首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Matrix metalloproteinases (MMPs) are a large family of extracellular or membrane-bound proteases. Their ability to cleave extracellular matrix (ECM) proteins has implicated a role in ECM remodeling to affect cell fate and behavior during development and in pathogenesis. We have shown previously that membrane-type 1 (MT1)-MMP [corrected] is coexpressed temporally and spatially with the MMP gelatinase A (GelA) in all cell types of the intestine and tail where GelA is expressed during Xenopus laevis metamorphosis, suggesting a cooperative role of these MMPs in development. Here, we show that Xenopus GelA and MT1-MMP interact with each other in vivo and that overexpression of MT1-MMP and GelA together in Xenopus embryos leads to the activation of pro-GelA. We further show that both MMPs are expressed during Xenopus embryogenesis, although MT1-MMP gene is expressed earlier than the GelA gene. To investigate whether the embryonic MMPs play a role in development, we have studied whether precocious expression of these MMPs alters development. Our results show that overexpression of both MMPs causes developmental abnormalities and embryonic death by a mechanism that requires the catalytic activity of the MMPs. More importantly, we show that coexpression of wild type MT1-MMP and GelA leads to a cooperative effect on embryonic development and that this cooperative effect is abolished when the catalytic activity of either MMP is eliminated through a point mutation in the catalytic domain. Thus, our studies support a cooperative role of these MMPs in embryonic development, likely through the activation of pro-GelA by MT1-MMP.  相似文献   

3.
Catalytic activities of membrane-type 6 matrix metalloproteinase (MMP25)   总被引:4,自引:0,他引:4  
This study describes the biochemical characterisation of the catalytic domain of membrane-type 6 matrix metalloproteinase (MT6-MMP, MMP25, leukolysin). Its activity towards synthetic peptide substrates, components of the extracellular matrix and inhibitors of MMPs was studied and compared with MT1-MMP, MT4-MMP and stromelysin-1. We have found that MT6-MMP is closer in function to stromelysin-1 than MT1 and MT4-MMP in terms of substrate and inhibitor specificity, being able to cleave type-IV collagen, gelatin, fibronectin and fibrin. However, it differs from stromelysin-1 and MT1-MMP in its inability to cleave laminin-I, and unlike stromelysin-1 cannot activate progelatinase B. Our findings suggest that MT6-MMP could play a role in cellular migration and invasion of the extracellular matrix and basement membranes and its activity may be tightly regulated by all members of the TIMP family.  相似文献   

4.
Membrane tethered matrix metalloproteinases (MMPs) cleave a variety of extracellular matrix (ECM) and non-ECM targets and play important roles during embryonic development and tumor progression. Membrane tethered MMPs in particular are important regulators of both tissue invasion and morphogenesis. Much attention has been given to understanding the function of human and mouse MMP14 (also called membrane type-1 MMP, MT1-MMP) and our own data have linked zebrafish Mmp14 to the regulation of gastrulation cell movements. However, less is known regarding the expression and function of other membrane tethered MMPs. We report the cloning and gene expression analysis of zebrafish mmp15a and mmp15b (MT2-MMP) during early embryonic and larval development. Our data show that mmp15a exhibits limited expression prior to segmentation stages and is first detected in the tectum and posterior tailbud. At 24hours post-fertilization (hpf) mmp15a localizes to the caudal hematopoietic tissue, pectoral fin buds, and mandibular arch. By contrast, mmp15b is strongly expressed during gastrula stages before becoming restricted to the polster and anterior neural plate. From 24 to 48hpf, mmp15b expression is detected in the pharyngeal arches, fin buds, otic vesicle, pronephric ducts, proctodeum, tail epidermis, posterior lateral line primordia, and caudal notochord. During the larval period beginning at 72hpf, mmp15b expression becomes restricted to the brain ventricular zone, pharyngeal arches, pectoral fins, and the proctodeum. Many of the mmp15-expressing tissues have been shown to express genes encoding components of the ECM including collagens, fibronectin, and laminins. Our data thus provide a foundation for uncovering the role of Mmp15-dependent pericellular proteolysis during zebrafish embryonic development.  相似文献   

5.
Proteolytic shedding is an important step in the functional down-regulation and turnover of most membrane proteins at the cell surface. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a multifunctional glycoprotein that has two Ig-like domains in its extracellular portion and functions in cell adhesion as an inducer of matrix metalloproteinase (MMP) expression in surrounding cells. Although the shedding of EMMPRIN is reportedly because of cleavage by metalloproteinases, the responsible proteases, cleavage sites, and stimulants are not yet known. In this study, we found that human tumor HT1080 and A431 cells shed a 22-kDa EMMPRIN fragment into the culture medium. The shedding was enhanced by phorbol 12-myristate 13-acetate and inhibited by TIMP-2 but not by TIMP-1, suggesting the involvement of membrane-type MMPs (MT-MMPs). Indeed, down-regulation of the MT1-MMP expression in A431 cells using small interfering RNA inhibited the shedding. The 22-kDa fragment was purified, and the C-terminal amino acid was determined. A synthetic peptide spanning the cutting site was cleaved by MT1-MMP in vitro. The cleavage site is located in the linker region connecting the two Ig-like domains. The N-terminal Ig-like domain is important for the MMP inducing activity of EMMPRIN and for cell-cell interactions, presumably through its ability to engage in homophilic interactions, and the 22-kDa fragment retained the ability to augment MMP-2 expression in human fibroblasts. Thus, the MT1-MMP-dependent cleavage eliminates the functional N-terminal domain of EMMPRIN from the cell surface, which is expected to down-regulate its function. At the same time, the released 22-kDa fragment may mediate the expression of MMPs in tumor tissues.  相似文献   

6.
7.
Matrix metalloproteinases (MMPs) and their endogenous inhibitors TIMPs (tissue inhibitors of MMPs), are two protein families that work together to remodel the extracellular matrix (ECM). TIMPs serve not only to inhibit MMP activity, but also aid in the activation of MMPs that are secreted as inactive zymogens. Xenopus laevis metamorphosis is an ideal model for studying MMP and TIMP expression levels because all tissues are remodeled under the control of one molecule, thyroid hormone. Here, using RT-PCR analysis, we examine the metamorphic RNA levels of two membrane-type MMPs (MT1-MMP, MT3-MMP), two TIMPs (TIMP-2, TIMP-3) and a potent gelatinase (Gel-A) that can be activated by the combinatory activity of a MT-MMP and a TIMP. In the metamorphic tail and intestine the RNA levels of TIMP-2 and MT1-MMP mirror each other, and closely resemble that of Gel-A as all three are elevated during periods of cell death and proliferation. Conversely, MT3-MMP and TIMP-3 do not have similar RNA level patterns nor do they mimic the RNA levels of the other genes examined. Intriguingly, TIMP-3, which has been shown to have anti-apoptotic activity, is found at low levels in tissues during periods of apoptosis.  相似文献   

8.
The matrix metalloproteinases (MMPs) constitute a family of multidomain zinc endopeptidases which contain a catalytic domain with a common metzincin-like topology. The MMPs are involved not only in extracellular matrix degradation, but also in a number of other biological processes. Normally, their proteolytic activity is regulated precisely by their main endogenous protein inhibitors, in particular the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in serious diseases, such as arthritis, tumour growth and metastasis, rendering the MMPs attractive targets for inhibition therapy. Knowledge of their tertiary structures is crucial for a full understanding of their functional properties. Since the first publication of atomic MMP structures in 1994, much more structural information has become available on details of the catalytic domain, on its interaction with synthetic and protein inhibitors, on domain organization and on the formation of complexes with other proteins. This review will outline our current knowledge of MMP structure.  相似文献   

9.
The matrix metalloproteinase (MMP) family is heavily implicated in many diseases, including cancer. The developmental functions of these genes are not clear, however, because the >20 mammalian MMPs can be functionally redundant. Drosophila melanogaster has only two MMPs, which are expressed in embryos in distinct patterns. We created mutations in both genes: Mmp1 mutants have defects in larval tracheal growth and pupal head eversion, and Mmp2 mutants have defects in larval tissue histolysis and epithelial fusion during metamorphosis; neither is required for embryonic development. Double mutants also complete embryogenesis, and these represent the first time, to our knowledge, that all MMPs have been disrupted in any organism. Thus, MMPs are not required for Drosophila embryonic development, but, rather, for tissue remodeling.  相似文献   

10.
Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis.   总被引:12,自引:0,他引:12  
The matrix metalloproteinases (MMPs) constitute a multigene family of over 23 secreted and cell-surface associated enzymes that cleave or degrade various pericellular substrates. In addition to virtually all extracellular matrix (ECM) compounds, their targets include other proteinases, chemotactic molecules, latent growth factors, growth factor-binding proteins and cell surface molecules. The MMP activity is controlled by the physiological tissue inhibitors of MMPs (TIMPs). There is much evidence that MMPs and their inhibitors play a key role during extracellular remodeling in physiological situations and in cancer progression. They have other functions that promoting tumor invasion. Indeed, they regulate early stages of tumor progression such as tumor growth and angiogenesis. Membrane type MMPs (MT-MMPs) constitute a new subset of cell surface-associated MMPs. The present review will focus on MT1-MMP which plays a major role at least, in the ECM remodeling, directly by degrading several of its components, and indirectly by activating pro-MMP2. As our knowledge on the field of MT1-MMP biology has grown, the unforeseen complexities of this enzyme and its interaction with its inhibitor TIMP-2 have emerged, often revealing unexpected mechanisms of action.  相似文献   

11.
Membrane type 4 matrix metalloproteinase (MT4-MMP) shows the least sequence homology to the other MT-MMPs, suggesting a distinct function for this protein. We have isolated a complete cDNA corresponding to the mouse homologue which includes the signal peptide and a complete pro-domain, features that were lacking from the human form originally isolated. Mouse MT4-MMP (mMT4-MMP) expressed in COS-7 cells is located at the cell surface but does not show ability to activate pro-MMP2. The pro-catalytic domain was expressed in Escherichia coli as insoluble inclusions and active enzyme recovered after refolding. Activity of the isolated catalytic domain against synthetic peptides commonly used for MMP enzyme assays could be inhibited by TIMP1, -2, and -3. The recombinant mMT4-MMP catalytic domain was also unable to activate pro-MMP2 and was very poor at hydrolyzing components of the extracellular matrix with the exception of fibrinogen and fibrin. mMT4-MMP was able to hydrolyze efficiently a peptide consisting of the pro-tumor necrosis factor alpha (TNFalpha) cleavage site, a glutathione S-transferase-pro-TNFalpha fusion protein, and was found to shed pro-TNFalpha when co-transfected in COS-7 cells. MT4-MMP was detected by Western blot in monocyte/macrophage cell lines which in combination with its fibrinolytic and TNFalpha-converting activity suggests a role in inflammation.  相似文献   

12.
Membrane type (MT) matrix metalloproteinases (MMPs) are recently recognized members of the family of Zn(2+)- and Ca(2+)-dependent MMPs. To investigate the proteolytic capabilities of human MT4-MMP (i.e. MMP-17), we have cloned DNA encoding its catalytic domain (CD) from a breast carcinoma cDNA library. Human membrane type 4 MMP CD (MT4-MMPCD) protein, expressed as inclusion bodies in Escherichia coli, was purified to homogeneity and refolded in the presence of Zn(2+) and Ca(2+). While MT4-MMPCD cleaved synthetic MMP substrates Ac-PLG-[2-mercapto-4-methylpentanoyl]-LG-OEt and Mca-PLGL-Dpa-AR-NH(2) with modest efficiency, it catalyzed with much higher efficiency the hydrolysis of a pro-tumor necrosis factor-alpha converting enzyme synthetic substrate, Mca-PLAQAV-Dpa-RSSSR-NH(2). Catalytic efficiency with the pro-tumor necrosis factor-alpha converting enzyme substrate was maximal at pH 7.4 and was modulated by three ionizable enzyme groups (pK(a3) = 6.2, pK(a2) = 8.3, and pK(a1) = 10.6). MT4-MMPCD cleaved gelatin but was inactive toward type I collagen, type IV collagen, fibronectin, and laminin. Like all known MT-MMPs, MT4-MMPCD was also able to activate 72-kDa progelatinase A to its 68-kDa form. EDTA, 1,10-phenanthroline, reference hydroxamic acid MMP inhibitors, tissue inhibitor of metalloproteinases-1, and tissue inhibitor of metalloproteinases-2 all potently blocked MT4-MMPCD enzymatic activity. MT4-MMP is, therefore, a competent Zn(2+)-dependent MMP with unique specificity among synthetic substrates and the capability to both degrade gelatin and activate progelatinase A.  相似文献   

13.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) plays an important role in extracellular matrix-induced cell migration and the activation of extracellular signal-regulated kinase (ERK). We showed here that transfection of the MT1-MMP gene into HeLa cells promoted fibronectin-induced cell migration, which was accompanied by fibronectin degradation and reduction of stable focal adhesions, which function as anchors for actin-stress fibers. MT1-MMP expression attenuated integrin clustering that was induced by adhesion of cells to fibronectin. The attenuation of integrin clustering was abrogated by MT1-MMP inhibition with a synthetic MMP inhibitor, BB94. When cultured on fibronectin, HT1080 cells, which endogenously express MT1-MMP, showed so-called motile morphology with well-organized focal adhesion formation, well-oriented actin-stress fiber formation, and the lysis of fibronectin through trails of cell migration. Inhibition of endogenous MT1-MMP by BB94 treatment or expression of the MT1-MMP carboxyl-terminal domain, which negatively regulates MT1-MMP activity, resulted in the suppression of fibronectin lysis and cell migration. BB94 treatment promoted stable focal adhesion formation concomitant with enhanced phosphorylation of tyrosine 397 of focal adhesion kinase (FAK) and reduced ERK activation. These results suggest that lysis of the extracellular matrix by MT1-MMP promotes focal adhesion turnover and subsequent ERK activation, which in turn stimulates cell migration.  相似文献   

14.
Reactive astrocytes occurring in response to neurodegeneration are thought to play an important role in neuronal regeneration by upregulating the expression of extracellular matrix (ECM) components as well as the ECM degrading metalloproteinases (MMPs). We examined the mRNA levels and cellular distribution of membrane type matrix metalloproteinase 1 (MT1-MMP) and tissue inhibitors 1-4 of MMPs (TIMPs) in brain stem and spinal cord of wobbler (WR) mutant mice affected by progressive neurodegeneration and astrogliosis. MT1-MMP, TIMP-1 and TIMP-3 mRNA levels were elevated, whereas TIMP-2 and TIMP-4 expression was not affected. MT1-MMP was expressed in reactive astrocytes of WR. In primary astrocyte cultures, MT1-MMP mRNA was upregulated by exogeneous tumor necrosis factor alpha. Increased plasma membrane and secreted MMP activities were found in primary WR astrocytes.  相似文献   

15.
It has been implicated that reactive oxygen species (ROS) play important roles in modulating tumor progression. However, the mechanisms by which redox-regulated tumor progression are largely unknown. We previously demonstrated that reduced intracellular redox conditions could be achieved in stably transfected small cell lung cancer cells with gamma-glutamylcysteine synthetase (gamma-GCSh) cDNA which encodes a rate-limiting enzyme in the biosynthesis of glutathione (GSH), a major physiological redox regulator. In the present study, using DNA microarray analyses, we compared the expression profiles between the gamma-GCSh-transfected cells and their nontransfected counterpart. We observed downregulation of several matrix metalloproteinases (MMPs), i.e., MMPI and MMP3, and MMP10 in the transfected cells. Dot blot and Northern blot hybridizations confirmed that, among the 18 MMP gene family members and four tissue inhibitors of matrix metalloprotein family (TIMP) analyzed, the expression levels of these three MMPs were consistently reduced. Transiently increased gamma-GCSh expression using tetracycline-inducible gamma-GCSh adenoviral expression system also showed down-regulation of MMP3 and MMP10, but not MMP1. Our results demonstrated that redox regulation of MMP1, MMP3 and MMP10 expression depend upon different modes of redox manipulation. These results bear implication that antioxidant modulation of antitumor progression may be contributed at least in part by the downregulation of a subset of metrix metalloproteins.  相似文献   

16.
Matrix metalloproteinases (MMPs) are a large conserved family of extracellular proteases, a number of which are expressed during neuronal development and upregulated in nervous system diseases. Primarily on the basis of studies using pharmaceutical inhibitors, MMPs have been proposed to degrade the extracellular matrix to allow growth cone advance during development and hence play largely permissive roles in axon extension. Here we show that MMPs are not required for axon extension in the Drosophila embryo, but rather are specifically required for the execution of several stereotyped motor axon pathfinding decisions. The Drosophila genome contains only two MMP homologs, Mmp1 and Mmp2. We isolated Mmp1 in a misexpression screen to identify molecules required for motoneuron development. Misexpression of either MMP inhibits the regulated separation/defasciculation of motor axons at defined choice points. Conversely, motor nerves in Mmp1 and Mmp2 single mutants and Mmp1 Mmp2 double mutant embryos are loosely bundled/fasciculated, with ectopic axonal projections. Quantification of these phenotypes reveals that the genetic requirement for Mmp1 and Mmp2 is distinct in different nerve branches, although generally Mmp2 plays the predominant role in pathfinding. Using both an endogenous MMP inhibitor and MMP dominant-negative constructs, we demonstrate that MMP catalytic activity is required for motor axon fasciculation. In support of the model that MMPs promote fasciculation, we find that the defasciculation observed when MMP activity is compromised is suppressed by otherwise elevating interaxonal adhesion -- either by overexpressing Fas2 or by reducing Sema-1a dosage. These data demonstrate that MMP activity is essential for embryonic motor axon fasciculation.  相似文献   

17.
The membrane-type 1 matrix metalloproteinase (MT1-MMP) has been shown to be a key enzyme in tumor angiogenesis and metastasis. MT1-MMP hydrolyzes a variety of extracellular matrix components and is a physiological activator of pro-MMP-2, another MMP involved in malignancy. Pro-MMP-2 activation by MT1-MMP involves the formation of an MT1-MMP.tissue inhibitors of metalloproteinases 2 (TIMP-2). pro-MMP-2 complex on the cell surface that promotes the hydrolysis of pro-MMP-2 by a neighboring TIMP-2-free MT1-MMP. The MT1-MMP. TIMP-2 complex also serves to reduce the intermolecular autocatalytic turnover of MT1-MMP, resulting in accumulation of active MT1-MMP (57 kDa) on the cell surface. Evidence shown here in Timp2-null cells demonstrates that pro-MMP-2 activation by MT1-MMP requires TIMP-2. In contrast, a C-terminally deleted TIMP-2 (Delta-TIMP-2), unable to form ternary complex, had no effect. However, Delta-TIMP-2 and certain synthetic MMP inhibitors, which inhibit MT1-MMP autocatalysis, can act synergistically with TIMP-2 in the promotion of pro-MMP-2 activation by MT1-MMP. In contrast, TIMP-4, an efficient MT1-MMP inhibitor, had no synergistic effect. These studies suggest that under certain conditions the pericellular activity of MT1-MMP in the presence of TIMP-2 can be modulated by synthetic and natural (TIMP-4) MMP inhibitors.  相似文献   

18.
Laminin-5 (Ln-5) is an extracellular matrix substrate for cell adhesion and migration, which is found in many epithelial basement membranes. Mechanisms eliciting migration on Ln-5 need to be elucidated because of their relevance to tissue remodeling and cancer metastasis. We showed that exogenous addition of activated matrix metalloprotease (MMP) 2 stimulates migration onto Ln-5 in breast epithelial cells via cleavage of the gamma2 subunit. To investigate the biological scope of this proteolytic mechanism, we tested a panel of cells, including colon and breast carcinomas, hepatomas, and immortalized hepatocytes, selected because they migrated or scattered constitutively in the presence of Ln-5. We found that constitutive migration was inhibited by BB94 or TIMPs, known inhibitors of MMPs. Limited profiling by gelatin zymography and Western blotting indicated that the ability to constitutively migrate on Ln-5 correlated with expression of plasma membrane bound MT1-MMP metalloprotease, rather than secretion of MMP2, since MMP2 was not produced by three cell lines (one breast and two colon carcinomas) that constitutively migrated on Ln-5. Moreover, migration on Ln-5 was reduced by MT1-MMP antisense oligonucleotides both in MMP2+ and MMP2- cell lines. MT1-MMP directly cleaved Ln-5, with a pattern similar to that of MMP2. The hemopexin-like domain of MMP2, which interferes with MMP2 activation, reduced Ln-5 migration in MT1-MMP+, MMP2+ cells, but not in MT1-MMP+, MMP2- cells. These results suggest a model whereby expression of MT1-MMP is the primary trigger for migration over Ln-5, whereas MMP2, which is activated by MT1-MMP, may play an ancillary role, perhaps by amplifying the MT1-MMP effects. Codistribution of MT1-MMP with Ln-5 in colon and breast cancer tissue specimens suggested a role for this mechanism in invasion. Thus, Ln-5 cleavage by MMPs may be a widespread mechanism that triggers migration in cells contacting epithelial basement membranes.  相似文献   

19.
20.
We have previously documented that rat IL-2-activated NK (A-NK) cells produce matrix metalloproteinase-2 (MMP-2) and MMP-9. In this study, we describe mouse A-NK cell-derived MMPs, including MT-MMPs, and also TIMPs. RT-PCR analysis from cDNA of mouse A-NK cells revealed mRNA for MMP-2, MMP-9, MMP-11, MMP-13, MT1-MMP, MT2-MMP, TIMP-1, and TIMP-2. MMP-2 and MMP-9 expression was confirmed by gelatin zymography. Moreover, we report for the first time that MT-MMPs are expressed by NK cells, i.e., large granular lymphocytes as determined by both RT-PCR and Western blots. TIMP-1 expression was detected as a 29-kDa protein in Western blots. It is intriguing that TIMP-2 protein from A-NK cells was also detected as a 29-kDa protein, which is clearly different from the previously reported molecular mass of 21 kDa in mouse and human cells. In addition, inhibition of MMPs by BB-94, a selective inhibitor of MMP, significantly inhibited the ability of mouse A-NK cells to migrate through Matrigel, a model basement membrane. Taken together, these findings suggest that A-NK cells may therefore use multiple MMPs in various cellular functions, including degradation of various extracellular matrix molecules as they extravasate from blood vessels and accumulate within cancer metastases following their adoptive transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号