首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Exposure of MDA-MB-468 cells to ionizing radiation (IR) caused biphasic activation of ERK as indicated by its phosphorylation at Thr202/Tyr204. Specific epidermal growth factor receptor (EGFR) inhibitor AG1478 and specific Src inhibitor PP2 inhibited IR-induced ERK1/2 activation but phosphatidylinositol-3 kinase inhibitor wortmannin did not. IR caused EGFR tyrosine phosphorylation, whereas it did not induce EGFR autophosphorylation at Tyr992, Tyr1045, and Tyr1068 or Src-dependent EGFR phosphorylation at Tyr845. SHP-2, which positively regulates EGFR/Ras/ERK signaling cascade, became activated by IR as indicated by its phosphorylation at Tyr542. This activation was inhibited by PP2 not by AG1478, which suggests Src-dependent activation of SHP-2. Src and PTPalpha, which positively regulates Src, became activated as indicated by phosphorylation at Tyr416 and Tyr789, respectively. These data suggest that IR-induced ERK1/2 activation involves EGFR through a Src-dependent pathway that is distinct from EGFR ligand activation.  相似文献   

4.
5.
Both the epidermal growth factor receptor (EGFR) and protein kinase C (PKC) play important roles in glioblastoma invasive growth; however, the interaction between the EGFR and PKC is not well characterized in glioblastomas. Treatment with EGF stimulated global phosphorylation of the EGFR at Tyr(845), Tyr(992), Tyr(1068), and Tyr(1045) in glioblastoma cell lines (U-1242 MG and U-87 MG). Interestingly, phorbol 12-myristate 13-acetate (PMA) stimulated phosphorylation of the EGFR only at Tyr(1068) in the two glioblastoma cell lines. Phosphorylation of the EGFR at Tyr(1068) was not detected in normal human astrocytes treated with the phorbol ester. PMA-induced phosphorylation of the EGFR at Tyr(1068) was blocked by bisindolylmaleimide (BIM), a PKC inhibitor, and rottlerin, a PKCdelta-specific inhibitor. In contrast, Go 6976, an inhibitor of classical PKC isozymes, had no effect on PMA-induced EGFR phosphorylation. Furthermore, gene silencing with PKCdelta small interfering RNA (siRNA), siRNA against c-Src, and mutant c-Src(S12C/S48A) and treatment with a c-Src inhibitor (4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine) abrogated PMA-induced EGFR phosphorylation at Tyr(1068). PMA induced serine/threonine phosphorylation of Src, which was blocked by both BIM and rottlerin. Inhibition of the EGFR with AG 1478 did not significantly alter PMA-induced EGFR Tyr(1068) phosphorylation, but completely blocked EGF-induced phosphorylation of the EGFR. The effects of PMA on MAPK phosphorylation and glioblastoma cell proliferation were reduced by BIM, rottlerin, the MEK inhibitor U0126, and PKCdelta and c-Src siRNAs. Taken together, our data demonstrate that PMA transactivates the EGFR and increases cell proliferation by activating the PKCdelta/c-Src pathway in glioblastomas.  相似文献   

6.
Co-overexpression of the epidermal growth factor (EGF) receptor (EGFR) and c-Src frequently occurs in human tumors and is linked to enhanced tumor growth. In experimental systems this synergistic growth requires EGF-dependent association of c-Src with the EGFR and phosphorylation of Tyr-845 of the receptor by c-Src. A search for signaling mediators of Tyr(P)-845 revealed that mitochondrial cytochrome c oxidase subunit II (CoxII) binds EGFR in a Tyr(P)-845- and EGF-dependent manner. In cells this association involves translocation of EGFR to the mitochondria, but regulation of this process is ill-defined. The current study demonstrates that c-Src translocates to the mitochondria with similar kinetics as EGFR and that the catalytic activity of EGFR and c-Src as well as endocytosis and a mitochondrial localization signal are required for these events. CoxII can be phosphorylated by EGFR and c-Src, and EGF stimulation reduces Cox activity and cellular ATP, an event that is dependent in large part on EGFR localized to the mitochondria. These findings suggest EGFR plays a novel role in modulating mitochondrial function via its association with, and modification of CoxII.  相似文献   

7.
Phospholipase Cgamma1 (PLCgamma1) represents a major downstream signalling component of the epidermal growth factor (EGF) receptor (EGFR) and is activated by tyrosine phosphorylation. Here we show for the first time that cellular knockdown of protein kinase Cepsilon (PKCepsilon) leads to decreased activation of PLCgamma1 by EGF and that EGF induces tyrosine phosphorylation of PKCepsilon as well as association of PKCepsilon with both EGFR and PLCgamma1. Using several mutants, co-immunoprecipitation and phosphopeptide-based pull-down experiments we found that in dependency on c-Src and EGF-stimulation PKCepsilon may bind to the c-Src-specific phosphorylation site pY845-EGFR. Furthermore, we identified a single tyrosine residue, PKCepsilon-Y573, within a consensus binding sequence of the C-terminal SH2 domain of PLCgamma1 which is critical for both tyrosine phosphorylation of PKCepsilon and its association with PLCgamma1. Thus, in particular cells and independent of the kinase activity PKCepsilon may form a signalling module with EGFR and PLCgamma1. Thereby the tyrosine phosphorylation of PLCgamma1 via the EGFR may be facilitated. This is a novel function of PKCepsilon upstream of PLCgamma1 and a novel paradigm for the EGF-induced formation of multi-protein complexes.  相似文献   

8.
Phosphorylation of epidermal growth factor receptor (EGFR) on tyrosine 845 by c-Src has been shown to be important for cell proliferation and migration in several model systems. This cross talk between EGFR and Src family kinases (SFKs) is one mechanism for resistance to EGFR inhibitors both in cell models and in the clinic. Here, we show that phosphorylation of tyrosine 845 on EGFR is required for proliferation and transformation using several cell models of breast cancer. Overexpression of EGFR-Y845F or treating cells with the SFK inhibitor dasatinib abrogated tyrosine 845 phosphorylation, yet had little to no effect on other EGFR phosphorylation sites or EGFR kinase activity. Abrogation of Y845 phosphorylation inhibited cell proliferation and transformation, even though extracellular signal-regulated kinase (ERK) and Akt remained active under these conditions. Importantly, cotransfection of mitogen-activated protein kinase (MAPK) kinase 3 and p38 MAPK restored cell proliferation in the absence of EGFR tyrosine 845 phosphorylation. Taken together, these data demonstrate a novel role for p38 MAPK signaling downstream of EGFR tyrosine 845 phosphorylation in the regulation of breast cancer cell proliferation and transformation and implicate SFK inhibitors as a potential therapeutic mechanism for overcoming EGFR tyrosine kinase inhibitor resistance in breast cancer.  相似文献   

9.
10.
Bromocriptine, acting through the dopamine D2 receptor, provides robust protection against apoptosis induced by oxidative stress in PC12-D2R and immortalized nigral dopamine cells. We now report the characterization of the D2 receptor signaling pathways mediating the cytoprotection. Bromocriptine caused protein kinase B (Akt) activation in PC12-D2R cells and the inhibition of either phosphoinositide (PI) 3-kinase, epidermal growth factor receptor (EGFR), or c-Src eliminated the Akt activation and the cytoprotective effects of bromocriptine against oxidative stress. Co-immunoprecipitation studies showed that the D2 receptor forms a complex with the EGFR and c-Src that was augmented by bromocriptine, suggesting a cross-talk between these proteins in mediating the activation of Akt. EGFR repression by inhibitor or by RNA interference eliminated the activation of Akt by bromocriptine. D2 receptor stimulation by bromocriptine induced c-Src tyrosine 418 phosphorylation and EGFR phosphorylation specifically at tyrosine 845, a known substrate of Src kinase. Furthermore, Src tyrosine kinase inhibitor or dominant negative Src interfered with Akt translocation and phosphorylation. Thus, the predominant signaling cascade mediating cytoprotection by the D2 receptor involves c-Src/EGFR transactivation by D2 receptor, activating PI 3-kinase and Akt. We also found that the agonist pramipexole failed to stimulate activation of Akt in PC12-D2R cells, providing an explanation for our previous observations that, despite efficiently activating G-protein signaling, this agonist had little cytoprotective activity in this experimental system. These results support the hypothesis that specific dopamine agonists stabilize distinct conformations of the D2 receptor that differ in their coupling to G-proteins and to a cytoprotective c-Src/EGFR-mediated PI-3 kinase/Akt pathway.  相似文献   

11.
Active, wild-type v-Src and its kinase-dead double Y416F-K295N mutant were expressed in hamster fibroblasts. Expression of the active v-Src induced activation of endogenous c-Src and increased general protein-tyrosine phosphorylation in the infected cells. Expression of the kinase-dead mutant induced hypophosphorylation of Tyr416 of the endogenous c-Src. The inactivation of c-Src was reversible, as confirmed by in vitro kinase activity of c-Src immunoprecipitated from the kinase-dead v-Src-expressing cells. Both activation and inactivation of c-Src may be explained by direct interaction of the v-Src and c-Src that may either facilitate transphosphorylation of the regulatory Tyr416 in the activation loop, or prevent it by formation of transient dead-end complexes of the Y416F-K295N mutant with c-Src. The interaction was also indicated by co-localization of v- and c-Src proteins in immunofluorescent images of the infected cells. These results suggest that dimerization of Src plays an important role in the regulation of Src tyrosine kinase activity.  相似文献   

12.
Growth hormone (GH) promotes signaling by causing activation of the non-receptor tyrosine kinase, JAK2, which associates with the GH receptor. GH causes phosphorylation of epidermal growth factor receptor (EGFR; ErbB-1) and its family member, ErbB-2. For EGFR, JAK2-mediated GH-induced tyrosine phosphorylation may allow EGFR to serve as a scaffold for GH signaling. For ErbB-2, GH induces serine/threonine phosphorylation that dampens basal and EGF-induced ErbB-2 kinase activation. We now further explore GH-induced EGFR phosphorylation in 3T3-F442A, a preadipocytic fibroblast cell line that expresses endogenous GH receptor, EGFR, and ErbB-2. Using a monoclonal antibody that recognizes ERK consensus site phosphorylation (PTP101), we found that GH caused PTP101-reactive phosphorylation of EGFR. This GH-induced EGFR phosphorylation was prevented by MEK1 inhibitors but not by a protein kinase C inhibitor. Although GH did not discernibly affect EGF-induced EGFR tyrosine phosphorylation, we observed by immunoblotting a substantial decrease of EGF-induced EGFR degradation in the presence of GH. Fluorescence microscopy studies indicated that EGF-induced intracellular redistribution of an EGFR-cyan fluorescent protein chimera was markedly reduced by GH cotreatment, in support of the immunoblotting results. Notably, protection from EGF-induced degradation and inhibition of EGF-induced intracellular redistribution afforded by GH were both prevented by a MEK1 inhibitor, suggesting a role for GH-induced ERK activation in regulating the trafficking itinerary of the EGF-stimulated EGFR. Finally, we observed augmentation of early aspects of EGF signaling (EGF-induced ERK2 activation and EGF-induced Cbl tyrosine phosphorylation) by GH cotreatment; the GH effect on EGF-induced Cbl tyrosine phosphorylation was also prevented by MEK1 inhibition. These data indicate that GH, by activating ERKs, can modulate EGF-induced EGFR trafficking and signaling and expand our understanding of mechanisms of cross-talk between the GH and EGF signaling systems.  相似文献   

13.
We used a genetic approach to characterize features of mitogen-activated protein kinase (MAPK) activation occurring as a consequence of expression of distinct erbB receptor combinations in transformed human cells. Kinase-deficient erbB proteins reduced epidermal growth factor (EGF)-induced tyrosine phosphorylation of endogenous Shc proteins and also reduced immediate and sustained EGF-induced ERK MAPK activities in human glioblastoma cells, although basal ERK MAPK activities were unaffected. Basal and EGF-induced JNK and p38 MAPK kinase activities were equivalent in parental cancer cells and EGFR-inhibited subclones. When ectopically overexpressed in murine fibroblasts and human glioblastoma cells, a constitutively activated human EGF receptor oncoprotein (deltaEGFR) induced EGF-independent elevation of basal ERK MAPK activity. Basal JNK MAPK kinase activity was also specifically induced by deltaEGFR, which correlated with increased phosphorylation of a 54-kDa JNK2 protein observed in deltaEGFR-containing cells. The JNK activities in response to DNA damage were comparably increased in cells containing wildtype EGFR or deltaEGFR. Consistent with the notion that transforming erbB complexes induce sustained and unregulated MAPK activities, coexpression of p185(neu) and EGFR proteins to levels sufficient to transform murine fibroblasts also resulted in prolonged EGF-induced ERK in vitro kinase activation. Transforming erbB complexes, including EGFR homodimers, deltaEGFR homodimers, and p185(neu)/EGFR heterodimers, appear to induce sustained, unattenuated activation of MAPK activities that may contribute to increased transformation and resistance to apoptosis in primary human glioblastoma cells.  相似文献   

14.
p190 RhoGAP is a 190-kDa protein that stably associates with p120 RasGAP and regulates actin dynamics through members of the Rho family of small GTPases. Previous studies have indicated a direct relationship between levels of p190 tyrosine phosphorylation, the extent and kinetics of epidermal growth factor (EGF)-induced actin rearrangements, and EGF-induced cell cycle progression, suggesting that p190 links Ras-mediated mitogenic signaling with signaling through the actin cytoskeleton. Determining which tyrosine residues in p190 are phosphorylated, what factors regulate phosphorylation of these sites, and what effect tyrosine phosphorylation has on p190 function is key to understanding the role(s) that p190 may play in these processes. To begin investigating these questions, we used biochemical approaches to characterize the number and relative levels of in vivo-phosphorylated tyrosine residues on endogenous p190 from C3H10T1/2 murine fibroblasts. Only two tryptic phosphopeptides containing phosphotyrosine (p-Tyr), a major site, identified as Y1105, and a minor, unidentified site, were detected. Phosphorylation of Y1105, but not the minor site, was modulated in vivo to a greater extent by overexpression of c-Src than by the EGF receptor and was efficiently catalyzed by c-Src in vitro, indicating that Y1105 is a selective and preferential target of c-Src both in vitro and in vivo. In vitro and in vivo coprecipitation analysis using glutathione S-transferase (GST) fusion proteins containing wild-type and Y1105F variants of the p190 middle domain, variants of full-length p190 ectopically expressed in COS-7 cells, and endogenous p190 and p120 in C3H10T1/2 cells revealed that p190 could bind to p120 in the presence and absence of p190 tyrosine phosphorylation. p-Tyr-independent complexes comprised 10 to 20% of the complexes formed in the presence of p-Tyr. Mutation of Y1105 from Tyr to Phe resulted in complete loss of p-Tyr-dependent complex formation, indicating that p-Y1105 was the sole p-Tyr residue mediating binding to p120. These studies describe a specific mechanism by which c-Src can regulate p190-p120 association and also document a significant role for p-Tyr-independent means of p190-p120 binding.  相似文献   

15.
Signal characteristics of G protein-transactivated EGF receptor.   总被引:24,自引:2,他引:22       下载免费PDF全文
The epidermal growth factor receptor (EGFR) tyrosine kinase recently was identified as providing a link to mitogen-activated protein kinase (MAPK) in response to G protein-coupled receptor (GPCR) agonists in Rat-1 fibroblasts. This cross-talk pathway is also established in other cell types such as HaCaT keratinocytes, primary mouse astrocytes and COS-7 cells. Transient expression of either Gq- or Gi-coupled receptors in COS-7 cells allowed GPCR agonist-induced EGFR transactivation, and lysophosphatidic acid (LPA)-generated signals involved the docking protein Gab1. The increase in SHC tyrosine phosphorylation and MAPK stimulation through both Gq- and Gi-coupled receptors was reduced strongly upon selective inhibition of EGFR function. Inhibition of phosphoinositide 3-kinase did not affect GPCR-induced stimulation of EGFR tyrosine phosphorylation, but inhibited MAPK stimulation, upon treatment with both GPCR agonists and low doses of EGF. Furthermore, the Src tyrosine kinase inhibitor PP1 strongly interfered with LPA- and EGF-induced tyrosine phosphorylation and MAPK activation downstream of EGFR. Our results demonstrate an essential role for EGFR function in signaling through both Gq- and Gi-coupled receptors and provide novel insights into signal transmission downstream of EGFR for efficient activation of the Ras/MAPK pathway.  相似文献   

16.
This study identifies some early events contributing to the redox regulation of platelet-derived growth factor receptor (PDGFr) activation and its signalling in NIH3T3 fibroblasts. We demonstrate for the first time that the redox regulation of PDGFr tyrosine autophosphorylation and its signalling are related to NADPH oxidase activity through protein kinase C (PKC) and phosphoinositide-3-kinase (PI3K) activation and H2O2 production. This event is also essential for complete PDGF-induced activation of c-Src kinase by Tyr416 phosphorylation, and the involvement of c-Src kinase on H2O2-induced PDGFr tyrosine phosphorylation is demonstrated, suggesting a role of this kinase on the redox regulation of PDGFr activation. Finally, it has been determined that not only PI3K activity, but also PKC activity, are related to NADPH oxidase activation due to PDGF stimulation in NIH3T3 cells, as it occurs in non-phagocyte cells. Therefore, we suggest a redox circuit whereby, upon PDGF stimulation, PKC, PI3K and NADPH oxidase activity contribute to complete c-Src kinase activation, thus promoting maximal phosphorylation and activation of PDGFr tyrosine phosphorylation.  相似文献   

17.
Receptor tyrosine kinases of the epidermal growth factor (EGF) receptor family regulate essential cellular functions such as proliferation, survival, migration, and differentiation but also play central roles in the etiology and progression of tumors. We have identified short peptide sequences from a random peptide library integrated into the thioredoxin scaffold protein, which specifically bind to the intracellular domain of the EGF receptor (EGFR). These molecules have the potential to selectively inhibit specific aspects of EGF receptor signaling and might become valuable as anticancer agents. Intracellular expression of the aptamer encoding gene construct KDI1 or introduction of bacterially expressed KDI1 via a protein transduction domain into EGFR-expressing cells results in KDI1.EGF receptor complex formation, a slower proliferation, and reduced soft agar colony formation. Aptamer KDI1 did not summarily block the EGF receptor tyrosine kinase activity but selectively interfered with the EGF-induced phosphorylation of the tyrosine residues 845, 1068, and 1148 as well as the phosphorylation of tyrosine 317 of p46 Shc. EGF-induced phosphorylation of Stat3 at tyrosine 705 and Stat3-dependent transactivation were also impaired. Transduction of a short synthetic peptide aptamer sequence not embedded into the scaffold protein resulted in the same impairment of EGF-induced Stat3 activation.  相似文献   

18.
We have previously demonstrated that ligand-stimulation of c-Kit induces phosphorylation of Tyr568 and Tyr570 in the juxtamembrane region of the receptor, leading to recruitment, phosphorylation and activation of members of the Src family of tyrosine kinases. In this paper, we demonstrate that members of the Src family of tyrosine kinases are able to phosphorylate c-Kit selectively on one particular tyrosine residue, Tyr900, located in the second part of the tyrosine kinase domain. In order to identify potential docking partners of Tyr900, a synthetic phosphopeptide corresponding to the amino acid sequence surrounding Tyr900 was used as an affinity matrix. By use of MALDI-TOF mass spectrometry, CrkII was identified as a protein that specifically bound to Tyr900 in a phosphorylation dependent manner, possibly via the p85 subunit of PI3-kinase. Expression of a mutant receptor where Tyr900 had been replaced with a phenylalanine residue (Y900F) resulted in a receptor with reduced ability to phosphorylate CrkII. Together these data support a model where c-Src phosphorylates the receptor, thereby creating docking sites for SH2 domain containing proteins, leading to recruitment of Crk to the receptor.  相似文献   

19.
The Src family kinases possess two sites of tyrosine phosphorylation that are critical to the regulation of kinase activity. Autophosphorylation on an activation loop tyrosine residue (Tyr 416 in commonly used chicken c-Src numbering) increases catalytic activity, while phosphorylation of a C-terminal tyrosine (Tyr 527 in c-Src) inhibits activity. The latter modification is achieved by the tyrosine kinase Csk (C-terminal Src Kinase), but the complete inactivation of the Src family kinases also requires the dephosphorylation of the activation loop tyrosine. The SH3 domain of Csk recruits the tyrosine phosphatase PEP, allowing for the coordinated inhibition of Src family kinase activity. We have discovered that Csk forms homodimers through interactions mediated by the SH3 domain in a manner that buries the recognition surface for SH3 ligands. The formation of this dimer would therefore block the recruitment of tyrosine phosphatases and may have important implications for the regulation of Src kinase activity.  相似文献   

20.
The Src family tyrosine kinase Hck possesses two phosphorylation sites, Tyr(527) and Tyr(416), that affect the catalytic activity in opposite ways. When phosphorylated, Tyr(527) and residues C-terminal to it are involved in an inhibitory intramolecular interaction with the SH2 domain. However, this sequence does not conform to the sequence of the high affinity SH2 ligand, pYEEI. We mutated this sequence to YEEI and show that this mutant form of Hck cannot be activated by exogenous SH2 ligands. The SH3 domain of Hck is also involved in an inhibitory interaction with the catalytic domain. The SH3 ligand Nef binds to and activates YEEI-Hck mutant in a similar manner to wild-type Hck, indicating that disrupting the SH3 interaction overrides the strengthened SH2 interaction. The other phosphorylation site, Tyr(416), is the autophosphorylation site in the activation loop. Phosphorylation of Tyr(416) is required for Hck activation. We mutated this residue to alanine and characterized its catalytic activity. The Y416A mutant shows a higher K(m) value for peptide and a lower V(max) than autophosphorylated wild-type Hck. We also present evidence for cross-talk between the activation loop and the intramolecular binding of the SH2 and SH3 domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号