首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Our previous studies concluded that stimulation of the nucleus of the solitary tract (NTS) A2a receptors evokes preferential hindlimb vasodilation mainly via inducing increases in preganglionic sympathetic nerve activity (pre-ASNA) directed to the adrenal medulla. This increase in pre-ASNA causes the release of epinephrine and subsequent activation of beta-adrenergic receptors that are preferentially located in the skeletal muscle vasculature. Selective activation of NTS A1 adenosine receptors evokes variable, mostly pressor effects and increases pre-ASNA, as well as lumbar sympathetic activity, which is directed to the hindlimb. These counteracting factors may have opposite effects on the hindlimb vasculature resulting in mixed vascular responses. Therefore, in chloralose-urethane-anesthetized rats, we evaluated the contribution of vasodilator versus vasoconstrictor effects of stimulation of NTS A1 receptors on the hindlimb vasculature. We compared the changes in iliac vascular conductance evoked by microinejctions into the NTS of the selective A1 receptor agonist N6-cyclopentyladenosine (330 pmol in 50 nl volume) in intact animals with the responses evoked after beta-adrenergic blockade, bilateral adrenalectomy, bilateral lumbar sympathectomy, and combined adrenalectomy + lumbar sympathectomy. In intact animals, stimulation of NTS A1 receptors evoked variable effects: increases and decreases in mean arterial pressure and iliac conductance with prevailing pressor and vasoconstrictor effects. Peripheral beta-adrenergic receptor blockade and bilateral adrenalectomy eliminated the depressor component of the responses, markedly potentiated iliac vasoconstriction, and tended to increase the pressor responses. Lumbar sympathectomy tended to decrease the pressor and vasoconstrictor responses. After bilateral adrenalectomy plus lumbar sympathectomy, a marked vasoconstriction in iliac vascular bed still persisted, suggesting that the vasoconstrictor component of the response to stimulation of NTS A1 receptors is mediated mostly via circulating factors (e.g., vasopressin, angiotensin II, or circulating catecholamines released from other sympathetic terminals). These data strongly suggest that stimulation of NTS A1 receptors exerts counteracting effects on the iliac vascular bed: activation of the adrenal medulla and beta-adrenergic vasodilation versus vasoconstriction mediated by neural and humoral factors.  相似文献   

2.
Previously, we have shown that activation of adenosine A(2a) receptors in the subpostremal nucleus tractus solitarii (NTS) via microinjection of the selective A(2a) receptor agonist CGS-21680 elicits potent, dose-dependent decreases in mean arterial pressure and preferential, marked hindlimb vasodilation. Although A(2a) receptor activation does not change lumbar sympathetic nerve activity, it does markedly enhance the preganglionic adrenal sympathetic nerve activity, which will increase epinephrine release and could subsequently elicit hindlimb vasodilation via activation of beta(2)-adrenergic receptors. Therefore we investigated whether this hindlimb vasodilation was due to neural or humoral mechanisms. In chloralose-urethan-anesthetized male Sprague-Dawley rats, we monitored cardiovascular responses to stimulation of NTS adenosine A(2a) receptors (CGS-21680, 20 pmol/50 nl) in the intact control animals; after pretreatment with propranolol (2 mg/kg iv), a beta-adrenergic antagonist; after bilateral lumbar sympathectomy; after bilateral adrenalectomy; and after combined bilateral lumbar sympathectomy and adrenalectomy. After beta-adrenergic blockade, stimulation of NTS adenosine A(2a) receptors produced a pressor response and a hindlimb vasoconstriction. Lumbar sympathectomy reduced the vasodilation seen in the intact animals by approximately 40%, and adrenalectomy reduced it by approximately 80%. The combined sympathectomy and adrenalectomy virtually abolished the hindlimb vasodilation evoked by NTS A(2a) receptor activation. We conclude that the preferential, marked hindlimb vasodilation produced by stimulation of NTS adenosine A(2a) receptors is mediated by both the efferent sympathetic nerves directed to the hindlimb and the adrenal glands via primarily a beta-adrenergic mechanism.  相似文献   

3.
It has been previously shown in anesthetized pigs that intravenous infusion of 2 microg/h of 17beta-estradiol primarily dilated renal, iliac and coronary circulations, while higher doses of the hormone were required to cause vasodilation also in the mesenteric vascular bed. In the same experimental model, a tonic beta2-adrenoceptor mediated vasodilation, which could be argued to attenuate the vasodilator effect of 17beta-estradiol, has been described. The present study was planned to investigate the role of beta2-adrenergic receptors in the hemodynamic responses of renal and mesenteric vascular beds to 17beta-estradiol. Changes in flow caused by intravenous infusion of 2 microg/h of the hormone at constant heart rate and aortic blood pressure in the left renal and superior mesenteric arteries were assessed using electromagnetic flowmeters. In six pigs, infusion of 17beta-estradiol caused an increase in renal blood flow, which averaged 12.1% of the control values, without affecting mesenteric blood flow. In the same pigs, after hemodynamic variables had returned to the baseline values, blockade of beta2-adrenergic receptors with butoxamine caused an increase in aortic blood pressure and an increase in renal and mesenteric resistance. The subsequent infusion of 17beta-estradiol elicited increases in renal and mesenteric blood flow which respectively averaged 19.6% and 12.8%. Therefore, the present study in anesthetized pigs have shown that the vasodilator responses of the renal and mesenteric circulations to 17beta-estradiol were attenuated and even masked by a tonic beta2-adrenoceptor mediated vasodilation. This indicates that some vasodilator effects elicited by normally used replacement doses of the hormone may not be apparent.  相似文献   

4.
Microinjection of S-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the nucleus of the solitary tract (NTS) of conscious rats causes hypertension, bradycardia, and vasoconstriction in the renal, mesenteric, and hindquarter vascular beds. In the hindquarter, the initial vasoconstriction is followed by vasodilation with AMPA doses >5 pmol/100 nl. To test the hypothesis that this vasodilation is caused by activation of a nitroxidergic pathway in the NTS, we examined the effect of pretreatment with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 10 nmol/100 nl, microinjected into the NTS) on changes in mean arterial pressure, heart rate, and regional vascular conductance (VC) induced by microinjection of AMPA (10 pmol/100 nl in the NTS) in conscious rats. AMPA increased hindquarter VC by 18 +/- 4%, but after pretreatment with L-NAME, AMPA reduced hindquarter VC by 16 +/- 7% and 17 +/- 9% (5 and 15 min after pretreatment, P < 0.05 compared with before pretreatment). Pretreatment with L-NAME reduced AMPA-induced bradycardia from 122 +/- 40 to 92 +/- 32 beats/min but did not alter the hypertension induced by AMPA (35 +/- 5 mmHg before pretreatment, 43 +/- 6 mmHg after pretreatment). Control injections with D-NAME did not affect resting values or the response to AMPA. The present study shows that stimulation of AMPA receptors in the NTS activates both vasodilatatory and vasoconstrictor mechanisms and that the vasodilatatory mechanism depends on production of nitric oxide in the NTS.  相似文献   

5.
Prostaglandins (PGs) affect vascular tone by a direct action on the vascular smooth muscle and by influencing vascular reactivity to adrenergic simuli and several vasoactive substances. Thus, in the isolated Tyrode's perfused rabbit renal, mesenteric and splenic vasculature PGE2 inhibited adrenergically induced vasoconstriction. Since the vasoconstrictor responses to renal nerve stimulation were enhanced by the blockade of PG synthesis and were reduced by stimulation of PG synthesis with arachidonic acid, this suggests that PGE2 functions as an inhibitory modulator of the adrenergic nervous system. However, our demonstration that PGE2 enhanced adrenergically induced vasoconstriction in the renal and mesenteric vasculature of the rat, but had opposite effects in the rat splenic vasculature indicates that the modulatory-effect of PGE-compounds on the adrenergic neuromuscular junction is species dependent and varies in different vascular beds within the same species. Prostaglandins, the release of which is evoked by several vasoactive substances including angiotensins, kinins, and adenine nucleotides, may also contribute to the regulation of vascular tone by either opposing or amplifying the vascular actions of vasoactive substances.  相似文献   

6.
We provide the first functional evidence that calcitonin gene-related peptide (8-37) induces a direct vasoconstriction and reversibly antagonizes vasodilation of the mesenteric arterial bed induced by calcitonin gene-related peptide (CGRP) suggesting that CGRP (8-37) is a competitive antagonist of vascular CGRP receptors. Vasodilation induced by periarterial nerve stimulation was inhibited both by CGRP (8-37) and by desensitization of CGRP receptors. These results further support the evidence that the periarterial nerve stimulation-induced nonadrenergic noncholinergic vasodilation of the mesenteric vasculature is mediated by endogenous CGRP and its receptors.  相似文献   

7.
In this study, we characterized the arterial pressure, heart rate, and regional vascular conductance responses elicited by unilateral microinjection of ionotropic glutamatergic agonists N-methyl-D-aspartic acid (NMDA and non-NMDA) into the nucleus of tractus solitarius (NTS) of conscious rats. Microinjections of NMDA and S-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) caused changes in mean arterial pressure (MAP). Lower doses elicited decreases in MAP, whereas higher doses elicited biphasic responses (decreases followed by increases). Both agonists induced bradycardia and elicited dose-dependent vasoconstriction in the renal, mesenteric, and hindquarter beds. AMPA elicited delayed vasodilation in the hindquarter bed but NMDA did not. Bradycardia and initial hypotension produced by each agonist were abolished by systemic administration of the muscarinic antagonist methylatropine. However, methylatropine did not affect either the vasoconstriction or the vasodilatation. The contrasting hemodynamic effects produced by NMDA and AMPA could be caused by activation of differential subsets of NTS neurons. Preferential activation of one subset could produce the NMDA-related responses, whereas activation of another subset would elicit AMPA-related responses.  相似文献   

8.
Vasoconstriction induced by sympathetic nerve stimulation and by norepinephrine infusion in the superior mesenteric artery of cats anesthetized with pentobarbital was inhibited by adenosine infusions in a dose-related way. The responses to nerve stimulation were not inhibited to a greater extent than the responses to norepinephrine, thus suggesting no presynaptic modulation of sympathetic nerves supplying the resistance vessels of the feline intestinal vascular bed. Blockade of adenosine receptors using 8-phenyltheophylline did not alter the degree of constriction induced by nerve stimulation or norepinephrine infusion, indicating that in the fasted cat, endogenous adenosine co-released or released subsequent to constriction does not affect the peak vasoconstriction reached. Isoproterenol caused similar degrees of vasodilation as adenosine but did not show significant antagonism of the pooled responses to nerve stimulation or norepinephrine infusion; there was no tendency for the degree of dilation induced by isoproterenol to correlate with the inhibition of constrictor responses. Thus, the effect of adenosine on nerve- and norepinephrine-induced constriction is not secondary to nonspecific vasodilation.  相似文献   

9.
Vascular dysfunction in the splanchnic circulation during portal hypertension is characterized by enhanced NO-mediated vasorelaxation and vascular hyporeactivity to norepinephrine that lead to arterial vasodilation. NPY most likely counteracts both of these key features. Firstly, NPY appears to inhibit Ach- and PNS-induced vasorelaxation in mesenteric arteries. This effect is more pronounced in portal hypertensive rats as compared to control, and most likely reflects the inhibition of increased e- and nNOS-derived NO-synthesis during portal hypertensive conditions. Secondly, NPY sensitizes the mesenteric vasculature to alpha(1)-adrenergic vasoconstriction. Most importantly, in portal hypertensive rats but not in sham rats NPY markedly augments vascular contractility and thereby corrects vascular hyporeactivity. Both actions of NPY increase vascular tone and may well act synergistically in the splanchnic circulation during portal hypertension. Moreover, the vasoconstrictive effects of NPY are most pronounced at particularly high levels of alpha(1)-adrenergic activity. Therefore, it appears that NPY becomes increasingly important for optimizing adrenergic vasoconstriction at particularly high adrenergic drive and also for playing a predominant role for vascular homeostasis. Cirrhotic patients present with elevated circulating plasma levels of NPY, which appears to be independent from the severity of liver dysfunction and to correlate with portal pressure. This finding indicates enhanced NPY release during portal hypertension that may represent a compensatory mechanism aimed at counterbalancing arterial vasodilation by restoring the efficacy of endogenous catecholamines and inhibiting vasodilative drive in the splanchnic circulation.  相似文献   

10.
Activation of adenosine A2a receptors in the nucleus of the solitary tract (NTS) decreases mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas increases in preganglionic adrenal sympathetic nerve activity (pre-ASNA) occur, a pattern similar to that observed during hypotensive hemorrhage. Central vasopressin V1 receptors may contribute to posthemorrhagic hypotension and bradycardia. Both V1 and A2a receptors are densely expressed in the NTS, and both of these receptors are involved in cardiovascular control; thus they may interact. The responses elicited by NTS A2a receptors are mediated mostly via nonglutamatergic mechanisms, possibly via release of vasopressin. Therefore, we investigated whether blockade of NTS V1 receptors alters the autonomic response patterns evoked by stimulation of NTS A2a receptors (CGS-21680, 20 pmol/50 nl) in alpha-chloralose-urethane anesthetized male Sprague-Dawley rats. In addition, we compared the regional sympathetic responses to microinjections of vasopressin (0.1-100 ng/50 nl) into the NTS. Blockade of V1 receptors reversed the normal decreases in MAP into increases (-95.6 +/- 28.3 vs. 51.4 +/- 15.7 integralDelta%), virtually abolished the decreases in HR (-258.3 +/- 54.0 vs. 18.9 +/- 57.8 integralDeltabeats/min) and RSNA (-239.3 +/- 47.4 vs. 15.9 +/- 36.1 integralDelta%), and did not affect the increases in pre-ASNA (279.7 +/- 48.3 vs. 233.1 +/- 54.1 integralDelta%) evoked by A2a receptor stimulation. The responses partially returned toward normal values approximately 90 min after the blockade. Microinjections of vasopressin into the NTS evoked dose-dependent decreases in HR and RSNA and variable MAP and pre-ASNA responses with a tendency toward increases. We conclude that the decreases in MAP, HR, and RSNA in response to NTS A2a receptor stimulation may be mediated via release of vasopressin from neural terminals in the NTS. The differential effects of NTS V1 and A2a receptors on RSNA versus pre-ASNA support the hypothesis that these receptor subtypes are differentially located/expressed on NTS neurons/neural terminals controlling different sympathetic outputs.  相似文献   

11.
Nitric oxide (NO) seems to contribute to vascular homeostasis regulating neurotransmission. This work aimed at assessing the influence of NO from different sources and respective intracellular pathways on sympathetic neurotransmission, in two vascular beds. Electrically-evoked [3H]-noradrenaline release was assessed in rat mesenteric and tail arteries in the presence of NO donors or endothelial/neuronal nitric oxide synthase (NOS) inhibitors. The influence of NO on adenosine-mediated effects was also studied using selective antagonists for adenosine receptors subtypes. Location of neuronal NOS (nNOS) was investigated by immunohistochemistry (with specific antibodies for nNOS and for Schwann cells) and Confocal Microscopy. Results indicated that: 1) in mesenteric arteries, noradrenaline release was reduced by NO donors and it was increased by nNOS inhibitors; the effect of NO donors was only abolished by the adenosine A1 receptors antagonist; 2) in tail arteries, noradrenaline release was increased by NO donors and it was reduced by eNOS inhibitors; adenosine receptors antagonists were devoid of effect; 3) confocal microscopy showed nNOS staining in adventitial cells, some co-localized with Schwann cells. nNOS staining and its co-localization with Schwann cells were significantly lower in tail compared to mesenteric arteries. In conclusion, in mesenteric arteries, nNOS, mainly located in Schwann cells, seems to be the main source of NO influencing perivascular sympathetic neurotransmission with an inhibitory effect, mediated by adenosine A1 receptors activation. Instead, in tail arteries endothelial NO seems to play a more relevant role and has a facilitatory effect, independent of adenosine receptors activation.  相似文献   

12.
Rao SP  Conley A  Dunbar JC 《Peptides》2003,24(5):745-754
The response to centrally administered beta-endorphin has been characterized by decreasing sympathetic nervous activity and decreased cardiovascular tone. We investigated the effect of the central administration of both mu and kappa opioid receptor agonist and antagonists on cardiovascular responses. The administration of the mu agonist, DAMGO (0.2nmol) increased the mean arterial pressure (MAP) and stimulated iliac vasoconstriction while higher doses (2 and 20nmol) decreased MAP and stimulated iliac vasodilation. The administration of the kappa receptor agonist, Dynorphin decreased the MAP and stimulated superior mesenteric vasodilation. beta-Funaltrexamine reduced MAP and superior mesenteric vasodilation while nor-binaltorphimine increased MAP and iliac and superior mesenteric vasoconstriction. We conclude that mu receptor activation decrease or increase MAP depending on the mu agonist concentration. However, kappa receptor activation is consistently associated with a decrease in MAP.  相似文献   

13.
Moderate exercise elicits a relative postexercise hypotension that is caused by an increase in systemic vascular conductance. Previous studies have shown that skeletal muscle vascular conductance is increased postexercise. It is unclear whether these hemodynamic changes are limited to skeletal muscle vascular beds. The aim of this study was to determine whether the splanchnic and/or renal vascular beds also contribute to the rise in systemic vascular conductance during postexercise hypotension. A companion study aims to determine whether the cutaneous vascular bed is involved in postexercise hypotension (Wilkins BW, Minson CT, and Halliwill JR. J Appl Physiol 97: 2071-2076, 2004). Heart rate, arterial pressure, cardiac output, leg blood flow, splanchnic blood flow, and renal blood flow were measured in 13 men and 3 women before and through 120 min after a 60-min bout of exercise at 60% of peak oxygen uptake. Vascular conductances of leg, splanchnic, and renal vascular beds were calculated. One hour postexercise, mean arterial pressure was reduced (79.1 +/- 1.7 vs. 83.4 +/- 1.8 mmHg; P < 0.05), systemic vascular conductance was increased by approximately 10%, leg vascular conductance was increased by approximately 65%, whereas splanchnic (16.0 +/- 1.8 vs. 18.5 +/- 2.4 ml.min(-1).mmHg(-1); P = 0.13) and renal (20.4 +/- 3.3 vs. 17.6 +/- 2.6 ml.min(-1).mmHg(-1); P = 0.14) vascular conductances were unchanged compared with preexercise. This suggests there is neither vasoconstriction nor vasodilation in the splanchnic and renal vasculature during postexercise hypotension. Thus the splanchnic and renal vascular beds neither directly contribute to nor attenuate postexercise hypotension.  相似文献   

14.
Dopamine (DA) receptors have been divided into two subtypes: DA1 receptors which subserve vasodilation in renal, mesenteric, coronary, and cerebral vascular beds, and DA2 receptors which when activated cause inhibition of release of norepinephrine in sympathetic nerve endings. The subdivisions were made on the basis of differences in chemical structure and potency series of agonists and antagonists for the two receptor subtypes. Agonists and antagonists are now available which selectively act on DA1 or DA2 receptors. The clinical use of DA, DA pro-drugs, and selective DA agonists is discussed with particular emphasis on the treatment of congestive heart failure and hypertension. Finally, data are presented concerning possible relationships between peripheral DA1 and DA2 receptors and DA receptors classified in the central nervous system.  相似文献   

15.
区域性血管床对局部注射胍丁胺的不同反应   总被引:1,自引:0,他引:1  
Li Q  Fan ZZ  Wang YH  He RR 《生理学报》2001,53(6):451-455
在66只麻醉大鼠,分别采用后肢、肾脏和肠系膜动脉在体恒流灌注法,观察了向灌注环路中直接注射胍丁胺(agmatine,AGM)的血管效应,以所引起的灌流压增减反映血管的收缩和舒张。所得结果如下:(1)不同剂量的AGM(0.1、0.5、1mg/kg)注射于股部灌注环路时,可剂量依赖性地增高后肢血管的灌流压。无论预先注射咪唑啉受体(imidazoline receptor,IR)和α2-肾上腺素能受体阻断剂(α2-adrenergic receptor,α2-AR)idazoxan(0.5mg/kg)或注射α2-肾上腺素能受体阻断剂yohimbine(1mg/kg)均可完全阻抑上述AGM的效应。(2)向肾血管灌注环路中直接注射AGM也可剂量依赖性地增高肾血管的灌流压,需特别指出的是:大剂量AGM(1mg/mg)引起肾血管双相的灌注压增高,此效应可被idazoxan完全阻断。而在预先应用yohimbine后,再注射AGM则引起肾血管灌流压降低。(3)在肠系膜血管灌流环路中注射AGM可剂量依赖性地降低其灌流压。此效应可被idazoxan(0.5mg/kg)完全阻断,而yohimbine(1mg/kg)对此无作用。根据上述结果得出的结论是,AGM对后肢、肾脏和肠系膜血管床的血管紧张性具有不同的作用。  相似文献   

16.
C Han  W W Lautt 《Nitric oxide》1999,3(2):172-179
We have previously shown that nitric oxide (NO) and adenosine suppress vasoconstriction induced by norepinephrine infusion and sympathetic nerve stimulation in the hepatic artery and superior mesenteric artery. NO is involved in the control of basal vascular tone in the superior mesenteric artery but not the hepatic artery. The vasodilation induced by adenosine is inhibited by NO in the superior mesenteric artery but not in the hepatic artery. Based on these known interactions of catecholamines, adenosine, and NO, the objective of this study was to test the hypothesis that NO modulates the interaction between vasoconstrictors and vasodilators in the hepatic artery. We examined the ability of norepinephrine to suppress adenosine-mediated vasodilation and the role of NO in this interaction. Hepatic arterial blood flow and pressure were monitored in pentobarbital-anesthetized cats. The maximum hepatic arterial vasoconstrictor response to norepinephrine infusion was potentiated by blockade of NO production using Nomega-nitro-L-arginine methyl ester (L-NAME), and the potentiation was reversed by L-arginine. The maximum dilator response to adenosine was only slightly suppressed (14.0+/-5.8%, P < 0.05) by norepinephrine infusion; however, after the NO blockade, the suppression by norepinephrine of the vasodilation induced by adenosine was substantially potentiated (45.2+/-9.1%, P < 0.05). Similar results were obtained for isoproterenol-induced vasodilation. We conclude that the interaction between these vasodilators and norepinephrine was modulated by NO which inhibited the vasoconstriction and the suppression of vasodilators caused by norepinephrine and that in the absence of NO production, norepinephrine-induced constriction and the ability to antagonize dilation is substantially potentiated.  相似文献   

17.
Diabetes is associated with impaired vascular dilatatory responses that appear to be influenced by sex as well as diabetic state. Therefore, we hypothesized that vascular and sympathetic control function exhibit a greater deterioration following the induction of diabetes in female than in male rats. We conducted a comparative determination of the effect of sodium nitroprusside (SNP, a nitrous oxide donor) and that of an alpha1-adrenergic antagonist, prazosin, on selective vascular flows, mean arterial pressure (MAP), and heart rate (HR), in female and male normal and diabetic rats. Rats were made diabetic using streptozotocin (50 mg/kg, iv) and maintained for 5-6 weeks. Following anesthesia with urethane/alpha-chloralose, the femoral artery and vein were cannulated for recording and sampling. Flow probes were placed on the iliac, renal, and superior mesenteric arteries. SNP (1, 5, 10, and 20 microg/kg) infusions resulted in a dose-dependent decrease in MAP in normal and diabetic rats. The decrease in MAP in normal males was 37% less at the 20 microg/kg concentration of SNP when compared to normal females. The HR was not significantly changed in response to the hypotensive effect of SNP; however, reflex tachycardia was more prominent in diabetic males. The vascular conductance (flow/MAP) was increased by SNP in normal and diabetic rats in a dose-dependent fashion; however, the responsiveness was decreased in the iliac and superior mesenteric and increased in the renal arteries in diabetics when compared to normals. Diabetic males were 42% and 28% less responsive to SNP in the iliac and superior mesenteric arteries, respectively. On the other hand, diabetic females were 1.5-fold more responsive in the renal artery when compared to normals. Prazosin (4 mg/kg) decreased the MAP in normal and diabetic rats to a comparable degree. Prazosin increased the vascular conductance in all three vascular beds in normal and diabetic rats with the greater increase occurring in the iliac (118%) and superior mesenteric (110%) arteries. We concluded that diabetes is associated with an increased response to NO in the renal vessels and a decreased response in the iliac and superior mesenteric vessels in both females and males. alpha-Adrenergic tone was greatest in diabetic female and male rats. This study suggests that decreased vascular flow in diabetes is a result of a combination of decreased sensitivity to NO and increased adrenergic tone.  相似文献   

18.
It is generally accepted that the endothelium regulates vascular tone independent of the activity of the sympathetic nervous system. Here, we tested the hypothesis that the activation of sympathetic nerves engages the endothelium to oppose vasoconstriction. Local inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) signals ("pulsars") in or near endothelial projections to vascular smooth muscle (VSM) were measured in an en face mouse mesenteric artery preparation. Electrical field stimulation of sympathetic nerves induced an increase in endothelial cell (EC) Ca(2+) pulsars, recruiting new pulsar sites without affecting activity at existing sites. This increase in Ca(2+) pulsars was blocked by bath application of the α-adrenergic receptor antagonist prazosin or by TTX but was unaffected by directly picospritzing the α-adrenergic receptor agonist phenylephrine onto the vascular endothelium, indicating that nerve-derived norepinephrine acted through α-adrenergic receptors on smooth muscle cells. Moreover, EC Ca(2+) signaling was not blocked by inhibitors of purinergic receptors, ryanodine receptors, or voltage-dependent Ca(2+) channels, suggesting a role for IP(3), rather than Ca(2+), in VSM-to-endothelium communication. Block of intermediate-conductance Ca(2+)-sensitive K(+) channels, which have been shown to colocalize with IP(3) receptors in endothelial projections to VSM, enhanced nerve-evoked constriction. Collectively, our results support the concept of a transcellular negative feedback module whereby sympathetic nerve stimulation elevates EC Ca(2+) signals to oppose vasoconstriction.  相似文献   

19.
Previously we have shown that adenosine operating via the A(1) receptor subtype may inhibit glutamatergic transmission in the baroreflex arc within the nucleus of the solitary tract (NTS) and differentially increase renal (RSNA), preganglionic adrenal (pre-ASNA), and lumbar (LSNA) sympathetic nerve activity (ASNA>RSNA≥LSNA). Since the cardiopulmonary chemoreflex and the arterial baroreflex are mediated via similar medullary pathways, and glutamate is a primary transmitter in both pathways, it is likely that adenosine operating via A(1) receptors in the NTS may differentially inhibit regional sympathetic responses evoked by activation of cardiopulmonary chemoreceptors. Therefore, in urethane-chloralose-anesthetized rats (n = 37) we compared regional sympathoinhibition evoked by the cardiopulmonary chemoreflex (activated with right atrial injections of serotonin 5HT(3) receptor agonist phenylbiguanide, PBG, 1-8 μg/kg) before and after selective stimulation of NTS A(1) adenosine receptors [microinjections of N(6)-cyclopentyl adenosine (CPA), 0.033-330 pmol/50 nl]. Activation of cardiopulmonary chemoreceptors evoked differential, dose-dependent sympathoinhibition (RSNA>ASNA>LSNA), and decreases in arterial pressure and heart rate. These differential sympathetic responses were uniformly attenuated in dose-dependent manner by microinjections of CPA into the NTS. Volume control (n = 11) and blockade of adenosine receptor subtypes in the NTS via 8-(p-sulfophenyl)theophylline (8-SPT, 1 nmol in 100 nl) (n = 9) did not affect the reflex responses. We conclude that activation of NTS A(1) adenosine receptors uniformly inhibits neural and cardiovascular cardiopulmonary chemoreflex responses. A(1) adenosine receptors have no tonic modulatory effect on this reflex under normal conditions. However, when adenosine is released into the NTS (i.e., during stress or severe hypotension/ischemia), it may serve as negative feedback regulator for depressor and sympathoinhibitory reflexes integrated in the NTS.  相似文献   

20.
Vascular escape is seen as a partial recovery from initial vasoconstriction despite continued constrictor stimuli. Escape in the feline intestine (superior mesenteric artery) occurred for i.a. norepinephrine (NE) infusions (56% escape for low dose, 40% for high dose NE) and for sympathetic nerve stimulation (SNS) (65% for 1 Hz, 49% for 3 Hz, 44% for 9 Hz). Adenosine infusion or blockade of adenosine receptors (8-phenyltheophylline) did not alter the escape, showing that endogenous adenosine levels are unlikely to play any role in the mechanism of escape. Other aspects of escape were studied: equiconstrictor doses of NE given i.a. or i.v. lead to similar degrees of escape; propranolol and ouabain did not alter escape; the degree of escape was significantly greater for the low dose NE and the 1-Hz SNS than for higher intensities of stimulation, however, escape did not inversely correlate significantly with the initial degree of vasoconstriction when all data were pooled. Post-stimulatory hyperemia occurs upon cessation of vasoconstrictor stimuli, reaches a peak conductance within 1 min, and returns to baseline within about 3 min. Hyperemia was quantitated from the peak vasodilation and from the area under the flow-hyperemia curve. The hyperemias were not related to NE dose or SNS frequency nor did they correlate with initial vasoconstriction or extent of vascular escape. Contrary to the hypothesis that adenosine may mediate hyperemia, adenosine infusions reduced the response and adenosine receptor antagonism tended to elevate the response. Propranolol and ouabain did not produce significant effects on post-stimulatory hyperemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号