首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epoxygenases are attractive enzymes for synthesizing important chemical synthons. Directed evolution of epoxygenase properties to production demands have been limited until recently by a lack of screening systems. The previously reported p-nitrothiophenolate (pNTP) screening system was validated through improving styrene epoxidation activity of P450 BM-3 from Bacillus megaterium. Unlike the catalytically self-sufficient P450 BM-3, most epoxygenases are multi-component systems and often significantly less active. We improved the pNTP screening system for a two-component epoxygenase, styrene monooxygenase StyAB from Pseudomonas species, by enhancing the sensitivity of the pNTP assay from 400 to 140 μM and reducing styrene evaporation from 72 to 52%. These improvements were achieved using methylated β-cyclodextrins (mβ-CD) as inclusion host for styrene. Incorporation of mβ-CD increases styrene availability over the assay period and thus enables screening for improved mutants. The pNTP screening procedure for StyAB was subsequently verified in 96-well microtiter plate screens by gas chromatography analysis of styrene conversions.  相似文献   

2.
Cytochrome P450 BM-3 from Bacillus megaterium catalyzes the subterminal hydroxylation of medium- and long-chain fatty acids at the positions omega-1, omega-2, and omega-3. A rapid and continuous spectrophotometric activity assay for cytochrome P450 BM-3 based on the conversion of p-nitrophenoxycarboxylic acids (pNCA) to omega-oxycarboxylic acids and the chromophore p-nitrophenolate was developed. In contrast to the commonly used activity assays for this enzyme, relying on the consumption of oxygen or NADPH or the use of 14C-labeled carboxylic acids, the pNCA assay can even be used with crude extracts of the recombinant enzyme from lysed Escherichia coli cells. The kinetics of p-nitrophenolate formation are directly measured at a wavelength of 410 nm using a spectrophotometer or microtiter plate reader. Sensitivity of the assay is greatly enhanced if p-nitrophenoxydodecanoic or p-nitrophenoxypentadecanoic acid are used with the F87A mutant instead of the wild-type P450 BM-3 enzyme.  相似文献   

3.
Cytochrome P450s form a ubiquitous protein family with functions including the synthesis and degradation of many physiologically important compounds and the degradation of xenobiotics. Cytochrome P450cam from Pseudomonas putida has provided a paradigm for the structural understanding of cytochrome P450s. However, the mechanism by which camphor, the natural substrate of cytochrome P450cam, accesses the buried active site is a long-standing puzzle. While there is recent crystallographic and simulation evidence for opening of a substrate-access channel in cytochrome P450BM-3, for cytochrome P450cam, no such conformational changes have been observed either in different crystal structures or by standard molecular dynamics simulations. Here, a novel simulation method, random expulsion molecular dynamics, is presented, in which substrate-exit channels from the buried active site are found by imposing an artificial randomly oriented force on the substrate, in addition to the standard molecular dynamics force field. The random expulsion molecular dynamics method was tested in simulations of the substrate-bound structure of cytochrome P450BM-3, and then applied to complexes of cytochrome P450cam with different substrates and with product. Three pathways were identified, one of which corresponds to a channel proposed earlier on the basis of crystallographic and site-directed mutagenesis data. Exit via the water-filled channel, which was previously suggested to be a product exit channel, was not observed. The pathways obtained by the random expulsion molecular dynamics method match well with thermal motion pathways obtained by an analysis of crystallographic B-factors. In contrast to large backbone motions (up to 4 A) observed in cytochrome P450BM-3 for the exit of palmitoleic acid, passage of camphor through cytochrome P450cam only requires small backbone motions (less than 2.4 A) in conjunction with side-chain rotations. Concomitantly, in almost all the exit trajectories, salt-links that have been proposed to act as ionic tethers between secondary structure elements of the protein, are perturbed.  相似文献   

4.
The reactions of cytochromes P450101 (P450cam), P450108 (P450terp), and P450102 (P450BM-3) with phenyldiazene result in the formation of phenyl-iron complexes with absorption maxima at 474-478 nm. Treatment of the cytochrome P450 complexes with K3Fe(CN)6 decreases the 474-478 nm absorbance and shifts the phenyl group from the iron to the porphyrin nitrogens. Acidification and extraction of the prosthetic group from each of the ferricyanide-treated enzymes yields a different mixture of the four possible N-phenylprotoporphyrin IX regioisomers. The ratios of the regioisomers with the phenyl ring on pyrrole rings B, A, C, and D (in order of elution from the high performance liquid chromatography column) are, respectively: cytochrome P450cam, 0:0:1:4; P450terp, 0:0:0:1; and P450BM-3, 2:10:2:1. The isomer ratio for recombinant cytochrome P450BM-3 without the cytochrome P450 reductase domain (2:9:2:1) shows that the reductase domain does not detectably perturb the active site topology of cytochrome P450BM-3. Potassium ions modulate the intensity of the spectrum of the phenyl-iron complex of cytochrome P450cam, but do not alter the N-phenyl isomer ratio. Computer graphics analysis of the crystal structure of the cytochrome P450cam phenyl-iron complex indicates that the active site of cytochrome P450cam is open above pyrrole ring D and, to a small extent, pyrrole ring C, in complete agreement with the observed N-phenylprotoporphyrin IX regioisomer pattern. The regioisomer ratios indicate that the active site of cytochrome P450terp is only open above pyrrole ring D, whereas that of cytochrome P450BM-3 is open to some extent above all the pyrrole rings but particularly above pyrrole ring A. The bacterial enzymes thus have topologies distinct from each other and from those of the mammalian enzymes so far investigated, which have active sites that are open to a comparable extent above pyrrole rings A and D.  相似文献   

5.
Powerful directed evolution methods have been developed for tailoring proteins to our needs in industrial applications. Here, the authors report a medium-throughput assay system designed for screening mutant libraries of oxygenases capable of inserting a hydroxyl group into a C-H bond of aromatic or O-heterocyclic compounds and for exploring the substrate profile of oxygenases. The assay system is based on 4-aminoantipyrine (4-AAP), a colorimetric phenol detection reagent. By using 2 detection wavelengths (509 nm and 600 nm), the authors achieved a linear response from 50 to 800 microM phenol and standard deviations below 11% in 96-well plate assays. The monooxygenase P450 BM-3 and its F87A mutant were used as a model system for medium-throughput assay development, identification of novel substrates (e.g., phenoxytoluene, phenylallyether, and coumarone), and discovery of P450 BM-3 F87A mutants with 8-fold improvement in 3-phenoxytoluene hydroxylation activity. This activity increase was achieved by screening a saturation mutagenesis library of amino acid position Y51 using the 4-AAP protocol in the 96-well format.  相似文献   

6.
催化吲哚生成靛蓝的细胞色素P450BM-3 定向进化研究   总被引:6,自引:0,他引:6  
以催化吲哚产生的靛蓝在 630 nm 处具有特殊的吸收峰为高通量筛选指标,将来源于 Bacillus megaterium 的细胞色素 P450BM-3 单加氧酶的基因序列用易错聚合酶链式反应进行定向进化,通过多轮突变,在原有的能产靛蓝的高活力突变酶的基础上成功获得了三个高于亲本酶的突变酶,突变酶的酶活分别是亲本酶的 6.6 倍 (hml001) , 9.6 倍 (hml002) 和 5.3 倍 (hml003) ,并对突变酶的动力学参数进行了分析 . 突变酶 DNA 测序的结果表明, hml001 含有一个有义氨基酸置换 I39V , hml002 含有三个有义氨基酸置换 D168N , A225V , K440N , hml003 含有一个有义氨基酸置换 E435D ,这些突变位点有些远离底物结合部位,有些位于底物结合部位 .  相似文献   

7.
We have converted cytochrome P450 BM-3 from Bacillus megaterium (P450 BM-3), a medium-chain (C12-C18) fatty acid monooxygenase, into a highly efficient catalyst for the conversion of alkanes to alcohols. The evolved P450 BM-3 exhibits higher turnover rates than any reported biocatalyst for the selective oxidation of hydrocarbons of small to medium chain length (C3-C8). Unlike naturally occurring alkane hydroxylases, the best known of which are the large complexes of methane monooxygenase (MMO) and membrane-associated non-heme iron alkane monooxygenase (AlkB), the evolved enzyme is monomeric, soluble, and requires no additional proteins for catalysis. The evolved alkane hydroxylase was found to be even more active on fatty acids than wild-type BM-3, which was already one of the most efficient fatty acid monooxgenases known. A broad range of substrates including the gaseous alkane propane induces the low to high spin shift that activates the enzyme. This catalyst for alkane hydroxylation at room temperature opens new opportunities for clean, selective hydrocarbon activation for chemical synthesis and bioremediation.  相似文献   

8.
Cytochrome P-450BM-3 is a catalytically self-sufficient fatty acid omega-hydroxylase with two domains. Functional and primary structure analyses of the hemo- and flavoprotein domains of cytochrome P-450BM-3 and the corresponding microsomal cytochrome P-450 system have shown that these proteins are highly homologous. Prior attempts to reconstitute the fatty acid hydroxylation function of cytochrome P-450BM-3, utilizing the two domains, obtained either by trypsinolysis or by recombinant methods, were unsuccessful. In this paper, we describe the reconstitution of the fatty acid hydroxylation activity of cytochrome P-450BM-3 utilizing the recombinantly produced flavoprotein domain (Oster, T., Boddupalli, S. S., and Peterson, J. A. (1991) J. Biol. Chem. 266, 22718-22725) and its hemoprotein counterpart. The rate of fatty acid-dependent oxygen consumption was shown to be linear when increasing concentrations of the hemoprotein domain are added to a fixed concentration of the flavoprotein domain and vice versa. The combination of the hemo- and flavoprotein domains in a ratio of 20:1 respectively, in the reaction mixture, results in the transfer of 80% of the reducing equivalents from NADPH for the hydroxylation of palmitate at 25 degrees C. The ratio of the regioisomeric products obtained for lauric, myristic, and palmitic acids was similar to that obtained with the holoenzyme form of cytochrome P-450BM-3. The reconstitution of the fatty acid omega-hydroxylase activity, using the soluble domains of cytochrome P-450BM-3, without added factors such as lipids, may be useful for structure/function comparisons to their eukaryotic counterparts.  相似文献   

9.
Cytochrome P450s are a superfamily of heme containing enzymes that use molecular oxygen and electrons from reduced nicotinamide cofactors to monooxygenate organic substrates. The fatty acid hydroxylase P450BM-3 has been particularly widely studied due to its stability, high activity, similarity to mammalian P450s, and presence of a cytochrome P450 reductase domain that allows the enzyme to directly receive electrons from NADPH without a requirement for additional redox proteins. We previously characterized the substrate N-palmitoylglycine, which found extensive use in studies of P450BM-3 due to its high affinity, high turnover number, and increased solubility as compared to fatty acid substrates. Here, we report that even higher affinity substrates can be designed by acylation of other amino acids, resulting in P450BM-3 substrates with dissociation constants below 100 nM. N-Palmitoyl-l-leucine and N-palmitoyl-l-methionine were found to have the highest affinity, with dissociation constants of less than 8 nM and turnover numbers similar to palmitic acid and N-palmitoylglycine. The interactions of the amino acid side chains with a hydrophobic pocket near R47, as revealed by our crystal structure determination of N-palmitoyl-l-methionine bound to the heme domain of P450BM-3, appears to be responsible for increasing the affinity of substrates. The side chain of R47, previously shown to be important in interactions with negatively charged substrates, does not interact strongly with N-palmitoyl-l-methionine and is found positioned at the enzyme-solvent interface. These are the tightest binding substrates for P450BM-3 reported to date, and the affinity likely approaches the maximum attainable affinity for the binding of substrates of this size to P450BM-3.  相似文献   

10.
Quorum sensing is the process by which bacteria alter gene regulation in response to their population density. The enzymatic inactivation of quorum signals has shown promise for use in genetically modified organisms resistant to pathogens. We recently characterized the ability of a cytochrome P450, P450BM-3, to oxidize the quorum sensing signals known as acyl homoserine lactones. The oxidation of the acyl homoserine lactones reduced their activity as quorum signals. The enzyme also oxidized the inactive lactonolysis products, acyl homoserines. The enzyme showed similar binding affinity for the acyl homoserine lactones and acyl homoserines. The latter reaction may lead to problems when lactonases and the P450-dependent system are used in tandem, as oxidation of the acyl homoserines produced by lactonolysis in vivo may compete with acyl homoserine lactone oxidation by the cytochrome P450. We report here that a single mutation (R47S) in P450BM-3 is capable of increasing the acyl homoserine lactone: acyl homoserine substrate binding selectivity of the enzyme nearly 250-fold, reducing the potential for competition by acyl homoserines and significantly enhancing the potential for use of P450BM-3 as part of a pathogen resistance system in genetically modified crops.  相似文献   

11.
Electro enzymatic processes offer novel opportunities in catalysis by combining advantages of enzyme catalysis and electrochemistry. An efficient electrochemical cofactor substitution system can help to overcome economical hurdles for the technical use of cofactor dependent enzymes. The in vitro biocatalysis with P450 BM-3 was investigated aiming for the substitution of the expensive natural cofactor NADPH by electrochemistry as “electron source”. An electrochemical 24-well microtiter plate (eMTP) was developed, which can be employed in a standard microtiter plate reader and enables parallelized electrochemical experiments in combination with simultaneous optical measurements. The eMTP was applied to screen a P450 monooxygenase BM-3 mutein library and determine the behavior of P450 BM-3 muteins in an electrochemically driven surrogate assay with the mediator cobalt sepulchrate. Besides determining reaction rates also the influence of single reaction parameters e.g. applied potential, enzyme and mediator concentration were measured. Additionally the developed eMTP based screening system allows a fast development of an electro enzymatic process.  相似文献   

12.
Cytochrome p450 BM-3 (EC 1.14.14.1) catalyzes the hydroxylation and/or epoxidation of a broad range of substrates, including alkanes, alkenes, alcohols, fatty acids, amides, polyaromatic hydrocarbons, and heterocycles. For many of these notoriously water-insoluble compounds, p450 BM-3's K(m) values are in the millimolar range. Polar organic cosolvents are therefore added to increase substrate solubility and achieve high catalytic efficiency. Using p450 BM-3 as a catalyst for these important transformations requires that we improve its ability to tolerate the cosolvents. By directed evolution, we improved the activity of p450 BM-3 in the presence of dimethylsulfoxide (DMSO) and tetrahydrofuran (THF), achieving increases in specific activity up to 10-fold in 2% (v/v) THF and 6-fold in 25% (v/v) DMSO. The engineered p450 BM-3's are also significantly more resistant to acetone, acetonitrile, dimethylformamide, and ethanol as cosolvents in the reaction.  相似文献   

13.
In a previous publication (Narhi, L. O., and Fulco, A. J. (1986) J. Biol. Chem. 261, 7160-7169) we described the characterization of a 119,000-dalton P-450 cytochrome that is strongly induced by barbiturates in Bacillus megaterium. In the presence of NADPH and O2, this single polypeptide can catalyze the hydroxylation of long-chain fatty acids without the aid of any other protein. The gene encoding this unique monooxygenase (cytochrome P-450BM-3) has now been cloned by an immunochemical screening technique. The Escherichia coli clone harboring the recombinant plasmid produces a 119,000-dalton protein that appears to be electrophoretically and immunochemically identical to the B. megaterium enzyme and contains the same N-terminal amino acid sequence. The recombinant DNA product also exhibits the characteristic cytochrome P-450 spectrum and is fully functional as a fatty acid monooxygenase. In E. coli, the synthesis of P-450BM-3 is directed by its own promoter included in the DNA insert and proceeds constitutively at a very high rate but is not stimulated by pentobarbital. However, when the cloned P-450BM-3 gene, either intact or in a truncated form, is introduced back into B. megaterium via an E. coli/Bacillus subtilis shuttle vector, its expression is constitutively repressed but is induced by pentobarbital. This finding demonstrates that the regulatory region of the P-450BM-3 gene that responds to barbiturates is included in the cloned DNA. The evidence also indicates that pentobarbital cannot directly act on the gene to cause induction but presumably interacts with another component such as a repressor molecule that is present in B. megaterium but is absent in the E. coli clone.  相似文献   

14.
15.
Rational evolution of a medium chain-specific cytochrome P-450 BM-3 variant   总被引:3,自引:0,他引:3  
The single mutant F87A of cytochrome P-450 BM-3 from Bacillus megaterium was engineered by rational evolution to achieve improved hydroxylation activity for medium chain length substrates (C8-C10). Rational evolution combines rational design and directed evolution to overcome the drawbacks of these methods when applied individually. Based on the X-ray structure of the enzyme, eight mutation sites (P25, V26, R47, Y51, S72, A74, L188, and M354) were identified by modeling. Sublibraries created by site-specific randomization mutagenesis of each single site were screened using a spectroscopic assay based on omega-p-nitrophenoxycarboxylic acids (pNCA). The mutants showing activity for shorter chain length substrates were combined, and these combi-libraries were screened again for mutants with even better catalytic properties. Using this approach, a P-450 BM-3 variant with five mutations (V26T, R47F, A74G, L188K, and F87A) that efficiently hydrolyzes 8-pNCA was obtained. The catalytic efficiency of this mutant towards omega-p-nitrophenoxydecanoic acid (10-pNCA) and omega-p-nitrophenoxydodecanoic acid (12-pNCA) is comparable to that of the wild-type P-450 BM-3.  相似文献   

16.
Here, we describe the development of a bi-enzymatic biosensor that simplifies the sample pretreatment steps for insecticide detection, and opens the way for a highly sensitive detection of phosphorothionates in food. These compounds evolve their inhibitory activity towards acetylcholinesterases (AChEs) only after oxidation, which is performed in vivo by P450 monooxygenases. Consequently, phosphorothionates require a suitable sample pretreatment by selective oxidation to be detectable in AChE based systems. In this study, enzymatic phosphorothionate activation and AChE inhibition were integrated in a single biosensor unit. A triple mutant of cytochrome P450 BM-3 (CYP 102-A1) and Nippostrongylus brasiliensis AChE (NbAChE) was immobilized using a fluoride catalyzed sol-gel process. Different sol-gel types were fabricated and characterized regarding enzyme loading capacity and enzyme activity containment. The enzyme sol-gel itself already proved to be suitable for the highly sensitive detection of paraoxon and parathion in a spectrometric assay. A method for screen-printing of this enzyme sol-gel on thick film electrodes was developed. Finally, amperometric biosensors containing coimmobilized NbAChE and the cytochrome P450 BM-3 mutant were produced and characterized with respect to signal stability, organophosphate detection, and storage stability. The detection limits achieved were 1 microg/L for paraoxon and 10 microg/L for parathion, which is according to EC regulations the highest tolerable pesticide concentration in infant food.  相似文献   

17.
A J Fulco  R T Ruettinger 《Life sciences》1987,40(18):1769-1775
In a recent publication (Narhi, L.O. and Fulco, A.J.[1986] J. Biol. Chem. 261, 7160-7169) we described the characterization of a catalytically self-sufficient 119,000 Dalton cytochrome P-450 fatty acid monooxygenase (P-450BM-3) induced by barbiturates in Bacillus megaterium ATCC 14581. We have now examined cell-free preparations from 12 distinct strains of B. megaterium and from one or two strains each of B. alvei, B. brevis, B. cereus, B. licheniformis, B. macerans, B. pumilis and B. subtilis for the presence of this inducible enzyme. Using Western blot analyses in combination with assays for fatty acid hydroxylase activity and cytochrome P-450, we were able to show that 11 of the 12 B. megaterium strains contained not only a strongly pentobarbital-inducible fatty acid monooxygenase identical to or polymorphic with P-450BM-3 but also significant levels of two smaller P-450 cytochromes that were the same as or similar to cytochromes P-450BM-1 and P-450BM-2 originally found in ATCC 14581. Unlike the 119,000 Dalton P-450, however, the two smaller P-450s were generally easily detectable in cultures grown to stationary phase in the absence of barbiturates and, with some exceptions, were not strongly induced by pentobarbital. None of the non-megaterium species of Bacillus tested exhibited significant levels of either fatty acid monooxygenase activity or cytochrome P-450. The one strain of B. megaterium that lacked inducible P-450BM-3 was also negative for BM-1 and BM-2. However, this strain (ATCC 13368) did contain a small but significant level of another P-450 cytochrome that others have identified as the oxygenase component of a steroid 15-beta-hydroxylase system. Our evidence suggests that the BM series of P-450 cytochromes is encoded by chromosomal (rather than by plasmid) DNA.  相似文献   

18.
Directed evolution has been successfully applied to the design of industrial biocatalysts for enhanced catalytic efficiency and stability, and for examining the molecular basis of enzyme function. Xenobiotic-metabolizing mammalian cytochromes P450 with their catalytic versatility and broad substrate specificity offer the possibility of widespread applications in industrial synthesis, medicine, and bioremediation. However, the requirement for NADPH-cytochrome P450 reductase, often cytochrome b5, and an expensive cofactor, NADPH, complicates the design of mammalian P450 enzymes as biocatalysts. Recently, Guengerich and colleagues have successfully performed directed evolution of P450s 1A2 and 2A6 initially by using colony-based colorimetric and genotoxicity screening assays, respectively, followed by in vitro fluorescence-based activity screening assays. More recently, our laboratory has developed a fluorescence-based in vitro activity screening assay system for enhanced catalytic activity of P450s 2B1 and 3A4. The studies indicate an important role of amino acid residues outside of the active site, which would be difficult to target by other methods. The approach can now be expanded to design these as well as new P450s using more targeted substrates of environmental, industrial, and medical importance.  相似文献   

19.
A method for direct registration of CYP51b1 (sterol-14α-demethylase) activity with coumarin derivatives as substrate has been proposed. Determination of catalytic activity of this enzyme with 7-aminocoumarin-4-acetic acid (ACAC) is based on registration of the increase of fluorescence (λexcitation = 360 nm and λemission = 435 nm) at 30°C. In the model system for assay of CYP51b1 activity BMR (a flavin domain of the bacterial cytochrome P450BM-3) may serve as the electron donor. The developed method is simple, highly sensitive and accurate; it can be used for screening of sterol 14α-demethylase inhibitors.  相似文献   

20.
In vitro biocatalysis with cytochrome P450 BM-3 was investigated aiming for the substitution of the expensive natural cofactor NADPH by electrochemistry. The monooxygenase was immobilized on electrodes by entrapment in polypyrrole as a conductive polymer for electrochemically wiring the enzyme. Electropolymerization of pyrrole proved to be a useful means of immobilising an active cytochrome P450 BM-3 mutein on platinum and glassy carbon electrodes without denaturation. Repeatedly sweeping the electric potential between −600 and +600 mV versus Ag/AgCl led to enzymatically-catalysed product formation while in the absence of the enzyme no product formed under otherwise identical conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号