首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants synthesize various phenol amides. Among them, hydroxycinnamoyl (HC) tryptamines and serotonins exhibit antioxidant, anti-inflammatory, and anti-atherogenic activities. We synthesized HC–tryptamines and HC–serotonin from several HCs and either tryptamine or serotonin using Escherichia coli harboring the 4CL (4-coumaroyl CoA ligase) and CaHCTT [hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase] genes. E. coli was engineered to synthesize N-cinnamoyl tryptamine from glucose. TDC (tryptophan decarboxylase) and PAL (phenylalanine ammonia lyase) along with 4CL and CaHCTT were introduced into E. coli and the phenylalanine biosynthetic pathway of E. coli was engineered. Using this strategy, approximately 110.6 mg/L of N-cinnamoyl tryptamine was synthesized. By feeding 100 μM serotonin into the E. coli culture, which could induce the synthesis of cinnamic acid or p-coumaric acid, more than 99 μM of N-cinnamoyl serotonin and N-(p-coumaroyl) serotonin were synthesized.  相似文献   

2.
Brain neurotransmitter serotonin is involved in the regulation of many physiological functions and types of behavior. The key enzyme of serotonin synthesis in the brain is tryptophan hydroxylase-2 (TPH-2). Linkage between the C1473G polymorphism in gene tph2 causing the replacement of Pro447 by Arg447 in TPH-2 molecule and enzyme activity in the mouse brain of 10 inbred strains was found. Association of the polymorphism with the TPH-2 activity in the brain of F2 hybrids between strains C57BL/6 and CC57BR was shown. The results indicate that the C1473G polymorphism in gene tph2 is the main factor determining the genetically defined variability of enzyme activity in the mouse brain.  相似文献   

3.
THE concentrations of tryptophan normally present in the mammalian brain are below the Michaelis constant (Km) of tryptophan hydroxylase1,2, suggesting that the rate of serotonin synthesis depends more on the concentration of brain tryptophan than on the amount of enzyme. We wish to report that various treatments which have been shown to increase brain serotonin synthesis also increase the concentration of tryptophan in brain. Conversely, p-chlorophenylalanine (PCPA), which inhibits serotonin synthesis3, decreases tryptophan in brain.  相似文献   

4.
The functions of serotonin include the growth and development regulation of female germ cells as well as early embryo development. RT-PCR analysis of mRNA expression of the genes of the enzymes for synthesis and degradation and transporters and receptors of serotonin during folliculogenesis and preimplantation development of mice was performed to discover the particular mechanisms of these functions. The mRNA of tryptophan hydroxylase tph1 and monoaminoxidase maoa; membrane transporter sert and vesicular transporter vmat2; and serotonin receptors htr1b, htr1d, htr2a, htr5b, and htr7 were revealed in granulosa cells. The expression of mRNA of the aromatic amino acid decarboxylase ddc and the htr2b receptor additionally appears in the yellow body. The expression of mRNA of the genes of the tph2, ddc, and maoa enzymes; the sert, vmat1, and vmat2 transporters; and quite a number of receptors is observed during the preimplantation development, and it is transitory in most of them. The expression of all components and its dynamics suggest that the serotonergic signaling system is functionally active in mouse folliculogenesis and preimplantation development.  相似文献   

5.
p53 helps in maintaining genomic stability by undergoing cellular arrest, DNA repair or cellular apoptosis during DNA damage. So, as to find the association of p53Arg 72 Pro towards lung carcinogenesis and overall survival of North Indian lung cancer patients, single nucleotide polymorphic variant (rs1042522) was analyzed. 840 subjects including 420 cases and 420 controls were recruited and genotyped using PCR-RFLP technique for p53Arg 72 Pro polymorphic site. Association was analyzed using adjusted odds ratio along with its confidence intervals (95?% CI) and p value predicted from logistic regression whereas overall survival for lung cancer patients was obtained using Kaplan–Meir and Cox regression model for different parameters to obtain hazard ratio and survival time with statistical significance (log-rank p value). None of the variant genotypes for p53Arg 72 Pro showed any association towards lung cancer risk or any specific histological subtype. Lung cancer subjects with Pro/Pro genotype had better median survival time as compared to Arg/Pro genotype (10 months; HR?=?0.65; 95?% CI?=?0.45–0.95; p?=?0.03). Furthermore, female lung cancer patients with Arg/Pro (HR?=?0.08; 95?% CI?=?0.02–0.34; p?=?0.0005) and Pro/Pro (HR?=?0.21; 95?% CI?=?0.06–0.67; p?=?0.008) genotypes showed a better overall survival and hence a better prognosis as compared to males. Our data also reveals that lung cancer patients with ECOG scores between 0 and 1 and carrying the Pro/Pro had better chances of survival. p53 codon 72 polymorphism could play a role as a prognostic marker in lung cancer patients.  相似文献   

6.
SEROTONIN, a putative neurotransmitter in the mammalian central nervous system, is synthesized in the brain by the 5-hydroxylation and decarboxylation of the essential amino-acid L-tryptophan1,2. The control of serotonin biosynthesis seems to involve a different mechanism from that responsible for catecholamine biosynthesis3,4 in its dependence on the availability of the amino-acid precursor5,6. Thus, small doses of tryptophan that do not increase brain or plasma tryptophan concentrations beyond their normal daily ranges cause significant increases in the serotonin concentration of rat brain7. Conversely, the chronic ingestion of diets lacking in tryptophan (with casein hydrolysates or amino-acid mixtures substituted for natural proteins) depresses brain serotonin levels8–10. The dependence of serotonin biosynthesis on tryptophan availability probably arises from the unusually high substrate K M that characterizes tryptophan hydroxylase1. It seems likely that this enzyme normally functions in an unsaturated state; hence physiological increases in intraneuronal tryptophan could drive the hydroxylation of the amino-acid and, ultimately, its conversion to serotonin.  相似文献   

7.
The aim of present study was to elucidate the association of CTLA4 +49 A/G and HLA-DRB1*/DQB1* gene polymorphism in south Indian T1DM patients. The patients and controls (n?=?196 each) were enrolled for CTLA4 and HLA-DRB1*/DQB1* genotyping by RFLP/PCR-SSP methods. The increased frequencies of CTLA4 ‘AG’ (OR?=?1.99; p?=?0.001), ‘GG’ (OR?=?3.94; p?=?0.001) genotypes, and ‘G’ allele (OR?=?2.42; p?=?9.26?×?10?8) were observed in patients. Reduced frequencies of ‘AA’ (OR?=?0.35; p?=?7.19?×?10?7) and ‘A’ (OR?=?0.41; p?=?9.26?×?10?8) in patients revealed protective association. Among HLA-DRB1*/DQB1* alleles, DRB1*04 (OR?=?3.29; p?=?1.0?×?10?5), DRB1*03 (OR?=?2.81; p?=?1.9?×?10?6), DQB1*02:01 (OR?=?2.93; p?=?1.65?×?10?5), DQB1*02:02 (OR?=?3.38; p?=?0.0003), and DQB1*03:02 (OR?=?7.72; p?=?0.0003) were in susceptible association. Decreased frequencies of alleles, DRB1*15 (OR?=?0.32; p?=?2.55?×?10?7), DRB1*10 (OR?=?0.45; p?=?0.002), DQB1*06:01 (OR?=?0.43; p?=?0.0001), and DQB1*05:02 (OR?=?0.28; p?=?2.1?×?10?4) in patients were suggested protective association. The combination of DRB1*03+AG (OR?=?5.21; p?=?1.4?×?10?6), DRB1*04+AG (OR?=?2.14; p?=?0.053), DRB1*04+GG (OR?=?5.21; p?=?0.036), DQB1*02:01+AG (OR?=?4.44; p?=?3.6?×?10?5), DQB1*02:02+AG (OR?=?20.9; p?=?9.5?×?10?4), and DQB1*02:02+GG (OR?=?4.06; p?=?0.036) revealed susceptible association. However, the combination of DRB1*10+AA (OR?=?0.35; p?=?0.003), DRB1*15+AA (OR?=?0.22; p?=?5.3?×?10?7), DQB1*05:01+AA (OR?=?0.45; p?=?0.007), DQB1*05:02+AA (OR?=?0.17; p?=?1.7?×?10?4), DQB1*06:01+AA (OR?=?0.40; p?=?0.002), and DQB1*06:02+AG (OR?=?0.34; p?=?0.001) showed decreased frequency in patients, suggesting protective association. In conclusion, CTLA4/HLA-DR/DQ genotypic combinations revealed strong susceptible/protective association toward T1DM in south India. A female preponderance in disease associations was also documented.  相似文献   

8.
Attention-deficit/hyperactivity disorder (ADHD) and Parkinson’s disease (PD) involve pathological changes in brain structures such as the basal ganglia, which are essential for the control of motor and cognitive behavior and impulsivity. The cause of ADHD and PD remains unknown, but there is increasing evidence that both seem to result from a complicated interplay of genetic and environmental factors affecting numerous cellular processes and brain regions. To explore the possibility of common genetic pathways within the respective pathophysiologies, nine ADHD candidate single nucleotide polymorphisms (SNPs) in seven genes were tested for association with PD in 5333 cases and 12,019 healthy controls: one variant, respectively, in the genes coding for synaptosomal-associated protein 25 k (SNAP25), the dopamine (DA) transporter (SLC6A3; DAT1), DA receptor D4 (DRD4), serotonin receptor 1B (HTR1B), tryptophan hydroxylase 2 (TPH2), the norepinephrine transporter SLC6A2 and three SNPs in cadherin 13 (CDH13). Information was extracted from a recent meta-analysis of five genome-wide association studies, in which 7,689,524 SNPs in European samples were successfully imputed. No significant association was observed after correction for multiple testing. Therefore, it is reasonable to conclude that candidate variants implicated in the pathogenesis of ADHD do not play a substantial role in PD.  相似文献   

9.
On the basis of the winter bread wheat cultivar Obryi, two independent disomic addition lines BC12F with the chromosome of the E. sibiricus St genome are created. A practical algorithm for determining the probabilities of transmission of the odd chromosome separately through male and female gametes in selfpollination of hemizygous hybrids from the equation p2–(1 + f1f4) × p + f1 = 0 is proposed, where p is the probability of the formation of viable gametes with the considered chromosome and f1 and f4 are the empirical frequencies of the corresponding homozygotes with and without the trait. The probability of transmission of an alien univalent chromosome through pollen (p) is associated with the frequency of its transmission through the egg cell (p) in backcrosses and in self-pollination (1–f4) by the equation p = 1–f4/(1–p). The calculated empirically dependent estimates of the probabilities of transmission of the added chromosome through the egg cell p = 18.7% and through pollen p = 4.3% correspond to the empirical frequencies obtained for backcrosses. The coefficients of the gamete selection V = 0.748 and V = 0.172 are calculated, and the expected segregation for the alien trait controlled by a dominant gene located in the added chromosome is determined—with the trait: without the trait is 0.222: 0.778 in F2; 0.187: 0.813 in equational and 0.043: 0.957 in certational backcrosses.  相似文献   

10.
The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10–20 fold higher than that observed for the analogous respiratory cytochrome bc1 complex. The types of ROS produced (O2??, 1O2, and, possibly, H2O2) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p ?? (possible sources for O2??), the Rieske iron–sulfur cluster (possible source of O2?? and/or 1O2), Chl a (possible source of 1O2), and heme c n (possible source of O2?? and/or H2O2). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.  相似文献   

11.

Objectives

To prepare (R)-phenyl-1,2-ethanediol ((R)-PED) with high enantiomeric excess (ee p) and yield from racemic styrene oxide (rac-SO) at high concentration by bi-enzymatic catalysis.

Results

The bi-enzymatic catalysis was designed for enantioconvergent hydrolysis of rac-SO by a pair of novel epoxide hydrolases (EHs), a Vigna radiata EH3 (VrEH3) and a variant (AuEH2A250I) of Aspergillus usamii EH2. The simultaneous addition mode of VrEH3 and AuEH2A250I, exhibiting the highest average turnover frequency (aTOF) of 0.12 g h?1 g?1, was selected, by which rac-SO (10 mM) was converted into (R)-PED with 92.6% ee p and 96.3% yield. Under the optimized reaction conditions: dry weight ratio 14:1 of VrEH3-expressing E. coli/vreh3 to AuEH2A250I-expressing E. coli/Aueh2 A250I and reaction at 20 °C, rac-SO (10 mM) was completely hydrolyzed in 2.3 h, affording (R)-PED with 98% ee p. At the weight ratio 0.8:1 of rac-SO to two mixed dry cells, (R)-PED with 97.4% ee p and 98.7% yield was produced from 200 mM (24 mg/ml) rac-SO in 10.5 h.

Conclusions

Enantioconvergent hydrolysis of rac-SO at high concentration catalyzed by both VrEH3 and AuEH2A250I is an effective method for preparing (R)-PED with high ee p and yield.
  相似文献   

12.

Background

Diminished brain levels of two neurohormones, 5-hydroxytryptamine (5-HT; serotonin) and 1,25-dihydroxyvitamin D3 (1,25D; active vitamin D metabolite), are proposed to play a role in the atypical social behaviors associated with psychological conditions including autism spectrum disorders and depression. We reported previously that 1,25D induces expression of tryptophan hydroxylase-2 (TPH2), the initial and rate-limiting enzyme in the biosynthetic pathway to 5-HT, in cultured rat serotonergic neuronal cells. However, other enzymes and transporters in the pathway of tryptophan metabolism had yet to be examined with respect to the actions of vitamin D. Herein, we probed the response of neuronal cells to 1,25D by quantifying mRNA expression of serotonin synthesis isozymes, TPH1 and TPH2, as well as expression of the serotonin reuptake transporter (SERT), and the enzyme responsible for serotonin catabolism, monoamine oxidase-A (MAO-A). We also assessed the direct production of serotonin in cell culture in response to 1,25D.

Results

Employing quantitative real-time PCR, we demonstrate that TPH-1/-2 mRNAs are 28- to 33-fold induced by 10 nM 1,25D treatment of cultured rat serotonergic neuronal cells (RN46A-B14), and the enhancement of TPH2 mRNA by 1,25D is dependent on the degree of neuron-like character of the cells. In contrast, examination of SERT, the gene product of which is a target for the SSRI-class of antidepressants, and MAO-A, which encodes the predominant catabolic enzyme in the serotonin pathway, reveals that their mRNAs are 51–59% repressed by 10 nM 1,25D treatment of RN46A-B14 cells. Finally, serotonin concentrations are significantly enhanced (2.9-fold) by 10 nM 1,25D in this system.

Conclusions

These results are consistent with the concept that vitamin D maintains extracellular fluid serotonin concentrations in the brain, thereby offering an explanation for how vitamin D could influence the trajectory and development of neuropsychiatric disorders. Given the profile of gene regulation in cultured RN46A-B14 serotonergic neurons, we conclude that 1,25D acts not only to induce serotonin synthesis, but also functions at an indirect, molecular-genomic stage to mimic SSRIs and MAO inhibitors, likely elevating serotonin in the CNS. These data suggest that optimal vitamin D status may contribute to improving behavioral pathophysiologies resulting from dysregulation of serotonergic neurotransmission.
  相似文献   

13.
The structures of cell wall glycopolymers from the type strains of three Actinoplanes species were investigated using chemical methods, NMR spectroscopy, and mass spectrometry. Actinoplanes digitatis VKM Ac-649T contains two phosphate-containing glycopolymers: poly(diglycosyl-1-phosphate) →6)-α-D-GlcpNAc-(1-P-6)-α-D-GlcpN-(1→ and teichoic acid →1)-sn-Gro-(3-P-3)-β-[β-D-GlcpNAc-(1→2]-D-Galp-(1→. Two glycopolymers were identified in A. auranticolor VKM Ac-648T and A. cyaneus VKM Ac-1095T: minor polymer–unsubstituted 2,3-poly(glycerol phosphate), widely abundant in actinobacteria (Ac-648T), and mannan with trisaccharide repeating unit →2)-α-D-Manp-(1→2)-α-D-Manp(1→6)-α-D-Manp-(1→(Ac-1095T). In addition, both microorganisms contain a teichuronic acid of unique structure containing a pentasaccharide repeating unit with two residues of glucopyranose and three residues of diaminouronic acids in D-manno- and/or D-gluco-configuration. Each of the strains demonstrates peculiarities in the structure of teichuronic acid with respect to the ratio of diaminouronic acids and availability and location of O-methyl groups in glucopyranose residues. All investigated strains contain a unique set of glycopolymers in their cell walls with structures not described earlier for prokaryotes.  相似文献   

14.
This study investigates associations between G/A polymorphism of the epithelial PAS domain protein 1 (EPAS1) gene (rs1867785) and the maximum rate of oxygen consumption (VO2max) in male Russian athletes. The study engaged 241 male athletes from different sports; the control group of nonathletes included 92 subjects. Increased frequencies of the AA and AG genotypes of the EPAS1 gene (χ2 = 14.16, p = 0.03) were found in the cohort of male athletes. The frequencies of these alleles in the subgroups with moderate (EPAS1*A 38.1% and EPAS1*G 61.9%) and high (EPAS1*A 41.8% and EPAS1*G 58.2%) VO2max values significantly differed from those in the control group (χ2 = 7.53, p = 0.006 and χ2 = 6.58, p = 0.01, respectively). The higher aerobic capacities are probably associated with the presence of at least one minor A allele of the EPAS1 gene in the genome.  相似文献   

15.
The reductase component (MhpP) of the Sulfobacillus acidophilus TPY multicomponent phenol hydroxylase exhibits only 40 % similarity to Pseudomonas sp. strain CF600 phenol hydroxylase reductase. Amino acid sequence alignment analysis revealed that four cysteine residues (Cys-X 4 -Cys-X 2 -Cys-X 29-35 -Cys) are conserved in the N terminus of MhpP for [2Fe-2S] cluster binding, and two other motifs (RXYS and GXXS/T) are conserved in the C terminus for binding the isoalloxazine and phosphate groups of flavin adenine dinucleotide (FAD). Two motifs (S/T-R and yXCGp) responsible for binding to reduce nicotinamide adenine dinucleotide phosphate (NADPH) are also conserved in MhpP, although some residues differ. To confirm the function of this reductase, MhpP was heterologously expressed in Escherichia coli BL21(DE3) and purified. UV-visible spectroscopy and electron paramagnetic resonance spectroscopy revealed that MhpP contains a [2Fe-2S] cluster. MhpP mutants in which the four cysteine residues were substituted via site-directed mutagenesis lost the ability to bind the [2Fe-2S] cluster, resulting in a decrease in enzyme-specific oxidation of NADPH. Thin-layer chromatography revealed that MhpP contains FAD. Substrate specificity analyses confirmed that MhpP uses NADPH rather than NADH as an electron donor. MhpP oxidizes NADPH using cytochrome c, potassium ferricyanide, or nitro blue tetrazolium as an electron acceptor, with a specific activity of 1.7 ± 0.36, 0.78 ± 0.13, and 0.16 ± 0.06 U/mg, respectively. Thus, S. acidophilus TPY MhpP is a novel NADPH-dependent reductase component of phenol hydroxylase that utilizes FAD and a [2Fe-2S] cluster as cofactors.  相似文献   

16.
17.
In E. coli, glyA encodes for serine hydroxymethyltransferase (SHMT), which converts L-serine to glycine. When engineering L-serine-producing strains, it is therefore favorable to inactivate glyA to prevent L-serine degradation. However, most glyA knockout strains exhibit slow cell growth because of the resulting lack of glycine and C1 units. To overcome this problem, we overexpressed the gcvTHP genes of the glycine cleavage system (GCV), to increase the C1 supply before glyA was knocked out. Subsequently, the kbl and tdh genes were overexpressed to provide additional glycine via the L-threonine degradation pathway, thus restoring normal cell growth independent of glycine addition. Finally, the plasmid pPK10 was introduced to overexpress pgk, serA Δ197 , serC and serB, and the resulting strain E4G2 (pPK10) accumulated 266.3 mg/L of L-serine in a semi-defined medium without adding glycine, which was 3.18-fold higher than the production achieved by the control strain E3 (pPK10). This strategy can accordingly be applied to disrupt the L-serine degradation pathway in industrial production strains without causing negative side-effects, ultimately making L-serine production more efficient.  相似文献   

18.
Defects in autophagy and the resulting deposition of protein aggregates have been implicated in aging and neurodegenerative diseases. While gene targeting in the mouse has facilitated the characterization of these processes in different types of neurons, potential roles of autophagy and accumulation of protein substrates in neuroepithelial cells have remained elusive. Here we report that Atg7f/f Tyr-Cre mice, in which autophagy-related 7 (Atg7) is conditionally deleted under the control of the tyrosinase promoter, are a model for accumulations of the autophagy adapter and substrate sequestosome-1/p62 in both neuronal and neuroepithelial cells. In the brain of Atg7f/f Tyr-Cre but not of fully autophagy competent control mice, p62 aggregates were present in sporadic neurons in the cortex and other brain regions as well in epithelial cells of the choroid plexus and the ependyma. Western blot analysis confirmed a dramatic increase of p62 abundance and formation of high-molecular weight species of p62 in the brain of Atg7f/f Tyr-Cre mice relative to Atg7f/f controls. Immuno-electron microscopy showed that p62 formed filamentous aggregates in neurons and ependymal cells. p62 aggregates were also highly abundant in the ciliary body in the eye. Atg7f/f Tyr-Cre mice reached an age of more than 2 years although neurological defects manifesting in abnormal hindlimb clasping reflexes were evident in old mice. These results show that p62 filaments form in response to impaired autophagy in vivo and suggest that Atg7f/f Tyr-Cre mice are a model useful to study the long-term effects of autophagy deficiency on the homeostasis of different neuroectoderm-derived cells.  相似文献   

19.
Chen et al. have proved conclusively that lac repressor and RNA polymerase bind independently to wild type lac DNA in vitro. To explain the lacp s mutation, which causes competitive binding between repressor and polymerase, they suggest that a new promoter site has been created near the lac operator.  相似文献   

20.
The ligand field density functional theory (LFDFT) algorithm is extended to treat the electronic structure and properties of systems with three-open-shell electron configurations, exemplified in this work by the calculation of the core and semi-core 1s, 2s, and 3s one-electron excitations in compounds containing transition metal ions. The work presents a model to non-empirically resolve the multiplet energy levels arising from the three-open-shell systems of non-equivalent ns, 3d, and 4p electrons and to calculate the oscillator strengths corresponding to the electric-dipole 3d m  → ns 13d m 4p 1 transitions, with n = 1, 2, 3 and m = 0, 1, 2, …, 10 involved in the s electron excitation process. Using the concept of ligand field, the Slater-Condon integrals, the spin-orbit coupling constants, and the parameters of the ligand field potential are determined from density functional theory (DFT). Therefore, a theoretical procedure using LFDFT is established illustrating the spectroscopic details at the atomic scale that can be valuable in the analysis and characterization of the electronic spectra obtained from X-ray absorption fine structure or electron energy loss spectroscopies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号