首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frataxin is an iron binding mitochondrial matrix protein that has been shown to mediate iron delivery during iron-sulfur cluster and heme biosynthesis. There is a high degree of structural homology for frataxin proteins from diverse sources, and all possess an anionic surface defined by acidic residues. In the human protein these residues principally lie on a surface defined by the alpha1 helix and beta1 sheet and the impact of multiple substitutions of these carboxylate residues on iron binding is described. Full-length human frataxin has previously been shown to undergo self-cleavage to produce a truncated form both in vitro and in vivo. This truncated protein has been shown to bind approximately seven iron centers that are presumably associated with the acidic patch. Relative to this native protein, the stoichiometry decreases according to the number and sites of mutations. Nevertheless, the iron-dependent binding affinity of each frataxin derivative to the iron-sulfur cluster scaffold protein ISU is found to be similar to that of native frataxin, as defined by isothermal titration calorimetry experiments, requiring only one iron center to promote nanomolar binding. While frataxins from various cell types appear to bind differing numbers of iron centers, the physiologically relevant number of bound irons appears to be small, with significantly higher binding affinity following complex formation with partner proteins (micromolar compared with nanomolar binding). By contrast, in reconstitution assays for frataxin-promoted [2Fe-2S](2+) cluster assembly on ISU, one derivative does display a modestly lower reconstitution rate. The overall consensus from these data is to consider a pool of potential sites that can stably bind an iron center when bridged to a variety of physiological targets.  相似文献   

2.
The carbon monoxide (CO) dehydrogenase of Oligotropha carboxidovorans is composed of an S-selanylcysteine-containing 88. 7-kDa molybdoprotein (L), a 17.8-kDa iron-sulfur protein (S), and a 30.2-kDa flavoprotein (M) in a (LMS)(2) subunit structure. The flavoprotein could be removed from CO dehydrogenase by dissociation with sodium dodecylsulfate. The resulting M(LS)(2)- or (LS)(2)-structured CO dehydrogenase species could be reconstituted with the recombinant apoflavoprotein produced in Escherichia coli. The formation of the heterotrimeric complex composed of the apoflavoprotein, the molybdoprotein, and the iron-sulfur protein involves structural changes that translate into the conversion of the apoflavoprotein from non-FAD binding to FAD binding. Binding of FAD to the reconstituted deflavo (LMS)(2) species occurred with second-order kinetics (k(+1) = 1350 M(-1) s(-1)) and high affinity (K(d) = 1.0 x 10(-9) M). The structure of the resulting flavo (LMS)(2) species at a 2.8-A resolution established the same fold and binding of the flavoprotein as in wild-type CO dehydrogenase, whereas the S-selanylcysteine 388 in the active-site loop on the molybdoprotein was disordered. In addition, the structural changes related to heterotrimeric complex formation or FAD binding were transmitted to the iron-sulfur protein and could be monitored by EPR. The type II 2Fe:2S center was identified in the N-terminal domain and the type I center in the C-terminal domain of the iron-sulfur protein.  相似文献   

3.
Ex novo enzymic synthesis of the two 4Fe-4S clusters of Clostridium pasteurianum ferredoxin has been achieved by incubation of the apoprotein with catalytic amounts of the sulfurtransferase rhodanese in the presence of thiosulfate, DL-dihydrolipoate and ferric ammonium citrate. This enzymic reconstitution procedure was compared to a chemical one, in which the enzyme was replaced by sodium sulfide. A further comparison was made with the results previously obtained in the enzymic synthesis of the 2Fe-2S cluster of spinach ferredoxin, allowing the following conclusions to be drawn. The nature of the cluster to be inserted into the reconstituted iron-sulfur protein is determined by the apoprotein itself. The refolding of the structure of the iron-sulfur proteins around the newly inserted cluster is the rate-limiting step in both chemical and enzymic reconstitution. Rhodanese appears to play a role in the recovery of the native architecture of the reconstituted iron-sulfur protein(s). The extension to the 4Fe-4S centers of the rhodanese-based biosynthetic system allows this enzymic route to be proposed as a general way to the in vivo synthesis of iron-sulfur structures.  相似文献   

4.
ApbE is a lipoprotein in Salmonella typhimurium, and mutants unable to make this protein have a reduced ability to make thiamine (vitamin B(1)) and require it as a supplement for optimal growth in minimal glucose medium. Polyclonal antibodies specific to ApbE were used to determine that wild-type ApbE is located exclusively in the inner membrane. The periplasmic, monotopic topology of ApbE was determined by using computer-based hydrophobicity plots, LacZ and PhoA gene fusions, and proteinase protection experiments. This extracellular location of ApbE is required for its function, since a cytoplasmic form (ApbE(cyto)) did not allow an apbE mutant to grow in the absence of thiamine. A periplasmic form of ApbE (ApbE(peri)) lacking the lipoprotein modification allowed an apbE mutant to grow in the absence of thiamine, indicating that soluble ApbE could function in thiamine synthesis and that lipoation and membrane association were not required. Alteration of the amino acid implicated in membrane sorting for other lipoproteins did not result in a relocalization of ApbE to the outer membrane, suggesting that additional sorting determinants exist for ApbE.  相似文献   

5.
R K Hughes 《Biochemistry》1992,31(12):3073-3083
Xanthine dehydrogenase has been purified to homogeneity by conventional procedures from the wild-type strain of the fruit fly Drosophila melanogaster, as well as from a rosy mutant strain (E89----K, ry5231) known to carry a point mutation in the iron-sulfur domain of the enzyme. The wild-type enzyme had all the specific properties that are peculiar to the molybdenum-containing hydroxylases. It had normal contents of molybdenum, the pterin molybdenum cofactor, FAD, and iron-sulfur centers. EPR studies showed its molybdenum center to be quite indistinguishable from that of milk xanthine oxidase. As isolated, only about 10% of the enzyme was present in the functional form, with most or all of the remainder as the inactive desulfo form. It is suggested that this may be present in vivo. Extensive proteolysis accompanied by the development of oxidase activity took place during isolation, but dehydrogenase activity was retained. EPR properties of the reduced iron-sulfur centers, Fe-SI and Fe-SII, in the enzyme are very similar to those of the corresponding centers in milk xanthine oxidase. The E89----K mutant enzyme variant was in all respects closely similar to the wild-type enzyme, with the exception that it lacked both of the iron-sulfur centers. This was established both by its having the absorption spectrum of a simple flavoprotein and by the complete absence of EPR signals characteristic of iron-sulfur centers in the reduced enzyme. Despite the lack of iron-sulfur centers, the mutant enzyme had xanthine:NAD+ oxidoreductase activity indistinguishable from that of the wild-type enzyme. Stopped-flow measurements indicated that, as for the wild-type enzyme, reduction of the mutant enzyme was rate-limiting in turnover. Thus, the iron-sulfur centers appear irrelevant to the normal turnover of the wild-type enzyme with these substrates. However, activity to certain oxidizing substrates, particularly phenazine methosulfate, is abolished in the mutant enzyme variant. This is one of the first examples of deletion by genetic means of iron-sulfur centers from an iron-sulfur protein. The relevance of our findings both to the roles of iron-sulfur centers in other systems and to the nature of the oxidizing substrate for the Drosophila enzyme in vivo are briefly discussed.  相似文献   

6.
The structure of a putative protease from Bacteroides thetaiotaomicron features an unprecedented binding site for flavin mononucleotide. The flavin isoalloxazine ring is sandwiched between two tryptophan residues in the interface of the dimeric protein. We characterized the recombinant protein with regard to its affinity for naturally occurring flavin derivatives and several chemically modified flavin analogs. Dissociation constants were determined by isothermal titration calorimetry. The protein has high affinity to naturally occurring flavin derivatives, such as riboflavin, FMN, and FAD, as well as lumichrome, a photodegradation product of flavins. Similarly, chemically modified flavin analogs showed high affinity to the protein in the nanomolar range. Replacement of the tryptophan by phenylalanine gave rise to much weaker binding, whereas in the tryptophan to alanine variant, flavin binding was abolished. We propose that the protein is an unspecific scavenger of flavin compounds and may serve as a storage protein in vivo.  相似文献   

7.
The role of the [2Fe-2s] cluster centers in xanthine oxidoreductase   总被引:1,自引:0,他引:1  
Xanthine oxidoreductases (XOR), xanthine dehydrogenase (XDH, EC1.1.1.204) and xanthine oxidase (XO, EC1.2.3.2), are the best-studied molybdenum-containing iron-sulfur flavoproteins. The mammalian enzymes exist originally as the dehydrogenase form (XDH) but can be converted to the oxidase form (XO) either reversibly by oxidation of sulfhydryl residues of the protein molecule or irreversibly by proteolysis. The active form of the enzyme is a homodimer of molecular mass 290 kDa. Each subunit contains one molybdopterin group, two non-identical [2Fe-2S] centers, and one flavin adenine dinucleotide (FAD) cofactor. This review focuses mainly on the role of the two iron-sulfur centers in catalysis, as recently elucidated by means of X-ray crystal structure and site-directed mutagenesis studies. The arrangements of cofactors indicate that the two iron-sulfur centers provide an electron transfer pathway from molybdenum to FAD. However, kinetic and thermodynamic studies suggest that these two iron-sulfur centers have roles not only in the pathway of electron flow, but also as an electron sink to provide electrons to the FAD center so that the reactivity of FAD with the electron acceptor substrate might be thermodynamically controlled by way of one-electron-reduced or fully reduced state.  相似文献   

8.
Succinate dehydrogenase consists of two protein subunits and contains one FAD and three iron-sulfur clusters. The flavin is covalently bound to a histidine in the larger, Fp, subunit. The reduction oxidation midpoint potentials of the clusters designated S-1, S-2, and S-3 in Bacillus subtilis wild-type membrane-bound enzyme were determined as +80, -240, and -25 mV, respectively. Magnetic spin interactions between clusters S-1 and S-2 and between S-1 and S-3 were detected by using EPR spectroscopy. The point mutations of four B. subtilis mutants with defective Fp subunits were mapped. The gene of the mutant specifically lacking covalently bound flavin in the enzyme was cloned. The mutation was determined from the DNA sequence as a glycine to aspartate substitution at a conserved site seven residues downstream from the histidine that binds the flavin in wild-type enzyme. The redox midpoint potential of the iron-sulfur clusters and the magnetic spin interactions in mutated succinate dehydrogenases were indistinguishable from the those of the wild type. This shows that flavin has no role in the measured magnetic spin interactions or in the structure and stability of the iron-sulfur clusters. It is concluded from sequence and mutant studies that conserved amino acid residues around the histidyl-FAD are important for FAD binding; however, amino acids located more than 100 residues downstream from the histidyl in the Fp subunit can also effect flavinylation.  相似文献   

9.
Pyruvate oxidase, a tetrameric enzyme consisting of 4 identical subunits, dissociates into apoenzyme monomers and free FAD when treated with acid ammonium sulfate in the presence of high concentrations of potassium bromide. Reconstitution of the native enzymatically active protein can be accomplished by incubating equimolar concentrations of apomonomers and FAD at pH 6.5. The kinetics of the reconstitution reaction have been measured by 1) enzyme activity assays, 2) spectrophotometric assays to measure FAD binding, and 3) high performance liquid chromatography analysis measuring the distribution of monomeric, dimeric, and tetrameric species during reconstitution. The kinetic analysis indicates that the second order reaction of apomonomers with FAD to form an initial monomer-FAD complex is fast. The rate-limiting step for enzymatic reactivation appears to be the folding of the polypeptide chain in the monomer-FAD complex to reconstitute the three-dimensional FAD binding site prior to subunit reassociation. The subsequent formation of native tetramers appears to proceed via an essentially irreversible dimer assembly pathway.  相似文献   

10.
The gene fprA of Mycobacterium tuberculosis, encoding a putative protein with 40% identity to mammalian adrenodoxin reductase, was expressed in Escherichia coli and the protein purified to homogeneity. The 50-kDa protein monomer contained one tightly bound FAD, whose fluorescence was fully quenched. FprA showed a low ferric reductase activity, whereas it was very active as a NAD(P)H diaphorase with dyes. Kinetic parameters were determined and the specificity constant (kcat/Km) for NADPH was two orders of magnitude larger than that of NADH. Enzyme full reduction, under anaerobiosis, could be achieved with a stoichiometric amount of either dithionite or NADH, but not with even large excess of NADPH. In enzyme titration with substoichiometric amounts of NADPH, only charge transfer species (FAD-NADPH and FADH2-NADP+) were formed. At NADPH/FAD ratios higher than one, the neutral FAD semiquinone accumulated, implying that the semiquinone was stabilized by NADPH binding. Stabilization of the one-electron reduced form of the enzyme may be instrumental for the physiological role of this mycobacterial flavoprotein. By several approaches, FprA was shown to be able to interact productively with [2Fe-2S] iron-sulfur proteins, either adrenodoxin or plant ferredoxin. More interestingly, kinetic parameters of the cytochrome c reductase reaction catalyzed by FprA in the presence of a 7Fe ferredoxin purified from M. smegmatis were determined. A Km value of 30 nm and a specificity constant of 110 microM(-1) x s(-1) (10 times greater than that for the 2Fe ferredoxin) were determined for this ferredoxin. The systematic name for FprA is therefore NADPH-ferredoxin oxidoreductase.  相似文献   

11.
The Klebsiella pneumoniae genome contains genes for two putative flavin transferase enzymes (ApbE1 and ApbE2) that add FMN to protein Thr residues. ApbE1, but not ApbE2, has a periplasm-addressing signal sequence. The genome also contains genes for three target proteins with the Dxx(s/t)gAT flavinylation motif: two subunits of Na+-translocating NADH:quinone oxidoreductase (Na+-NQR), and a 99.5 kDa protein, KPK_2907, with a previously unknown function. We show here that KPK_2907 is an active cytoplasmically-localized fumarate reductase. K. pneumoniae cells with an inactivated kpk_2907 gene lack cytoplasmic fumarate reductase activity, while retaining this activity in the membrane fraction. Complementation of the mutant strain with a kpk_2907-containing plasmid resulted in a complete recovery of cytoplasmic fumarate reductase activity. KPK_2907 produced in Escherichia coli cells contains 1 mol/mol each of covalently bound FMN, noncovalently bound FMN and noncovalently bound FAD. Lesion in the ApbE1 gene in K. pneumoniae resulted in inactive Na+-NQR, but cytoplasmic fumarate reductase activity remained unchanged. On the contrary, lesion in the ApbE2 gene abolished the fumarate reductase but not the Na+-NQR activity. Both activities could be restored by transformation of the ApbE1- or ApbE2-deficient K. pneumoniae strains with plasmids containing the Vibrio cholerae apbE gene with or without the periplasm-directing signal sequence, respectively. Our data thus indicate that ApbE1 and ApbE2 bind FMN to Na+-NQR and fumarate reductase, respectively, and that, contrary to the presently accepted view, the FMN residues are on the periplasmic side of Na+-NQR. A new, “electron loop” mechanism is proposed for Na+-NQR, involving an electroneutral Na+/electron symport. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

12.
13.
YacG蛋白是一种能够抑制大肠杆菌促旋酶(E.coli gyrase)活性的内源性小分子蛋白质,仅由65 个氨基酸残基组成。核磁共振(NMR)研究发现,YacG结构中含有1个Cys-X2-Cys-X15-Cys-X3-Cys序列的锌指结构域,然而其作用并不清楚。本研究发现,在添加外源锌或者铁的M9基础培养基中,表达并纯化得到分别含有锌和铁的YacG蛋白,而在同时添加铁和L-半胱氨酸的M9基础培养基中可以纯化得到含有铁硫簇的蛋白质。这表明,YacG不仅是一个锌指蛋白,也是铁结合或铁硫簇结合蛋白。定点突变实验发现,YacG锌指结构中的4个半胱氨酸残基突变后,其结合的锌、铁、铁硫簇的含量都显著下降。这提示,锌结合、铁结合以及铁硫簇结合的位点均位于锌指结构域中的4个半胱氨酸残基。体内YacG过表达实验显示,用IPTG在大肠杆菌体内诱导表达野生型YacG蛋白会导致其生长明显受到抑制,而过表达突变体蛋白(YacG-C12/28S)对其生长的抑制作用将会减弱。体外实验进一步发现,锌结合、铁结合以及铁硫簇结合形式的YacG蛋白对E.coli gyrase促DNA螺旋活性的抑制作用没有明显差别,但是锌指结构突变体蛋白(YacG-C12/28S)对gyrase活性的抑制作用显著减弱。这说明,完整的锌指结构对YacG抑制gyrase活性的功能具有重要作用。此研究有可能为gyrase抑制剂类抗生素药物的研发提供有用的线索。  相似文献   

14.
Human ferrochelatase, a mitochondrial membrane-associated protein, catalyzes the terminal step of heme biosynthesis by insertion of ferrous iron into protoporphyrin IX. The recently solved x-ray structure of human ferrochelatase identifies a potential binding site for an iron donor protein on the matrix side of the homodimer. Herein we demonstrate Hs holofrataxin to be a high affinity iron binding partner for Hs ferrochelatase that is capable of both delivering iron to ferrochelatase and mediating the terminal step in mitochondrial heme biosynthesis. A general regulatory mechanism for mitochondrial iron metabolism is described that defines frataxin involvement in both heme and iron-sulfur cluster biosyntheses. In essence, the distinct binding affinities of holofrataxin to the target proteins, ferrochelatase (heme synthesis) and ISU (iron-sulfur cluster synthesis), allows discrimination between the two major iron-dependent pathways and facilitates targeted heme biosynthesis following down-regulation of frataxin.  相似文献   

15.
16.
1. A method for preparing the 'Rieske' iron-sulfur protein and the bc1 subcomplex of complex III was developed. The new method is advantageous over the published ones in that: (a) the final yield and amount exceeds by far those obtained when employing the hitherto published methods; (b) the iron-sulfur protein as well as the bc1 subcomplex are obtained by one and the same preparation procedure from a common source; and (c) the preparation method is easier than the published ones. 2. The iron-sulfur protein obtained represents the first reconstitutively active preparation present in a monodisperse state. 3. The reconstitution of the ubiquinol:cytochrome c reductase from the two components is a reversible dissociation process. Full activity of ubiquinol:cytochrome c reductase is reached after saturation of the binding site of the bc1 subcomplex for iron-sulfur protein. 4. Full reduction of the constituent cytochrome c1 of the bc1 subcomplex can already be obtained with substoichiometric amounts of iron-sulfur protein, however. 5. The question might be raised whether the observed dissociation equilibrium represents merely a phenomenon occurring specifically with the proteins isolated in Triton X-100 and investigated in a Triton-containing buffer, or whether dissociation of the iron-sulfur protein also takes place in the mitochondrial membrane in the course of the electron-transfer reaction sequence.  相似文献   

17.
The preparation of a reconstitutable apoprotein is widely recognized as an important tool for studying the interactions between protein and coenzyme and also for characterizing the coenzyme-binding site of the protein. Here is described the kinetic analysis of the reconstitution of Aerococcus viridans lactate oxidase apoenzyme with FMN and FAD in the presence of substrate. The reconstitution was followed by measuring the increase in catalytic capacity with time. Lactate oxidase activity was easily removed by obtaining its apoenzyme in an acidic saturated ammonium sulphate solution. When the apoenzyme was reconstituted by the addition of FMN or FAD, a marked lag period was observed, after which the system reached a steady state (linear rate). To explain the binding mechanism of the cofactors to the apoenzyme, a kinetic model is proposed, in which the constants, k3 and k-3, representing the interaction of apoenzyme with cofactor are considered slow and responsible for the lag in the expression of activity. The affinity of apoenzyme was 51-fold higher for FMN than FAD.  相似文献   

18.
cDNA of rat liver xanthine oxidoreductase (XOR), a molybdenum-containing iron-sulfur flavoprotein, was expressed in a baculovirus-insect cell system. The expressed XOR consisted of a heterogeneous mixture of native dimeric, demolybdo-dimeric, and monomeric forms, each of which was separated and purified to homogeneity. All the expressed forms contained flavin, of which the semiquinone form was stable during dithionite titration after dithiothreitol treatment, indicating that the flavin domains of all the expressed molecules have the intact conformations interconvertible between NAD(+)-dependent dehydrogenase (XDH) and O(2)-dependent oxidase (XO) types. The absorption spectrum and metal analyses showed that the monomeric form lacks not only molybdopterin but also one of the iron-sulfur centers. The reductive titration of the monomer with dithionite showed that the monomeric form required only three electrons for complete reduction, and the redox potential of the iron-sulfur center in the monomeric form is a lower value than that of FAD. In contrast to native or demolybdo-dimeric XDHs, the monomer showed a very slow reductive process with NADH under anaerobic conditions, although the conformation around FAD is a dehydrogenase form, suggesting the important role of the iron-sulfur center in the reductive process of FAD with the reduced pyridine nucleotide.  相似文献   

19.
Quinone reductase 2 (NQO2) is a broadly expressed enzyme implicated in responses to a number of compounds, including protein kinase inhibitors, resveratrol, and antimalarial drugs. NQO2 includes a flavin adenine dinucleotide (FAD) cofactor, but X-ray crystallographic analysis of human NQO2 expressed in Escherichia coli showed that electron density for the isoalloxazine ring of FAD was weak and there was no electron density for the adenine mononucleotide moiety. Reversed-phase high-performance liquid chromatography (HPLC) of the NQO2 preparation indicated that FAD was not present and only 38% of the protomers contained flavin mononucleotide (FMN), explaining the weak electron density for FAD in the crystallographic analysis. A method for purifying NQO2 and reconstituting with FAD such that the final content approaches 100% occupancy with FAD is presented here. The enzyme prepared in this manner has a high specific activity, and there is strong electron density for the FAD cofactor in the crystal structure. Analysis of NQO2 crystal structures present in the Protein Data Bank indicates that many may have sub-stoichiometric cofactor content and/or contain FMN rather than FAD. This method of purification and reconstitution will help to optimize structural and functional studies of NQO2 and possibly other flavoproteins.  相似文献   

20.
The biogenesis of iron-sulfur [Fe-S] clusters requires the coordinated delivery of both iron and sulfide. Sulfide is provided by cysteine desulfurases that use L-cysteine as sulfur source. So far, the physiological iron donor has not been clearly identified. CyaY, the bacterial ortholog of frataxin, an iron binding protein thought to be involved in iron-sulfur cluster formation in eukaryotes, is a good candidate because it was shown to bind iron. Nevertheless, no functional in vitro studies showing an involvement of CyaY in [Fe-S] cluster biosynthesis have been reported so far. In this paper we demonstrate for the first time a specific interaction between CyaY and IscS, a cysteine desulfurase participating in iron-sulfur cluster assembly. Analysis of the iron-loaded CyaY protein demonstrated a strong binding of Fe(3+) and a weak binding of Fe(2+) by CyaY. Biochemical analysis showed that the CyaY-Fe(3+) protein corresponds to a mixture of monomer, intermediate forms (dimer-pentamers), and oligomers with the intermediate one corresponding to the only stable and soluble iron-containing form of CyaY. Using spectroscopic methods, this form was further demonstrated to be functional in vitro as an iron donor during [Fe-S] cluster assembly on the scaffold protein IscU in the presence of IscS and cysteine. All of these results point toward a link between CyaY and [Fe-S] cluster biosynthesis, and a possible mechanism for the process is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号