首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Synthrophomonas wolfei-Methanospirillum hungatei coculture was adapted to catabolize crotonate. S. wolfei was then isolated in axenic culture using agar spread plates and roll tubes with crotonate as the sole energy source. S. wolfei catabolized crotonate via a disproportionation mechanism similar to that of some Clostridium species. Growth on crotonate was very slow (specific growth rate of 0.029 h–1) but the conversion of energy into cell material was very efficient with cell yields of 14.6 g (dry wt.) per mol of crotonate. S. wolfei alone did not catabolize butyrate, but butyrate was stoichiometrically degraded to acetate and presumably methane when S. wolfei was reassociated with M. hungatei. S. wolfei-M. hungatei cocultures accumulated some butyrate during growth on crotonate indicating that protons were not the sole electron acceptors used for crotonate oxidation by the coculture.  相似文献   

2.
A stable, syntrophic benzoate-degrading bacterial consortium was enriched from sewage sludge. It oxidized benzoate or 3-phenylpropionate to acetate, H2 and CO2. As hydrogen scavengers Methanospirillum hungatei and Desulfovibrio sp. were present. The benzoate-degrading bacteria of this syntrophic culture and of Syntrophus buswelli were able to grow with benzoate/crotonate or crotonate alone in the absence of a hydrogen-utilizing partner organism. If crotonate was the only substrate, acetate and butyrate were produced, while during growth on benzoate or 3-phenylpropionate crotonate served as a reducible co-substrate and was exclusively converted to butyrate. In the presence of crotonate interspecies hydrogen transfer was not necessary as a hydrogen sink. The benzoate degrader was isolated as a pure culture with crotonate as the only carbon source. The pure culture could also grow with benzoate/crotonate or 3-phenylpropionate/crotonate. The effect of high concentrations of crotonate and of acetate or butyrate on growth of the benzoate degrader was investigated. The benzoate degrader was compared with S. buswellii for its morphology, physiology and DNA base composition. Except for the fact that S. buswellii was also able to grow on cinnamate, no differences between the two organisms were detected. The isolate is named S. buswelli, strain GA.  相似文献   

3.
A strictly anaerobic, benzoate-degrading bacterium,Syntrophus buswellii strain GA, was able to degrade benzoate or 3-phenylpropionate to acetate, CO2 and H2 if the hydrogen partial pressure was sufficiently low. The hydrogen was removed in syntrophic coculture byMethanospirillum hungatei or byDesulfovibrio sp. through interspecies hydrogen transfer or in pure culture by the use of crotonate as reducible cosubstrate. Alternatively,S. buswellii strain GA could grow in pure culture with crotonate. Activities of seven catabolic enzymes were measured in crude cell extracts ofS. buswellii strain GA grown with various substrates and of crotonate-grownS. buswellii strain DSM 2612A. Benzoate, 3-phenylpropionate and crotonate were activated by CoA ligases. Glutaryl-CoA dehydrogenase was found to be involved in the degradation of aromatic compounds and enzymes catalysing -oxidation were involved in the reaction sequence from crotonyl-CoA to acetate. Ac-type cytochrome was present in the cytoplasm, whereasb-type cytochromes were associated with the membranes of bothS. buswelli strains grown on crotonate. These indicated the presence of an electron-transport system. A high growth yield of crotonate-grownS. buswellii strain GA might be explained by electron-transport phosphorylation in addition to substrate-level phosphorylation.  相似文献   

4.
In cells of the green alga Chlorella fusca, which contain active hydrogenase(s), the concentration of ATP, NADH and NADPH were measured during a 5 h period of anaerobiosis in the dark and upon subsequent illumination with high light intensities (770 W/m2), conditions which favour optimal hydrogen photoproduction.ATP concentrations were also determined in cells of Chlorella fusca, whose hydrogenase was inactivated prior to illumination, and in cells of Chlorella vulgaris which do not contain hydrogenase. In the dark, the ATP concentration increased slightly during anaerobiosis in cells with active hydrogenase. This increase in ATP concentration was accompanied by an increase of NADH and a decrease of NADPH content.Upon illumination, the ATP content increased in cells with an active hydrogenase, whereas the NADH content decreased. The rate of phosphorylation was twice that observed in cells without active hydrogenase.This ATP synthesis in the light was not inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) (10 mol/l) nor by carbonylcyanide-3-chlorophenyl-hydrazone (CCCP) (1 mol/l) but was diminished by 500 mol/l dibromothymoquinone (DBMIB) and 6 mol/l carbonylcyanide-3-chlorophenyl-hydrazone (CCCP).It was concluded that an active hydrogenase can support ATP production under anaerobic conditions in the dark as well as in the light. NADH might serve in vivo as electron donor for a fermentative production of hydrogen in the light.Possible mechanisms underlying ATP production under anaerobiosis and hydrogen productive conditions are discussed.Abbreviations CCCP Carbonylcyanide-3-chlorophenyl-hydrazone - DBMIB dibromothymoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FCCP carbonylcyanide-p-trifluormethoxyphenyl-hydrazone - HEPES N-2-hydroxyethylpiperazin-N-2-ethan-sulfonic acid - PSI II, photosystem I, II respectively - PQ plastoquinone  相似文献   

5.
Cell-free extracts of Syntrophomonas wolfei subsp. wolfei grown with crotonate in pure culture or in coculture with Methanospirillum hungatei contained crotonyl-coenzyme A (CoA): acetate CoA-transferase activity. This activity was not detected in cell-free extracts from the butyrate-grown coculture which suggests that the long lag times observed before S. wolfei grew with crotonate were initially due to the inability to activate crotonate. Cell-free extracts of S. wolfei grown in pure culture contained high specific activities of hydrogenase and very low levels of formate dehydrogenase. The low levels suggest a biosynthethic rather than a catabolic role for the latter enzyme when S. wolfei is grown in pure culture. CO dehydrogenase activity was not detected. S. wolfei can form butyrate using a CoA transferase activity, but not by a phosphotransbutyrylase or enoate reductase activity. A c-type cytochrome was detected in S. wolfei grown in pure culture or in coculture indicating the presence of an electron transport system. This is a characteristic which separates S. wolfei from other known crotonate-using bacteria.  相似文献   

6.
A chloroplast fraction from Chlamydomonas reinhardii cells can oxidize NADH in the light, unlike chloroplasts of higher plants. The Chlamydomonas preparation catalyzes electron flow from NADH to methylviologen or ferredoxin to evolve hydrogen (in the presence of a hydrogenase) or take up oxygen. The NADH photooxidation is sensitive to rotenone, dibromothymoquinone and dicyclohexylcarbodiimide. This suggests that a rotenone sensitive NADH dehydrogenase is coupled on the plastoquinone reduction site of the potosynthetic electron flow system. On sonication of the particles NADH photooxidation is lost but may be restored by a protein fraction from an acetone extract plus plastocyanin.Abbreviations DAD diaminodurene - DCCD dicyclohexylcarbodiimide - DCMU (3,3-dichlorphenyl)-N·N dimethyl urea - DBMIB dibromothymoquinone - DNP-INT dinitro-phenylether of 2-iodo-4-nitrothymol - MV methylviologen - chl chlorophyll Dedicated to Professor Dr. O. Kandler on the occasion of his 60th birthday  相似文献   

7.
Methanogenic oxidation of butyrate to acetate requires a tight cooperation between the syntrophically fermenting Syntrophomonas wolfei and the methanogen Methanospirillum hungatei, and a reversed electron transport system in S. wolfei was postulated to shift electrons from butyryl coenzyme A (butyryl-CoA) oxidation to the redox potential of NADH for H2 generation. The metabolic activity of butyrate-oxidizing S. wolfei cells was measured via production of formazan and acetate from butyrate, with 2,3,5-triphenyltetrazolium chloride as electron acceptor. This activity was inhibited by trifluoperazine (TPZ), an antitubercular agent known to inhibit NADH:menaquinone oxidoreductase. In cell extracts of S. wolfei, the oxidation of NADH could be measured with quinones, viologens, and tetrazolium dyes as electron acceptors, and also this activity was inhibited by TPZ. The TPZ-sensitive NADH:acceptor oxidoreductase activity appeared to be membrane associated but could be dissociated from the membrane as a soluble protein and was semipurified by anion-exchange chromatography. Recovered proteins were identified by peptide mass fingerprinting, which indicated the presence of an NADH:acceptor oxidoreductase as part of a three-component [FeFe] hydrogenase complex and a selenocysteine-containing formate dehydrogenase. Furthermore, purification of butyryl-CoA dehydrogenase (Bcd) activity and peptide mass fingerprinting revealed two Bcd proteins different from the Bcd subunit of the Bcd/electron-transfer flavoprotein complex (Bcd/EtfAB) predicted from the genome sequence of S. wolfei. The results suggest that syntrophic oxidation of butyrate in S. wolfei involves a membrane-associated TPZ-sensitive NADH:acceptor oxidoreductase as part of a hydrogenase complex similar to the recently discovered “bifurcating” hydrogenase in Thermotoga maritima and butyryl-CoA dehydrogenases that are different from Bcd of the Bcd/EtfAB complex.Butyrate is fermented to methane and CO2 by syntrophic communities in which a methanogenic partner organism maintains a low hydrogen partial pressure to allow the oxidation of butyrate to acetate (19, 20, 29). Only under such conditions can butyrate-oxidizing bacteria such as Syntrophomonas wolfei gain energy from the latter reaction in a range of approximately −20 kJ per mol of butyrate, which is just sufficient to support microbial growth (29). It was postulated that S. wolfei has to invest some of the ATP that is formed in the acetate kinase reaction during the β-oxidation of butyrate into an ATP-driven reversed electron transport in order to shift electrons from butyryl coenzyme A (butyryl-CoA) oxidation to the redox potential of NADH (34).Experimental evidence for the involvement of a proton gradient and of ATPase activity in this process was obtained with intact cell suspensions (36), and it was hypothesized that menaquinone-7 could play an essential role in this reaction (36). This would imply that membrane-bound enzymes similar to complex I of the aerobic respiratory chain, i.e., NADH dehydrogenase (NDH), operate in reverse to reduce NAD+ with butyrate electrons.Another option for a reversed electron transport during butyrate oxidation and hydrogen formation in S. wolfei could be a reversal of the so-called Buckel-Thauer reaction. In this reaction that was described for ethanol-acetate fermentation by Clostridium kluyveri, electrons from NADH are disproportionated to reduce both crotonyl-CoA and ferredoxin simultaneously. The reaction is catalyzed by the cytoplasmic butyryl-CoA dehydrogenase/electron-transfer flavoprotein (Bcd/EtfAB) complex (13, 18). Very recently, another “bifurcating” electron pathway has been described for an NADH- and ferredoxin-coaccepting di-iron hydrogenase complex in Thermotoga maritima (30). Here, electrons from NADH and from ferredoxin are combined to produce hydrogen, and the genome sequence of S. wolfei has been shown to contain candidate genes for such a three-component hydrogenase complex (30). Nonetheless, the energetic situation of syntrophic butyrate oxidation is basically different from that of ethanol or glucose degradation: electrons arise at comparably positive redox potentials, i.e., at −125 mV/−10 mV (12, 28) and −250 mV, and there is no oxidation step involved that could be coupled directly with ferredoxin reduction.In the present study, we report that butyrate oxidation by S. wolfei cell suspensions can be inhibited by trifluoperazine (TPZ), an antitubercular agent that has been shown to inhibit type II NADH:menaquinone oxidoreductase NDH-2 in Mycobacterium tuberculosis (40), and that a TPZ-sensitive NADH:acceptor oxidoreductase activity can be measured in cell extracts of S. wolfei cells. This enzyme system and a butyryl-CoA dehydrogenase were enriched by anion-exchange chromatography, and the obtained proteins were identified by peptide mass fingerprinting.  相似文献   

8.
The production of poly--hydroxyalkanoate (PHA) in Syntrophomonas wolfei grown in pure culture or in coculture with Methanospirillum hungatei was studied. PHA was produced by S. wolfei during the exponential phase of growth under both of these cultural conditions. S. wolfei in pure culture also produced PHA in stationary phase when the medium was supplemented with high concentrations of the substrate crotonate. In S. wolfei, PHA levels decreased after growth stopped and most of the substrate was depleted. Altering the C to N ratio of the medium did not affect the amount of PHA made per mg of protein. The incorporation of labeled butyrate but not acetate into PHA during the early stages of growth of S. wolfei and the fact that some of the PHA in a pure culture of S. wolfei grown with trans-2-pentenoate was a polymer of 5-carbon monomer units indicated that a pathway exists for the synthesis of PHA without degradation of the substrate to acetyl-CoA. During the later stages of growth, PHA was made by a pathway which was in equilibrium with the acetate pool. These data indicate that PHA served as a carbon/energy reserve material in S. wolfei, but the synthesis of this polymer was regulated in a manner different from the known pathways.  相似文献   

9.
Alcaligenes eutrophus and three other hydrogen bacteria exposed to plasmid-curing agents generated autotrophic-minus mutants at high frequency. These mutants were blocked in the metabolism of H2 as an energy source and had normal levels of enzymes involved in CO2 fixation. The loss of hydrogenase activity in A. eutrophus was accompanied by the loss or alteration of a plasmid that had molecular weight of approximately 200×106. Mobilization of this plasmid from wild-type A. eutrophus strains into cured hydrogenase-minus derivatives restored hydrogenase function. It is concluded that A. eutrophus contains a large plasmid required for hydrogen metabolism and thereby autotrophic growth.Abbreviations Aut autotrophic - Hup hydrogen uptake - NTG N-methyl-N-nitro-N-nitrosoguanidine - RuBP ribulose bisphosphate - RuMP ribulose monophosphate - Kan kanamycin - Nal nalidixic acid - Rif rifampicin - Tet tetracycline  相似文献   

10.
In syntrophic conversion of butyrate to methane and CO2, butyrate is oxidized to acetate by secondary fermenting bacteria such as Syntrophomonas wolfei in close cooperation with methanogenic partner organisms, e.g., Methanospirillum hungatei. This process involves an energetically unfavourable shift of electrons from the level of butyryl-CoA oxidation to the substantially lower redox potential of proton and/or CO2 reduction, in order to transfer these electrons to the methanogenic partner via hydrogen and/or formate.In the present study, all prominent membrane-bound and soluble proteins expressed in S. wolfei specifically during syntrophic growth with butyrate, in comparison to pure-culture growth with crotonate, were examined by one- and two-dimensional gel electrophoresis, and identified by peptide fingerprinting-mass spectrometry. A membrane-bound, externally oriented, quinone-linked formate dehydrogenase complex was expressed at high level specifically during syntrophic butyrate oxidation, comprising a selenocystein-linked catalytic subunit with a membrane-translocation pathway signal (TAT), a membrane-bound iron-sulfur subunit, and a membrane-bound cytochrome. Soluble hydrogenases were expressed at high levels specifically during growth with crotonate. The results were confirmed by native protein gel electrophoresis, by formate dehydrogenase and hydrogenase-activity staining, and by analysis of formate dehydrogenase and hydrogenase activities in intact cells and cell extracts. Furthermore, constitutive expression of a membrane-bound, internally oriented iron-sulfur oxidoreductase (DUF224) was confirmed, together with expression of soluble electron-transfer flavoproteins (EtfAB) and two previously identified butyryl-CoA dehydrogenases.Our findings allow to depict an electron flow scheme for syntrophic butyrate oxidation in S. wolfei. Electrons derived from butyryl-CoA are transferred through a membrane-bound EtfAB:quinone oxidoreductase (DUF224) to a menaquinone cycle and further via a b-type cytochrome to an externally oriented formate dehydrogenase. Hence, an ATP hydrolysis-driven proton-motive force across the cytoplasmatic membrane would provide the energy input for the electron potential shift necessary for formate formation.  相似文献   

11.
I. Laczkó  K. Barabás 《Planta》1981,153(4):312-316
We have studied the evolution of hydrogen by photobleached filaments of the heterocystous bluegreen alga Anabaena cylindrica. The photobleached cells became orange-yellow due to the heavy accumulation of carotenoids. We found that the yellow filaments produced much larger amounts of hydrogen than the normal, green ones, while the nitrogenase activity responsible for hydrogen evolution increased to a lesser extent. We suggest that a reversible hydrogenase activity induced in photobleached filaments is responsible for the excess amount of hydrogen. 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) inhibits the hydrogen evolution of the yellow filaments which produce much more oxygen and fix less CO2 than the green filaments. Therefore we consider the water to be a possible electron source for this hydrogenase. The low efficiency of light energy conversion (0.3%) in nitrogenase-catalyzed H2 evolution (Laczkó, 1980 Z. Pflanzenphysiol. 100, 241–245) is increased to 1.5–2% by the appearance of the reversible hydrogenase activity.Abbreviations Chl chlorophyll - Car carotenoids - Phy phycocyanin - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea - PSI photosystem I - PSII photosystem II  相似文献   

12.
The enzyme activities of Clostridium La 1 and Clostridium kluyveri involved in the stereospecific hydrogenation of ,-unsaturated carbonyl compounds with hydrogen gas were measured. In C. La 1 the specific activities of hydrogenase and enoate reductase depended heavily on the growth phase and the composition of the medium. During growth in batch cultures on 70 mM crotonate the specific activity of hydrogenase increased and then dropped to about 10% of its maximum value, whereas the activity of enoate reductase reached its maximum in cells of the stationary phase. Under certain conditions during growth the activity ratio hydrogenase: enoate reductase changed from 120 to 1. Thus, the rate limiting enzyme for the hydrogenation can be either the hydrogenase or the enoate reductase, depending on the growth conditions of the cells.The specific activities of ferredoxin-NAD reductase and butyryl-CoA dehydrogenase increased 3-4-fold during growth on crotonate. By turbidostatic experiments it was shown that at constant input of high crotonate concentrations (200 mM) the enoate reductase activity was almost completely suppressed; it increased steadily with decreasing crotonate down to an input concentration of 35 mM.Glucose as carbon source led to high hydrogenase and negligible enoate reductase activities. The latter could be induced by changing the carbon source of the medium from glucose to crotonate. Tetracycline inhibited the formation of enoate reductase.A series of other carbon sources was tested. They can be divided into ones which result in high hydrogenase and rather low enoate reductase activities and others which cause the reverse effect.When the Fe2+ concentration in crotonate medium was growth limiting, cells with relatively high hydrogenase activity and very low enoate reductase activity in the stationary phase were obtained. At Fe2+ concentrations above 3·10-7 M enoate reductase increased and hydrogenase activity reached its minimum. The ratio of activities changes by a factor of about 200. In a similar way the dependence of enzyme activities on the concentration of sulfate was studied.In batch cultures of Clostridium kluyveri a similar opposite time course of enoate reductase and hydrogenase was found.The possible physiological significance of this behavior is discussed.Non Standard Abbreviations O.D.578 Optical density at 578 nm Dedicated to Professor Dr. O. Kandler on the occasion of his 60th birthday  相似文献   

13.
High rates of hydrogen photoproduction are obtained when glutaraldehyde-fixed Photosystem I-enriched vesicles (Photosystem II-depleted) are added to hydrogenase-containing cells of Proteus mirabilis in the presence of the mediator methylviologen and a suitable electron donating system. This donor system includes ascorbate, dithioerythritol (DTE) and the mediator tetramethylphenylene-diamine (TMPD) and reduces the photosynthetic electron transfer chain at the level of plastocyanin. Both DTE and ascorbate are required for hydrogen photoproduction, DTE being the ultimate electron donor and ascorbate only having a catalytic function. Whereas the aerobic photoreduction of methylviologen is similar in the presence of DTE, ascorbate or both, under anaerobic conditions only combination of both compounds results in a high and stable amount of reduced methylviologen that can be utilized by the hydrogenase. It is concluded that oxidation reactions of reduced methylviologen, competing with the hydrogenase, rather than methylviologen photoreduction, limit hydrogen photoproduction in the presence of either DTE or ascorbate. These oxidation reactions are suggested to involve back reactions to the oxidized form(s) of ascorbate and DTE but backflow to the photosynthetic electron transfer chain (i.e. cyclic electron transfer) can not be excluded.Abbreviations Tes N-tris (hydroxymethyl) methyl-2-aminoethanesulfonic acid - DTE 1,4-dithioerythritol - TMPD, N,N,N N-tetramethyl-p-phenylenediamine - DCMU 3-(3, 4-dichlorophenyl)-1, 1,-dimethylureum - EDAC 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide - DNP-INT 2-iodo-6-isopropyl-3-methyl-2, 4, 4-trinitrodiphenyl ether - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone - PS photosystem - Chl chlorophyll  相似文献   

14.
Desulfobacter postgatei grows on acetate and sulfate as energy source. The oxidation of acetate to 2 CO2 proceeds via the citric acid cycle involving membrane-bound succinate dehydrogenase and membrane-bound malate dehydrogenase. We report here that the organism contains membrane-bound NADPH dehydrogenase and ferredoxin: NADP oxidoreductase for the reoxidation of NADPH and reduced ferredoxin generated during isocitrate- and 2-oxoglutarate oxidation, respectively. The presence of proton translocating ATPase activity is also described.NADPH dehydrogenase and succinate dehydrogenase were found to be electrically connected within the membrane and electron transfer between these two enzymes was shown to be coupled with proton translocation. The membrane fraction catalyzed the oxidation of NADPH with fumarate and the reduction of NADP with succinate. NADPH oxidation with fumarate was stimulated by protonophores and inhibited by the proton translocating ATPase inhibitor dicyclohexylcarbodiimide (DCCD) and by heptylhydroxyquinoline-N-oxide (HQNO); inhibition by DCCD was relieved by protonophores. NADP reduction with succinate was dependent on ATP and inhibited by protonophores, DCCD, and HQNO. The membrane fraction also mediated the oxidation of NADPH with the water soluble menaquinone analogue dimethylnaphthoquinone (DMN) and the reduction of fumarate with DMNH2. Only the former reaction was stimulated by protonophores and only the latter reaction was inhibited by HQNO. This suggests that the NADPH dehydrogenase reaction is the site of energy conservation and the succinate dehydrogenase is the site of HQNO inhibition.Non-standard abbreviations APS Adenosine 5-phosphosulfate - DCCD N,N-dicyclohexylcarbodiimide - DCPIP 2,6-dichloroindophenol - DMN 2,3-dimethyl-1,4-naphthoquinone - DTT DL-1,4-dithiothreitol - HQNO 2(n-heptyl)-4-hydroxyquinoline-N-oxide - TCS 3,5,3,4-tetrachlorosalicylanilide - Tricine N-tris-(hydroxymethyl)methylglycine - TTFB 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole - SF-6847 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile  相似文献   

15.
Proton translocation assessed by the quinacrine fluorescence technique was compared with oxygen uptake during thiosulphate oxidation by cells of Thiobacillus denitrificans. The addition of thiosulphate to cell suspensions resulted in an outwardly directed proton translocation as reflected by an increased quinacrine fluorescence. Compared to the O2 uptake activity, the proton translocating system was much more sensitive to proton conductors, other ionophores and inhibitors of electron transport. The results indicate that (a) the proton-translocation activity (membrane energization) is enhanced in aged cell suspensions, (b) intactness of the cytoplasmic membrane is essential for establishing a protonmotive force in cells, (c) the fluorescence increase and proton translocation are reversible processes, (d) inhibitors of electron transport may also act as proton conductors by altering the integrity of the cytoplasmic membrane.Abbreviations CCCP carbonyl cyanide m-chlorophenyl-hydrazone - DBP 2,4-dibromophenol - DNP 2,4-dinitrophenol - HOQNO 2-heptyl-4-hydroxyquinoline-N-oxide - PCP pentachlorophenol - TPB tetraphenyl boron - TTFA 1-[thenoyl-(2)]-3,3,3-trifluoracetone  相似文献   

16.
Disproportionation of thiosulfate or sulfite to sulfate plus sulfide was found in several sulfate-reducing bacteria. Out of nineteen strains tested, eight disproportionated thiosulfate, and four sulfite. Growth with thiosulfate or sulfite as the sole energy source was obtained with three strains (Desulfovibrio sulfodismutans and the strains Bra02 and NTA3); additionally, D. desulfuricans strain CSN grew with sulfite but not with thiosulfate, although thiosulfate was disproportionated. Two sulfur-reducing bacteria, four phototrophic sulfur-oxidizing bacteria (incubated in the dark), and Thiobacillus denitrificans did not disproportionate thiosulfate or sulfite. Desulfovibrio sulfodismutans and D. desulfuricans CSN formed sulfate from thiosulfate or sulfite even when simultaneously oxidizing hydrogen or ethanol, or in the presence of 50 mM sulfate. The capacities of sulfate reduction and of thiosulfate and sulfite disproportionation were constitutively present. Enzyme activities required for sulfate reduction (ATP sulfurylase, pyrophosphatase, APS reductase, sulfite reductase, thiosulfate reductase, as well as adenylate kinase and hydrogenase) were detected in sufficient activities to account for the growth rates observed. ADP sulfurylase and sulfite oxidoreductase activities were not detected. Disproportionation was sensitive to the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) but not to the ATPase inhibitor dicyclohexylcarbodiimide (DCCD). It is proposed that during thiosulfate and sulfite disproportionation sulfate is formed via APS reductase and ATP sulfurylase, but not by sulfite oxidoreductase. Reversed electron transport must be assumed to explain the reduction of thiosulfate and sulfite by the electrons derived from APS reductase.Abbreviations CCCP Carbonylcyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - APS adenosine 5-phosphosulfate (adenylylsulfate)  相似文献   

17.
The fluorescent probe 9-amino-6-chloro-2-methoxy acridine was used to study the energy transduction in the thylakoid and cell membranes of the cyanobacterium Plectonema boryanum. Apart from light-driven electron transfer, the dark endogenous respiration also leads to energization resulting in an ACMA fluorescence response, that is sensitive to the electron flow inhibitor 2, 5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, to the energy transfer inhibitors dicyclohexylcarbodiimide and venturicidine and to the uncoupler 5-chloro-3-t-butyl-2-chloro-4-nitrosalicylanilide.In spheroplasts, in which the cell membranes have lost their capacity to maintain a proton gradient, the respiration-and light-induced ACMA fluorescence changes (quenching) are similar to those in chloroplasts. In intact cells a combination of reversible quenching and enhancement of ACMA fluorescence was found. This dualistic behaviour is supposedly caused by an opposite orientation of the thylakoid and cell membranes. ACMA quenching at the level of the thylakoids was obtained either by respiratory or photosynthetic electron transfer and gave similar responses to those obtained in the spheroplasts. The slower ACMA fluorescence enhancement, only observed in cells with intact cell membranes, also evoked by both respiration and light-induced energization is sensitive to the compounds mentioned above and in addition to KCN.Our results support the view [8] that dark oxidation of substrates by O2 proceeds via the thylakoid membrane and terminates at a CN- sensitive oxidase located in the cell membrane which requires the involvement of a mobile cytoplasmic redox mediator.Abbreviations ACMA 9-amino-6-chloro-2-methoxy acridine - chl a chlorophyll a - DBMIB 2, 5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCCD dicyclohexylcarbodiimide - DNP dinitrophenol - DNP-INT dinitrophenyl ether of 2-iodo-4-nitrothymol - FCCP carbonylcyanide-p-trifluoro-methoxy phenylhydrazone - S-13 5-chloro-3-t-butyl-2-chloro-4-nitrosalicylanilide - tricine N-2 (2-Hydroxy-1, 1-bis (hydroxymethyl) ethyl)-glycine - Tris Tris (hydroxymethyl) amino methane  相似文献   

18.
Methanogenesis by a Syntrophomonas wolfei/ Methanospirillum hungatei coculture was inhibited in presence of ethylene and the hydrogenation catalyst Pd-BaSO4. However, butyrate oxidation by S. wolfei continued and ethylene was reduced to ethane. Per mol of butyrate oxidized, 2.4 mol acetate was produced and 0.8 mol ethylene was reduced. Acetylene, propylene and butene were less effective as H2 acceptors than ethylene, and addition of bromoethanesulfonic acid was necessary to inhibit methanogenesis in the presence of the two longer-chain olefins. Other hydrogenation catalysts were less effective in the order Pd-charcoal < PE-asbestos < Pd-PEI beads < Pt-Al2O3, Pd-CaCO3. Optimal ethylene hydrogenation was achieved with still incubation in presence of 7.2 mg Pd-BaSO4 and 0.7 g sand per ml medium. The higher catabolic rate of S. wolfei in presence of the methanogen indicated that the biological H2 removal mechanism was more efficient than the catalytic olefin reduction.Abbreviations BES bromoethane sulfonic acid - VFA volatile fatty acid  相似文献   

19.
Campylobacter sputorum subspeciesbubulus contains a membrane-bound nitrite reductase which catalyses the six-electron reduction of nitrite to ammonia. Formate andL-lactate are used as hydrogen donors. Cells ofC. sputorum grown with nitrate or nitrite contain cytochromes of theb-andc-type and a carbon monoxide-binding cytochromec. In addition, a special membrane-bound carbon monoxide-binding pigment is found. Nitrite reduction with formate orL-lactate as a hydrogen donor is strongly inhibited by 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Nitrite reduction by bacterial suspensions with lactate as a hydrogen donor is strongly inhibited by carbonylcyanide-m-chlorophenyl-hydrazone (CCCP) whereas nitrite reduction with formate as a hydrogen donor is not inhibited at all. H+/O values and H+/NO 2 - values were measured with ascorbate + N,N,N,N-tetramethyl-p-phenylenediamine (TMPD), formate (in the absence and presence of carbonic anhydrase) andL-lactate as a hydrogen donor. The results are summarized in a scheme for electron transport from formate or lactate to oxygen or nitrite which shows a periplasmic orientation of formate dehydrogenase and nitrite reductase and a cytoplasmic orientation of lactate dehydrogenase and oxygen reduction, and which shows proton translocation with a H+/2e value of 2.0. The H+/O and H+/NO 2 - values predicted by this scheme are in good agreement with the experimental values.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - HQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - MTPP+ methyltriphenylphosphonium cation - TMPD N,N,N,N-tetramethyl-p-phenylenediamine; H+/O (H+/NO 2 - ), number of protons liberated in the outer bulk phase at the reduction of one atom O (one ion NO 2 - ); H+/2e (q+/2e), number of protons (charges) translocated across the cytoplasmic membrane during flow of two electrons to an acceptor  相似文献   

20.
The effect of growth conditions on aerobic and anaerobic hydrogenase activities of Anacystis nidulans was studied. It was found that the two hydrogenase activities both of which were confined to the particulate fraction of cell-free extracts correlated in an opposite way with growth temperature: The algae were always grown photoautotrophically in presence of H2 but after growth at 25° C a significant oxyhydrogen reaction contrasted with negligible photoreduction rates while the opposite was true after growth at 40°C. A similar correlation between incubation temperature and induction of the respective hydrogenase activity was also observed with resting cells.Kinetic analysis of the two different types of hydrogenase — catalysed reactions with Anacystis membranes yielded the following Michaelis-Mentenparameters: K M=55 M H2 and v max=0.12 mol H2 per min and mg protein for the oxyhydrogen reaction, and K M=170 M H2 and v max=0.3 mol H2 per min and mg protein for the photoreductions. Also the dependences of oxyhydrogen and of photoreduction activities on pH and on temperature were measured; both pH and temperature profiles were found to be markedly different for each type of H2-supported reaction.The results are discussed as pointing to the possible occurrence of two functionally distinct hydrogenase enzymes which can be synthesized by Anacystis in response to the conditions of induction.Abbreviations BO p-benzoquinone - CAP chloramphenicol - chl chlorophyll - cytc horse heart cytochrome c - DCMU 3-(34-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-dichlorophenolindophenol - fd ferredoxin - FeCy ferricyanide - MB methylene blue - MV methyl viologen - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MES 2-(N-morpholino)-ethanesulfonic acid - PIPES piperazine-N,N-bis-(2-ethanesulfonic acid) - tricine N-tris-(hydroxymethyl)-methylglycine - Tris tris-(hydroxymethyl)-aminomethan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号