首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane fractions highly enriched in chicken lens MIP (MIP28) were found to form ion channels when incorporated into planar lipid bilayers. The channels displayed prominent unitary conductances of about 60 and 290 pS in symmetric 150 mm KCl solution and were slightly anion selective. For both depolarizing and hyperpolarizing voltages, voltage sensitivity of the MIP28-induced conductance could be fit by a Boltzmann relation, symmetric around zero mV, with V 0 = 18.5 mV, n= 4.5 and g min/g max= 0.17. Channel properties were not appreciably altered by pH in the range of 5.8 to 7, although channel incorporation was observed to occur more frequently at lower pH values. Calcium, at millimolar concentrations, decreased the channel mean open time. Partial proteolysis of MIP28 to yield MIP21 did not appreciably affect single-channel conductance or voltage sensitivity of the reconstituted channels. MIP28 was not phosphorylated by cAMP dependent protein kinase (PKA). Although unitary conductance and selectivity of the chicken MIP channel are similar to those reported for the bovine MIP (MIP26), the voltage sensitivity of MIP28 was higher than that of the bovine homologue, and voltage sensitivity of MIP28 was not modulated by treatments previously shown to affect MIP26 voltage gating (partial proteolysis and protein phosphorylation by PKA: (Ehring et al., 1990). The existence of such strikingly different functional properties in highly homologous channel isoforms may provide a useful system for exploration of the structure-function relations of MIP channels. Received: 27 March 1996/Revised: 5 August 1996  相似文献   

2.
Using the planar lipid bilayer technique we demonstrate that the lipodepsipeptide antibiotic, syringomycin E, forms voltage-sensitive ion channels of weak anion selectivity. The formation of channels in bilayers made from dioleoylglycerophosphatidylserine doped with syringomycin E at one side (1–40 μg/ml) was greatly affected by cis-positive voltage. A change of voltage from a positive to a negative value resulted in (i) an abrupt increase in the single channel conductance (the rate of increase was voltage dependent) simultaneous with (ii) a closing of these channels and an exponential decrease in macroscopic conductance over time. The strong voltage dependence of multichannel steady state conductance, the single channel conductance, the rate of opening of channels at positive voltages and closing them at negative voltages, as well as the observed abrupt increase of single channel conductance after voltage sign reversal suggest that the change of the transmembrane field induces a significant rearrangement of syringomycin E channels, including a change in the spacing of charged groups that function as voltage sensors. The conductance induced by syringomycin E increased with the sixth power of syringomycin E concentration suggesting that at least six monomers are required for channel formation. Received: 3 April 1995/Revised: 24 August 1995  相似文献   

3.
Nisin, a prominent member of the lantibiotic family of antimicrobial agents, has wide application as a food preservative despite poor understanding of its mode of action. Fluorescence recovery after photobleaching has been used with planar lipid bilayers as a model membrane system to examine how nisin might interact with the surface of bacterial cells. Nisin associates with planar lipid bilayers in the absence of an applied membrane potential causing an array of effects consistent with adsorption of nisin onto the membrane surface which involves inhibition of the lateral diffusion and fluorescence of the lipid probe N-(7--1,2,3-benzoxadiazol-4-yl) phosphatidylethanolamine (NBD-PE) and a reduction of the capacitance of the bilayer. Nisin adsorption is dependent on phospholipid composition. In the presence of dioleoylphosphatidylcholine (PC): cardiolipin (CL) 4:1, the rate of lateral mobility of phospholipid is reduced to 61% of the control level which decreases to a value of 46% when CL is replaced by 1-palmitoyl-2-oleoylphosphatidylserine (PS). These effects on bilayer parameters are transient, and with time the values return to near original levels. High electrical conductivity is observed on application of a voltage ramp suggesting that insertion into the membrane follows surface association. Results have been interpreted in terms of a model in which nisin initially binds to the surface of the membrane causing a modulation of bilayer properties. Received: 14 August 1995/Revised: 22 February 1996  相似文献   

4.
A novel method was developed for the direct examination of pairwise encounters between positively and negatively charged phospholipid bilayer vesicles. Giant bilayer vesicles (unilamellar, 4–20 μm in diameter) prepared from 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine, a new cationic phospholipid derivative, were electrophoretically maneuvered into contact with individual anionic phospholipid vesicles. Fluorescence video microscopy revealed that such vesicles commonly underwent fusion within milliseconds (1 video field) after contact, without leakage. Fusion occurred at constant volume and, since flaccid vesicles were rare, the excess membrane was not available after fusion. Hemifusion (the outer monolayers of each vesicle fused while the inner monolayers remained intact) was inferred from membrane-bound dye transfer and a change in the contact area. Hemifusion was observed as a final stable state and as an intermediate to fusion of vesicles composed of charged phospholipids plus zwitterionic phospholipids. Hemifusion occurred in one of three ways following adhesion: either delayed with an abrupt increase in area of contact, immediately with a gradual increase in area of contact, or with retraction during which adherent vesicles dissociated from a flat contact to a point contact. Phosphatidylethanolamine strongly promoted immediate hemifusion; the resultant hemifused state was stable and seldom underwent complete fusion. Although sometimes single contacts between vesicles led to rupture of both, in other cases, a single vesicle underwent multiple fusion events. Direct observation has unequivocally demonstrated the fusion of two, isolated bilayer-bounded bodies to yield a stable, non-leaky product, as occurs in cells, in the absence of proteins. Received: 25 November 1998/Revised: 23 March 1999  相似文献   

5.
Permeability of Boric Acid Across Lipid Bilayers and Factors Affecting It   总被引:13,自引:0,他引:13  
Boron enters plant roots as undissociated boric acid (H3BO3). Significant differences in B uptake are frequently observed even when plants are grown under identical conditions. It has been theorized that these differences reflect species differences in permeability coefficient of H3BO3 across plasma membrane. The permeability coefficient of boric acid however, has not been experimentally determined across any artificial or plant membrane. In the experiments described here the permeability coefficient of boric acid in liposomes made of phosphatidylcholine was 4.9 × 10−6 cm sec−1, which is in good agreement with the theoretical value. The permeability coefficient varied from 7 × 10−6 to 9.5 × 10−9 cm sec−1 with changes in sterols (cholesterol), the type of phospholipid head group, the length of the fatty acyl chain, and the pH of the medium. In this study we also used Arabidopsis thaliana mutants which differ in lipid composition to study the effect of lipid composition on B uptake. The chs1-1 mutant which has lower proportion of sterols shows 30% higher B uptake compared with the wild type, while the act1-1 mutant which has an increased percentage of longer fatty acids, exhibited 35% lower uptake than the wild type. Lipid composition changes in each of the remaining mutants influenced B uptake to various extents. These data suggest that lipid composition of the plasma membrane can affect total B uptake. Received: 15 October 1999/Revised: 11 February 2000  相似文献   

6.
A 107-pS (symmetrical 150 mm KCl), nonselective cation channel was reconstituted from a microsomal membrane fraction of the larval stage of the tapeworm Echinococcus granulosus. Most of the time, it displayed a high open probability (>0.95) irrespective of either the applied voltage, Ca2+, Ba2+, or tetraethylammonium concentration. Nevertheless, in contrast with this ``leaklike' behavior, less frequently this ``all-the-time-open' channel reversibly entered two different kinetic modes. One of them was characterized by lower P o values and some voltage sensitivity (V ?≅ 129 mV, and an equilibrium constant for channel closing changing e-fold per 63-mV change) the kinetic analysis revealing that it resulted from the appearance of voltage-sensitivity in the mean closed times and a sixfold increase in the equilibrium constant for channel closing at 0 mV. The other mode was characterized by a very fast open-close activity leading to poorly resolved current levels and a P o around 0.6–0.7 which, occasionally and in a voltage-sensitive manner, entered a long-lived nonconducting state. However, the rare nature of these mode-shifting transitions precluded a more detailed analysis of their kinetics. The conductive properties of the channel were not affected by these switches. Model gating alone does not seem to ensure any physiological role of this channel and, instead, some other channel changes must occur if this phenomenon were to be of regulatory importance in vivo. Thus, mode-shifting might constitute an alternative target for channel activity modulation also in tapeworms. Received: 30 August 1996/Revised: 31 January 1997  相似文献   

7.
This paper describes a new approach to evaluate the inner structure (including a main constriction and its localization) of the water lumen of an ion channel. The method is based on the determination of channel filling by different nonelectrolyte molecules through each side of an ion channel. The method has two characteristic features that make its use attractive: (i) the possibility to ascertain the existence, localization and size of a narrow part inside an ion channel water lumen and (ii) the chances to determine the maximal size of both entrances of an ion channel and to obtain additional information about the geometry of its water lumen at the same time. Determinations were made on colicin Ia ion channels inserted into planar lipid bilayers. This channel was chosen because there is an apparent contradiction between its low single channel conductance and the large diameter of its water lumen. Our results show that the water lumen of the colicin Ia channel has a funnel-like structure with a small trans-entrance, with a diameter of about 1.0 nm, and a large cis-entrance, with a diameter of approximately 1.8 nm. A constriction with a diameter of approximately 0.7 nm is shown to be located close to the trans-entrance of the channel. The method can also be applied to patch clamp studies of single ion channels. Received: 20 February 1997/Revised: 19 August 1997  相似文献   

8.
A K+ channel with a main conductance of 29 pS was recorded after the incorporation of coronary artery membrane vesicles into lipid bilayers. This channel was identified as an ATP-sensitive K+ channel (KATP) because its activity was diminished by the internal application of 50–250 μm ATP-Na2. Moreover, it was opened when 10–50 μm pinacidil was externally applied. Single-channel records revealed the existence of several (sub)conductance states. At 0 mV and with a 5/250 KCl gradient, the main conductance of the KATP channel was 29 pS. The other (sub)conductance states were less frequent and had discrete values of 12, 17 and 22 pS. Pinacidil stabilized the channel open state primarily in the 29 pS conductance level; whereas ATP inhibited all the conductance levels. In general, KATP channels were characterized by brief openings followed by long closings (open probability, P o ≈ 0.02); only occasionally (3 out of 12 experiments) did the KATP channels have a high open probability (P o ≥ 0.7). Channel activity could be increased or rescued by adding 2.5–10 mm UDP-TRIS and 0.5–2 mm MgCl2 to the internal side of the channel. Received: 7 November 1995/Revised: 10 June 1996  相似文献   

9.
The apical brush border membrane, the main target site of Bacillus thuringiensis toxins, was isolated from gypsy moth (Lymantria dispar) larval midguts and fused to artificial planar lipid bilayer membranes. Under asymmetrical N-methyl-d-glucamine-HCl conditions (450 mm cis/150 mm trans, pH 9.0), which significantly reduce endogenous channel activity, trypsin-activated Cry1Aa, a B. thuringiensis insecticidal protein active against the gypsy moth in vivo, induced a large increase in bilayer membrane conductance at much lower concentrations (1.1–2.15 nm) than in receptor-free bilayer membranes. At least 5 main single-channel transitions with conductances ranging from 85 to 420 pS were resolved. These Cry1Aa channels share similar ionic selectivity with P Cl/P NMDG permeability ratios ranging from 4 to 8. They show no evidence of current rectification. Analysis of the macroscopic current flowing through the composite bilayer suggested voltage-dependence of several channels. In comparison, the conductance of the pores formed by 100–500 nm Cry1Aa in receptor-free bilayer membranes was significantly smaller (about 8-fold) and their P Cl/P NMDG permeability ratios were also reduced (2- to 4-fold). This study provides a detailed demonstration that the target insect midgut brush border membrane material promotes considerably pore formation by a B. thuringiensis Cry toxin and that this interaction results in altered channel properties. Received: 23 February 2001/Revised: 15 June 2001  相似文献   

10.
11.
Membrane-related processes in archaea, the third and most-recently described domain of life, are in general only poorly understood. One obstacle to a functional understanding of archaeal membrane-associated activities corresponds to a lack of archaeal model membrane systems. In the following, characterization of inverted archaeal membrane vesicles, prepared from the halophilic archaeon Haloferax volcanii, is presented. The inverted topology of the vesicles was revealed by defining the orientation of membrane-bound enzymes that in intact cells normally face the cytoplasm or of other protein markers, known to face the exterior medium in intact cells. Electron microscopy, protease protection assays and lectin-binding experiments confirmed the sealed nature of the vesicles. Upon alkalinization of the external medium, the vesicles were able to generate ATP, reflecting the functional nature of the membrane preparation. The availability of preparative scale amounts of inverted archaeal membrane vesicles provides a platform for the study of various membrane-related phenomena in archaea. Received: 27 March 2001/Revised: 13 June 2001  相似文献   

12.
The high larvicidal effect of Bacillus sphaericus (Bs), a mosquito control agent, originates from the presence of a binary toxin (Bs Bin) composed of two proteins (BinA and BinB) that work together to lyse gut cells of susceptible larvae. We demonstrate for the first time that the binary toxin and its individual components permeabilize receptor-free large unilamellar phospholipid vesicles (LUVs) and planar lipid bilayers (PLBs) by a mechanism of pore formation. Calcein-release experiments showed that LUV permeabilization was optimally achieved at alkaline pH and in the presence of acidic lipids. BinA was more efficient than BinB, BinB facilitated the BinA effect, and their stoichiometric mixture was more effective than the full Bin toxin. In PLBs, BinA formed voltage-dependent channels of ≈100–200 pS with long open times and a high open probability. Larger channels (≥400 pS) were also observed. BinB, which inserted less easily, formed smaller channels (≤100 pS) with shorter mean open times. Channels observed after sequential addition of the two components, or formed by their 1:1 mixture (w/w), displayed BinA-like activity. Bs Bin toxin was less efficient at forming channels than the BinA/BinB mixture, with channels displaying the BinA channel behavior. Our data support the concept of BinA being principally responsible for pore formation in lipid membranes with BinB, the binding component of the toxin, playing a role in promoting channel activity. Received: 29 March 2001/Revised: 20 July 2001  相似文献   

13.
Condensation reactions of the amino acid glycine on the surface of Cu(II)-exchanged hectorite are investigated using the technique of scanning force microscopy. Prebiotic conditions are simulated using alternate wetting and heating cycles. Concentration, immobilization, and subsequent polymerization resulting in glycine oligomers are seen to occur primarily at step edges or faults in the topmost layer. Condensation reactions also occur within tiny micropores or defects in the topmost layer. These reactions are facilitated by the availability of intergallery metal cations at the step edges or pores in the surface region. Received: 19 January 1998 / Accepted: 24 April 1998  相似文献   

14.
How thyroid hormones move across biological or model membranes is a subject of controversy. The passage of the 3,5,3′triiodo l-thyronine and 3,5,3′,5′ tetraiodo l-thyronine across model membranes was evaluated by the addition of the hormones to liposomes containing 2,4,6-trinitrobenzene sulfonic acid. Results indicate that hormones can react with an amino-reactive compound pre-encapsulated into phosphatidylcholine liposomes. The transversal motions of thyroid hormones were characterized by using physiological concentration levels of (125I) 3,5,3′triiodo l-thyronine and (125I) 3,5,3′,5′ tetraiodo l-thyronine. The hormone distribution between the two monolayers was time-dependent and kinetic data were fitted to a single exponential. Results obtained show that 3,5,3′ triiodo l-thyronine can permeate phospholipid membranes and the diffusion time increases in the gel and liquid-ordered phase. On the contrary, 3,5,3′, 5′ tetraiodo l-thyronine could not diffuse the liposomal membrane from dimyristoyl and dipalmitoyl phosphatidylcholine in gel phase and egg yolk phosphatidylcholine:cholesterol in the liquid-ordered phase. Our results in the liquid-ordered phase suggest that diffusion movement of thyroid hormones across cell membranes depends on the amount of cholesterol in the bilayer. Received: 1 June 1998/Revised: 14 October 1998  相似文献   

15.
The charge-pulse relaxation spectrum of nonperfused and perfused (turgescent) cells of the giant marine alga Ventricaria ventricosa showed two main exponential decays with time constants of approximately 0.1 msec and 10 msec, respectively, when the cells were bathed in artificial sea water (pH 8). Variation of the external pH did not change the relaxation pattern (in contrast to other giant marine algae). Addition of nystatin (a membrane-impermeable and pore-forming antibiotic) to the vacuolar perfusion solution resulted in the disappearance of the slow exponential, whereas external nystatin decreased dramatically the time constant of the fast one. This indicated (by analogy to corresponding experiments with Valonia utricularis, J. Wang, I. Spiess, C. Ryser, U. Zimmermann, J. Membrane Biol. 157: 311-321, 1997) that the fast relaxation must be assigned to the RC-properties of the plasmalemma and the slow one to those of the tonoplast. Consistent with this, external variation of [K+]o or of [Cl-]o as well as external addition of K+- or Cl--channel/carrier inhibitors (TEA, Ba2+, DIDS) affected only the fast relaxation, but not the slow one. In contrast, addition of these inhibitors to the vacuolar perfusion solution had no measurable effect on the charge-pulse relaxation spectrum. The analysis of the data in terms of the "two membrane model" showed that K+- and (to a smaller extent) Cl--conducting elements dominated the plasmalemma conductance. The analysis of the charge-pulse relaxation spectra also yielded the following area-specific data for the capacitance and the conductance for the plasmalemma and tonoplast (by assuming that both membranes have a planar surface): (plasmalemma) Cp = 0.82 * 10(-2) F m-2, Rp = 1.69 * 10(-2) Omega m2, Gp = 5.9 * 10(4) mS m-2, (tonoplast) Ct = 7. 1 * 10(-2) F m-2, Rt = 14.9 * 10(-2) Omega m2 and Gt = 0.67 * 10(4) mS m-2. The electrical data for the tonoplast show that (in contrast to the literature) the area-specific membrane resistance of the tonoplast of these marine giant algal cells is apparently very high as reported already for V. utricularis. The exceptionally high value of the area-specific capacitance could be explained - among other interpretations - by assuming a 9-fold enlargement of the tonoplast surface. The hypothesis of a multifolded tonoplast was supported by transmission electronmicroscopy of cells fixed under maintenance of turgor pressure and of the electrical parameters of the membranes. This finding indicates that the tonoplast of this species exhibited a sponge-like appearance. Taking this result into account, it can be easily shown that the tonoplast exhibits a high-resistance (1.1 Omega m2). Vacuolar membrane potential measurements (performed in parallel with charge-pulse relaxation studies) showed that the potential difference across the plasmalemma was mainly controlled by the external K+-concentration which suggested that the resting membrane potential of the plasmalemma is largely a K+-diffusion potential. After permeabilization of the tonoplast with nystatin the potential of the intact membrane barrier dropped from about slightly negative or positive (-5.1 to +18 mV, n = 13) to negative values (-15 up to -68 mV; n = 8). This indicated that the cytoplasm of V. ventricosa was apparently negatively charged relative to the external medium. Permeabilization of the plasmalemma by addition of external nystatin resulted generally in an increase in the potential to slightly more positive values (-0.8 to +4.3 mV; n = 5), indicating that the vacuole is positively charged relative to the cytoplasm. These findings apparently end the long-term debate about the electrical properties of V. ventricosa. The results presented here support the findings of Davis (Plant Physiol. 67: 825-831, 1981), but are contrary to the results of Lainson and Field (J. Membrane Biol. 29: 81-94, 1976).  相似文献   

16.
Unilamellar liposomes with native phospholipid fatty acid composition were prepared from rat liver mitochondrial inner membrane phospholipids by extrusion in medium containing 50 mm potassium. They were diluted into low potassium medium to establish a transmembrane potassium gradient. A known membrane potential was imposed by addition of valinomycin, and proton flux into liposomes was measured. Valinomycin in the range 10 pm–1nm was sufficient to fully establish membrane potential. Valinomycin concentrations above 3 nm catalyzed additional proton flux and were avoided. At 300 pm valinomycin, proton flux depended nonlinearly on membrane potential. At 160 mV membrane potential the flux was 30 nmol H+/min/mg phospholipid—approximately 5% of the proton leak flux under comparable conditions in isolated mitochondria, indicating that leak pathways through bulk phospholipid bilayer account for only a small proportion of total mitochondrial proton leak. Received: 5 August 1996/Revised: 1 October 1996  相似文献   

17.
Analysis of freeze-fracture replicas and thin sections of cells of the bacteria Sulfobacillus thermosulfidooxidans and Anaerobacter polyendosporus showed that their cytoplasmic membranes contain some regions in the form of flat lamellar inverted lipid membranes a few tenths of nanometers to a few microns in size. The specific features of these membrane structures are as follows: (i) they contain no familiar intramembrane particles commonly present on freeze-fracture replicas; (ii) in cross thin sections, intramembrane structures are bifurcate on the periphery and look like thylakoids; and (iii) the leaflets of intramembrane structures in S. thermosulfidooxidans cells are corrugated. These structures were revealed in bacterial cells cultivated under normal growth conditions. The data obtained suggest the occurrence of a complex type of compartmentalization in biological membranes. Received: 17 July 2000/Revised: 22 November 2000  相似文献   

18.
L-lactate transport mechanism across rat jejunal enterocyte was investigated using isolated membrane vesicles. In basolateral membrane vesicles l-lactate uptake is stimulated by an inwardly directed H+ gradient; the effect of the pH difference is drastically reduced by FCCP, pCMBS and phloretin, while furosemide is ineffective. The pH gradient effect is strongly temperature dependent. The initial rate of the proton gradient-induced lactate uptake is saturable with respect to external lactate with a K m of 39.2 ± 4.8 mm and a J max of 8.9 ± 0.7 nmoles mg protein−1 sec−1. A very small conductive pathway for l-lactate is present in basolateral membranes. In brush border membrane vesicles both Na+ and H+ gradients exert a small stimulatory effect on lactate uptake. We conclude that rat jejunal basolateral membrane contains a H+-lactate cotransporter, whereas in the apical membrane both H+-lactate and Na+-lactate cotransporters are present, even if they exhibit a low transport rate. Received: 22 October 1996/Revised: 11 March 1997  相似文献   

19.
Influence of membrane physical state on the proton permeability of isolated lysosomes was assessed by measuring the membrane potential with 3,3′-dipropylthiadicarbocyanine iodide and monitoring their proton leakage with p-nitrophenol. Changes in the membrane order were examined by the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene. Both the membrane potential and proton leakage increased with fluidizing the lysosomal membranes by benzyl alcohol and decreased with rigidifying the membranes by cholesteryl hemisuccinate. The proton permeability increased to the maximum of 42% by the benzyl alcohol treatment and decreased to the minimum of 38.1% by the cholesteryl hemisuccinate treatment. Treating the lysosomes with protonophore CCCP increased the proton permeability by 58%. The effects of the membrane fluidization and rigidification can be reversed by rigidifying the fluidized membranes and fluidizing the rigidified membranes, respectively. The results indicate that the proton permeability of lysosomes increased and decreased with increasing and decreasing their membrane fluidity, respectively. Moreover, the lysosomal proton permeability did not alter further if the changes, either an increase or a decrease, in the fluidity exceeded some amount. The results suggest that the proton permeability of lysosomes can be modulated finitely by the alterations in their membrane physical state. Received: 27 September 1999 / Revised: 27 December 1999  相似文献   

20.
We describe the first successful reconstitution of placental ionic channels on planar lipid bilayers. An apical plasma membrane-enriched vesicle fraction from human syncytiotrophoblast at term was prepared by following isotonic agitation, differential centrifugation, and Mg2+-induced selective precipitation of nonapical membranes, and its purity was assessed by biochemical and morphological marker analysis. We have already reported that, unlike previous patch-clamp studies, nonselective cation channels were incorporated in most cases, a result consistent with the higher permeability for cations as compared with Cl and with the low apical membrane potential difference at term revealed by fluorescent probe partition studies, and microelectrode techniques. In this paper, we report that Cl-selective channels were incorporated in 4% of successful reconstitutions (14 out of 353) and that their analysis revealed two types of activity. One of them was consistent with a voltage-dependent, 100-pS channel while the other was consistent with the lateral association of 47-pS conductive units, giving rise to multibarrelled, DIDS-sensitive channels of variable conductance (300 to 650 pS). The latter displayed a very complex behavior which included cooperative gating of conductive units, long-lived substates, voltage-dependent entry into an apparent inactivated state, and flickering activity. The role of the reported Cl channels in transplacental ion transport and/or syncytium homeostasis remains to be determined. Received: 17 September/Revised: 12 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号