首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characterization of MvaI restriction-modification enzymes, isolated from Micrococcus varians RFL19, is reported. Both enzymes recognize the 5'CC decreases (A/T)GG nucleotide sequence. The endonuclease cleaves the sequence at the position indicated by the arrow, whereas the methylase modifies the internal cytosine, yielding N4-methylcytosine. This type of modification protects the substrate from R.MvaI cleavage. 5-Methylcytosine in the same position of the recognition sequence does not protect the substrate from R.MvaI cleavage. R.MvaI proved to be the first example of a restriction endonuclease differentiating the position of the methyl group in the heterocyclic ring of cytosine, located in the same site of the recognition sequence. M.MvaI modifies DNA dcm+ in vitro yielding N4,5-dimethylcytosine. N4-methylcytosine cannot be differentiated from cytosine using the Maxam-Gilbert DNA sequencing procedure.  相似文献   

2.
Sau3AI is a type II endonuclease that cleaves GATC sequences, producing sticky ends with 4-nucleotide 5'-overhangs. Its activity is inhibited by cytosine C5-methylation within the target sequence. In the N-terminus, Sau3AI exhibits sequence similarity to the GATC-specific single-strand nicking endonuclease MutH implicated in mismatch repair (Ban and Yang, 1998). Sequence analysis of Sau3AI and its homologs reveals that Sau3AI possesses an additional MutH-like domain in the C-terminus. Structure prediction suggests that the C-terminal domain lacks the endonuclease active site but retains all putative DNA-binding elements. As an illustration of these findings, a model of quaternary structure of Sau3AI complexed with the target DNA is presented. These predictions have implications for evolution, structure and function of bacterial DNA repair enzymes and restriction endonucleases.  相似文献   

3.
Modification of gonococcal deoxyribonucleic acid (DNA) was investigated, and the relationship with endonuclease production was explored. Both chromosomal and plasmid DNA from different gonococcal strains, irrespective of their plasmid content, was poorly cleaved by the restriction endonucleases HaeII, HaeIII, SacII, and BamHI. The fragment pattern of the Tn3 segment present on the 7.2-kilobase gonococcal resistance plasmid, when compared to its known DNA sequence, allowed us to conclude that the HaeIII and BamHI resistance was due to modification of these sites. A comparison of the fragment pattern of the resistance plasmid, when isolated from Escherichia coli or Neisseria gonorrhoeae, revealed that the resistance of HaeII must also be due to modification of its recognition sequence. Isoschizomers of HaeII and HaeIII can be found in isolates of N. gonorrhoeae (NgoI and NgoII, respectively). A new restriction endonuclease in gonococci, NgoIII, with a specificity similar to SacII, is reported here. High-pressure liquid chromatography of gonococcal DNA showed the presence of 5-methylcytosine. It is suggested that the methylation of cytosine residues in the HaeII (NgoI), HaeIII (NgoII), and SacII (NgoIII) recognition sites is the basis for the resistance of gonococcal DNA to cleavage by these enzymes. This methylation may be part of a host restriction modification system. In two out of five gonococcal strains the sequence -GATC- was modified. One strain unable to modify this sequence was a spontaneous mutant of a strain carrying such a modifying function.  相似文献   

4.
J M Voigt  M D Topal 《Biochemistry》1990,29(6):1632-1637
The interactions of restriction enzymes with their cognate DNA recognition sequences present a model for protein-DNA interactions. We have investigated the effect of O6-methylguanine on restriction enzyme cleavage of DNA; O6-methylguanine is a carcinogenic lesion and a structural analogue of the biological restriction inhibitor N6-methyladenine. O6-Methylguanine was synthesized into oligonucleotides at unique positions. The oligonucleotides were purified and analyzed by high-pressure liquid chromatography to assure that, within the limits of our detection, O6-methylguanine was the only modified base present. These oligonucleotides were annealed with their complement so that cytosine, and in one case thymine, opposed O6-methylguanine. DNA cleavage by restriction enzymes that recognize a unique DNA sequence, HpaII, HhaI, HinPI, NaeI, NarI, PvuII, and XhoI, was inhibited by a single O6-methylguanine in place of guanine (adenine for PvuII) within the appropriate recognition sequences. However, only the modified strand was nicked by HpaII, NaeI, and XhoI with O6-methylguanine at certain positions, indicating asymmetric strand cleavage. For all the restriction enzymes studied but AhaII, BanI, and NarI, lack of double- or single-strand cleavage correlated with inability of the O6-methylguanine-containing recognition sequence to measurably bind enzyme. None of the restriction enzymes studied were inhibited by O6-methylguanine outside their cognate recognition sequences.  相似文献   

5.
BsoFI , ItaI and Fsp4HI are isoshizomers of Fnu4HI (5'-GC NGC-3'). Both Fnu4HI and BsoFI have previously been shown to be inhibited by cytosine-specific methylation within the recognition sequence. Fnu4HI is inhibited if either the internal cytosine at position 2 or the external cytosine at position 5 of the restriction sequence is methylated, but the precise nature of the methylation sensitivity of BsoFI is unclear from the literature. The methylation sensitivities of ItaI and Fsp4HI have not previously been reported. By methylating the plasmid pUC18 with M.SssI (a DNA cytosine-5'-methyltransferase with a specificity for CpG), we have determined that ItaI is sensitive only to methylation of internal CpG sites within the restriction sequence. The methylation sensitivity of Fsp4HI is identical to that of Fnu4HI, being inhibited by methylation of either internal CpG sites or overlapping CpG sites. BsoFI , like the other isoschizomers tested, is sensitive to a combination of internal and overlapping CpG methylation. BsoFI is also sensitive to overlapping CpG methylation (in the absence of internal CpG methylation) if CpG overlap with both sides of the recognition sequence. Sites containing one overlapping CpG (in the absence of internal CpG) are cut when methylated but show marked individual variation in their rates of cleavage. Considerable variation in the rate of cleavage by BsoFI is also observed at sites containing only internal methylated CpG. Some sites are cut slowly, whilst others fail to cut even after prolonged incubation with excess of enzyme.  相似文献   

6.
Bacteriophages T2 and T4 encode DNA-[N6-adenine] methyltransferases (Dam) which differ from each other by only three amino acids. The canonical recognition sequence for these enzymes in both cytosine and 5-hydroxymethylcytosine-containing DNA is GATC; at a lower efficiency they also recognize some non-canonical sites in sequences derived from GAY (where Y is cytosine or thymine). We found that T4 Dam fails to methylate certain GATA and GATT sequences which are methylated by T2 Dam. This indicates that T2 Dam and T4 Dam do not have identical sequence specificities. We analyzed DNA sequence data files obtained from GenBank, containing about 30% of the T4 genome, to estimate the overall frequency of occurrence of GATC, as well as non-canonical sites derived from GAY. The observed N6methyladenine (m6A) content of T4 DNA, methylated exclusively at GATC (by Escherichia coli Dam), was found to be in good agreement with this estimate. Although GATC is fully methylated in virion DNA, only a small percentage of the non-canonical sequences are methylated.  相似文献   

7.
The rates of cleavage of DNAs containing substituents at position 5 of thymine or cytosine have been measured for a variety of sequence-specific endonucleases, so as to determine which features in the DNA sequence are being probed. Phage phi e DNA fully substituted with 5-hydroxymethyluracil is cleaved more slowly by enzymes whose recognition sequences contain A-T base pairs than are DNAs containing thymine, but both types of DNA are cleaved at similar rates by enzymes recognizing sequences composed only of G-C base pairs. Phage PBS2 DNA with uracil completely substituted for thymine is cleaved slowly by several enzymes which recognize sequences containing A-T base pairs (endonucleases Hpa I, HindII, and HindIII), while the rates of cleavage by other enzymes (endonucleases EcoRI and BamHI) are not affected. Phage lambda- and P22 DNAs containing 5-bromouracil are cleaved more slowly by several enzymes (endonucleases HindIII, Hpa I, BamHI) than are thymine-containing DNAs. Enzymes that recognize sequence isomers with the composition G:C:2A:2T (endonucleases EcoRI, Hpa I, HindIII) are not equally affected by substitution at position 5 of thymine, suggesting that they differ in their contacts with A-T base pairs. DNA containing glucosylated 5-hydroxymethylcytosine in place of cytosine is resistant to cleavage by all the endonucleases examined.  相似文献   

8.
Methylation of DNA occurs at the C5 and N4 positions of cytosine and N6 of adenine. The chemistry of methylation is similar among methyltransferases specific for cytosine-N4 and adenine-N6. Moreover these enzymes have similar structures and active sites. Previously it has been demonstrated that the DNA-(adenine-N6)-methyltransferases M.EcoRV, M.EcoRI, E. coli dam and both domains of M.FokI also modify cytosine residues at the N4 position [Jeltsch et al., J. Biol. Chem. 274 (1999), 19538-19544]. Here we show that the cytosine-N4 methyltransferase M.PvuII, which modifies the second cytosine in CAGCTG sequences, also methylates adenine residues in CAGATG/CAGCTG substrates in which the target cytosine is replaced by adenine in one strand of the recognition sequence. Therefore, adenine-N6 and cytosine-N4 methyltransferases have overlapping target base specificities. These results demonstrate that the target base recognition by N-specific DNA methyltransferases is relaxed in many cases. Furthermore, it shows that the catalytic mechanisms of adenine-N6 and cytosine-N4 methyltransferases are very similar.  相似文献   

9.
Five individual DNA-cytosine methylases differing in pI (isoelectric point) values are present in Shigella sonnei 47-cells. The sequence specificity of each of those was determined 'in vitro' by a highly efficient combined approach that included pyrimidine tract (isostic) analysis, identification of the immediate neighbourhood of the methylated base within the recognition sequence and the calculation method. The enzyme with pI 5.3 (MSso5.3) is the counterpart of the RSso 47 II in the Sso 47 II restriction-modification system and methylates the internal cytosine residue of the 'palindromic' 5'-C-C-N-G-G-3' sequence. The enzymes with pI 6.2 (MSso6.2) and 7.4 (MSso7.4) exhibit identical specificity upon methylation of the 'palindromic' 5'-Py-C-N-G-Pu-3' sequence, but differ in the pI values of the proteins. The enzyme with pI 4.2 (MSso4.2) recognizes the unique tetranucleotide 5'-C-C-C-C-3' sequence and methylates the second cytosine residue at the 5'-end of the sequence. The enzyme with pI 8.4 (MSso8.4) methylates the central cytosine residue within the degenerative trinucleotide 5'-(PuC)-C-C-3' sequence. MSso5.3, MSso6.2, and MSso7.4 are presumed to belong to the 'family' of sequence-specific (Eco RII-like) enzymes. These DNA-cytosine methylases are likely to be evolutionary related to Eco RII and to have undergone a sufficient genetic drift so as to recognize similar (but more degenerative) nucleotide sequences.  相似文献   

10.
Arthrobacter viscosus DNA was resistance to digestion by restriction enzymes that are sensitive to methylation of the cytosine residue (but not of adenine) within the GATC recognition sequence. Restriction enzymes sensitive to methylation of cytosine in other recognition sequences were not affected. A. viscosus DNA thus appeared to contain methylated cytosine specifically at the GATC sequence.  相似文献   

11.
EndoR . NgoII, a class II restriction endonuclease isolated from Neisseria gonorrhoeae, was purified to electrophoretic homogeneity. We were able to separate it from another restriction endonuclease of N. gonorrhoeae, NgoI, by phosphocellulose chromatography. NgoII is an isoschizomer of HaeIII, a restriction endonuclease of Haemophilus aegyptius, and was found to recognize the deoxyribonucleic acid nucleotide base sequence GGCC. NgoII was able to digest phage lambda deoxyribonucleic acid over a wide pH range, with optimal activity at pH 8.5. The enzyme has an absolute requirement for Mg2+; maximal enzyme activity was observed at 1 mM Mg2+. The active enzyme has a molecular weight of 65,000 and appears to be composed of six subunits of identical molecular weight (11,000). No methylase activity could be detected in the purified enzyme preparation.  相似文献   

12.
PvuRts1I is a modification-dependent restriction endonuclease that recognizes 5-hydroxymethylcytosine (5hmC) as well as 5-glucosylhydroxymethylcytosine (5ghmC) in double-stranded DNA. Using PvuRts1I as the founding member, we define a family of homologous proteins with similar DNA modification-dependent recognition properties. At the sequence level, these proteins share a few uniquely conserved features. We show that these enzymes introduce a double-stranded cleavage at the 3'-side away from the recognized modified cytosine. The distances between the cleavage sites and the modified cytosine are fixed within a narrow range, with the majority being 11-13 nt away in the top strand and 9-10 nt away in the bottom strand. The recognition sites of these enzymes generally require two cytosines on opposite strand around the cleavage sites, i.e. 5'-CN(11-13)↓N(9-10)G-3'/3'-GN(9-10)↓N(11-13)C-5', with at least one cytosine being modified for efficient cleavage. As one potential application for these enzymes is to provide useful tools for selectively mapping 5hmC sites, we have compared the relative selectivity of a few PvuRts1I family members towards different forms of modified cytosines. Our results show that the inherently different relative selectivity towards modified cytosines can have practical implications for their application. By using AbaSDFI, a PvuRts1I homolog with the highest relative selectivity towards 5ghmC, to analyze rat brain DNA, we show it is feasible to map genomic 5hmC sites close to base resolution. Our study offers unique tools for determining more accurate hydroxymethylomes in mammalian cells.  相似文献   

13.
The naturally-occurring modified bases, N6-methyladenine, N4-methylcytosine, and 5-methylcytosine were chemically introduced in place of the adenine or cytosine in the decadeoxyribonucleotides containing recognition sequences of Bgl II, Sau 3AI, Mbo I and Mfl I. The modified oligomers bind to the enzymes but the rates of cleavage by the enzymes are variable.  相似文献   

14.
Restriction-methylation enzymes BstN1 from Bacillus stearothermophilus were isolated and purified. These enzymes are related to a new class of restriction-methylation enzymes of the second type, whose modifying component is N4-cytosine-DNA-methylase. Both enzymes recognize the DNA sequence CC(A/T)GG. Restrictase BstN1 is a protein made up of one subunit with a molecular mass of 25 kDa. The molecular mass of native DNA-methylase BstN1 is about 55 kDa. The temperature optima for restrictase and methylase BstN1 are around 60 degrees C. Possible uses of BstN1 restriction-methylation enzymes for the analysis of cytosine methylation in bacterial and higher plant DNA are discussed.  相似文献   

15.
Unique restriction endonucleases Bpu 10l and Bsil have been isolated from Bacillus pumilas and Bacillus sphaericus, respectively. The recognition sequences and cleavage points of these enzymes have been determinated as 5'-CC1TNAGC-3'/3'-GGANT1CG-5' for Bpu 10l and 5'-C1TCGTG-3'/3'-GAGCA1C-5' for Bsil. Restriction endonucleases Bpu 10l and Bsil represent a new class of enzymes which recognize non-palindromic nucleotide sequences and hydrolize DNA within the recognition sequence. Bpu 10l and Bsil recognition sequences may be regarded as quasipalindromic and the enzymes may be designated as type II-Q restriction endonucleases.  相似文献   

16.
The 4207-bp cryptic plasmid (pJD1) of Neisseria gonorrhoeae has 5-methylcytosine bases present at several positions in the DNA sequence. Fortuitously, these modified bases lie in the recognition sequences of many restriction enzymes. This feature makes the cryptic plasmid a model system for assaying the effect of these modified cytosines on the activities of the following restriction endonucleases and their isoschizomers: R X AvaII, R X BamHI, R X BglI, R X Fnu4HI, R X HaeII, R X HaeIII, R X HhaI, R X HpaII, R X KpnI, R X MspI, R X NaeI, R X NarI, R X NciI, R X NgoI, R X NgoII, and R X Sau96I. Of particular interest was the finding that methylation of one of the external cytosines of the palindrome 5'-CCGG-3' prevented its cleavage by R X MspI, but not by R X HpaII as had been suggested by Walder et al. [J. Biol. Chem. (1983) 258, 1235-1241].  相似文献   

17.
A complex approach involving isoplith analysis, enzymatic treatment of methylated isopliths and a computer analysis of experimental data has been used for determining site specificity of six methylases from Shigella sonnei 47 cells termed according to their specificity for a nitrous base and pI as MC4.2, MC5.3, MC6.2, MC7.4, MC8.4 and MA9.5. It has been found that the recognition site of MA9.5 is a palyndrome six-member structure of the 5'...GAATTC...3' type and that this enzyme is an isometimer with respect to MEcoRI. It has been demonstrated for the first time for methylases that the recognition site of MC4.2 is represented by a non-symmetrical four-member sequence, 5'...NCCCCN...3' characterized by unique blocking of cytosines. MC8.4 possesses a broad specificity of substrate recognition and methylates the cytosine residue within the composition of the non-symmetrical unique sequence 5'...N (C/Pu) CCN...3', whose 5'-terminal base is depleted in three nucleotides. MC5.3 methylates the 3'-terminal cytosine residue within the composition of the pentanucleotide palindrome recognition site, 5'...CCNGG...3'. MC6.2 and MC7.4 possess identical pentanucleotide recognition sites of 5'...(Py)CNG(Pu)...3', but are distinguished in pI. The latter finding has been shown for the first time for different methylases within one strain.  相似文献   

18.
The methylcytosine-containing sequences in the DNA of Bacillus subtilis 168 Marburg (restriction-modification type BsuM) were determined by three different methods: (i) examination of in vivo-methylated DNA by restriction enzyme digestion and, whenever possible, analysis for methylcytosine at the 5' end; (ii) methylation in vitro of unmethylated DNA with B. subtilis DNA methyltransferase and determination of the methylated sites; and (iii) the methylatability of unmethylated DNA by B. subtilis methyltransferase after potential sites have been destroyed by digestion with restriction endonucleases. The results obtained by these methods, taken together, show that methylcytosine was present only within the sequence 5'-TCGA-3'. The presence of methylcytosine at the 5' end of the DNA fragments generated by restriction endonuclease AsuII digestion and the fact that in vivo-methylated DNA could not be digested by the enzyme XhoI showed that the recognition sequences of these two enzymes contained methylcytosine. As these two enzymes recognized a similar sequence containing a 5' pyrimidine (Py) and a 3' purine (Pu), 5'-PyTCGAPu-3', the possibility that methylcytosine is present in the complementary sequences 5'-TTCGAG-3' and 5'-CTCGAA-3' was postulated. This was verified by the methylation in vitro, with B. subtilis enzyme, of a 2.6-kilobase fragment of lambda DNA containing two such sites and devoid of AsuII or XhoI recognition sequences. By analyzing the methylatable sites, it was found that in one of the two PyTCGAPu sequences, cytosine was methylated in vitro in both DNA strands. It is concluded that the sequence 5'-PyTCGAPu-3' is methylated by the DNA methyltransferase (of cytosine) of B. subtilis Marburg.  相似文献   

19.
N Ritchot  P H Roy 《Gene》1990,86(1):103-106
It has been reported in the literature that Neisseria gonorrhoeae DNA is modified by the methyltransferases (MTases) M.NgoI, M.NgoII, and M.NgoIII, as well as three other cytosine MTases and one adenine MTase, even if the corresponding restriction endonucleases are not present. We envisioned the possibility of cloning one of the N. gonorrhoeae MTase-encoding genes for use as a species-specific DNA probe. We therefore undertook a survey of methylation patterns of several clinical isolates of N. gonorrhoeae and N. meningitidis as well as ATCC strains of other Neisseriae. We found, from digestion patterns with isoschizomers, one N. gonorrhoeae strain that lacked M.NgoII and two that lacked M.NgoIII. All N. meningitidis strains (save one) were resistant to digestion with NlaIV thus possessing an MTase like NgoV, and one was resistant to SstII, thus having an NgoIII-like MTase. None were resistant to isoschizomers of NgoI, NgoIII and NgoIV. Some other Neisseriae had an MTase with NlaIV (NgoV) specificity, but none had NgoI, II, III or IV specificity, except for the Branhamella-like N. caviae-ovis group and N. lactamica where these specificities were present in at least one strain of this group. Therefore, among the Neisseriae other than N. caviae only M.NgoI is N. gonorrhoeae-specific.  相似文献   

20.
The methyltransferase (MTase) in the DsaV restriction--modification system methylates within 5'-CCNGG sequences. We have cloned the gene for this MTase and determined its sequence. The predicted sequence of the MTase protein contains sequence motifs conserved among all cytosine-5 MTases and is most similar to other MTases that methylate CCNGG sequences, namely M.ScrFI and M.SsoII. All three MTases methylate the internal cytosine within their recognition sequence. The 'variable' region within the three enzymes that methylate CCNGG can be aligned with the sequences of two enzymes that methylate CCWGG sequences. Remarkably, two segments within this region contain significant similarity with the region of M.HhaI that is known to contact DNA bases. These alignments suggest that many cytosine-5 MTases are likely to interact with DNA using a similar structural framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号