quantities. In the last few years, over 20 bacterial membrane transporters were overexpressed at a level of 1 mg/l of culture or higher, most often in Escherichia coli. In this review, we analyzed those factors that affect the quantity and quality of the protein produced, and summarized recent progress in overexpression of membrane transporters from bacterial inner membrane. Rapid progress in genome sequencing provides opportunities for expressing several homologues and orthologues of the target protein simultaneously, while the availability of various expression vectors allows flexible experimental design. Careful optimization of cell culture conditions can drastically improve the expression level and homogeneity of the target protein. New sample preparation techniques for mass spectrometry of membrane proteins have enabled one to identity the rigid protein core, which can be subsequently overexpressed. Size-exclusion chromatography on HPLC has proven to be an efficient method in screening detergent, pH an other conditions required for maintaining the stability and monodispersity of the protein. Such high-quality preparations of membrane transporter proteins will probably lead to successful crystallization and structure determination of these proteins in the next few years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号