首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
With the recent quick expansion of DNA and protein sequence databases, intensive efforts are underway to interpret the linear genetic information of DNA in terms of function, structure, and control of biological processes. The systematic identification and quantification of expressed proteins has proven particularly powerful in this regard. Large-scale protein identification is usually achieved by automated liquid chromatography-tandem mass spectrometry of complex peptide mixtures and sequence database searching of the resulting spectra [Aebersold and Goodlett, Chem. Rev. 2001, 101, 269-295]. As generating large numbers of sequence-specific mass spectra (collision-induced dissociation/CID) spectra has become a routine operation, research has shifted from the generation of sequence database search results to their validation. Here we describe in detail a novel probabilistic model and score function that ranks the quality of the match between tandem mass spectral data and a peptide sequence in a database. We document the performance of the algorithm on a reference data set and in comparison with another sequence database search tool. The software is publicly available for use and evaluation at http://www.systemsbiology.org/research/software/proteomics/ProbID.  相似文献   

3.
Markov clustering (MCL) is becoming a key algorithm within bioinformatics for determining clusters in networks. However,with increasing vast amount of data on biological networks, performance and scalability issues are becoming a critical limiting factor in applications. Meanwhile, GPU computing, which uses CUDA tool for implementing a massively parallel computing environment in the GPU card, is becoming a very powerful, efficient, and low-cost option to achieve substantial performance gains over CPU approaches. The use of on-chip memory on the GPU is efficiently lowering the latency time, thus, circumventing a major issue in other parallel computing environments, such as MPI. We introduce a very fast Markov clustering algorithm using CUDA (CUDA-MCL) to perform parallel sparse matrix-matrix computations and parallel sparse Markov matrix normalizations, which are at the heart of MCL. We utilized ELLPACK-R sparse format to allow the effective and fine-grain massively parallel processing to cope with the sparse nature of interaction networks data sets in bioinformatics applications. As the results show, CUDA-MCL is significantly faster than the original MCL running on CPU. Thus, large-scale parallel computation on off-the-shelf desktop-machines, that were previously only possible on supercomputing architectures, can significantly change the way bioinformaticians and biologists deal with their data.  相似文献   

4.
Spectral library searching is an emerging approach in peptide identifications from tandem mass spectra, a critical step in proteomic data analysis. In spectral library searching, a spectral library is first meticulously compiled from a large collection of previously observed peptide MS/MS spectra that are conclusively assigned to their corresponding amino acid sequence. An unknown spectrum is then identified by comparing it to all the candidates in the spectral library for the most similar match. This review discusses the basic principles of spectral library building and searching, describes its advantages and limitations, and provides a primer for researchers interested in adopting this new approach in their data analysis. It will also discuss the future outlook on the evolution and utility of spectral libraries in the field of proteomics.  相似文献   

5.
Creasy DM  Cottrell JS 《Proteomics》2002,2(10):1426-1434
An error tolerant mode for database matching of uninterpreted tandem mass spectrometry data is described. Selected database entries are searched without enzyme specificity, using a comprehensive list of chemical and post-translational modifications, together with a residue substitution matrix. The modifications are tested serially, to avoid the catastrophic loss of discrimination that would occur if all the permutations of large numbers of modifications in combination were possible. The new mode has been coded as an extension to the Mascot search engine, and tested against a number of Liquid chromatography-tandem mass spectrometry datasets. The results show a number of additional peptide matches, but require careful interpretation. The most significant limitation of this approach is that it can only reveal new matches to proteins that already have at least one significant peptide match.  相似文献   

6.
7.
Computational analysis of mass spectra remains the bottleneck in many proteomics experiments. SEQUEST was one of the earliest software packages to identify peptides from mass spectra by searching a database of known peptides. Though still popular, SEQUEST performs slowly. Crux and TurboSEQUEST have successfully sped up SEQUEST by adding a precomputed index to the search, but the demand for ever-faster peptide identification software continues to grow. Tide, introduced here, is a software program that implements the SEQUEST algorithm for peptide identification and that achieves a dramatic speedup over Crux and SEQUEST. The optimization strategies detailed here employ a combination of algorithmic and software engineering techniques to achieve speeds up to 170 times faster than a recent version of SEQUEST that uses indexing. For example, on a single Xeon CPU, Tide searches 10,000 spectra against a tryptic database of 27,499 Caenorhabditis elegans proteins at a rate of 1550 spectra per second, which compares favorably with a rate of 8.8 spectra per second for a recent version of SEQUEST with index running on the same hardware.  相似文献   

8.

Background  

Tandem mass spectrometry-based database searching has become an important technology for peptide and protein identification. One of the key challenges in database searching is the remarkable increase in computational demand, brought about by the expansion of protein databases, semi- or non-specific enzymatic digestion, post-translational modifications and other factors. Some software tools choose peptide indexing to accelerate processing. However, peptide indexing requires a large amount of time and space for construction, especially for the non-specific digestion. Additionally, it is not flexible to use.  相似文献   

9.
Several methods have been used to identify peptides that correspond to tandem mass spectra. In this work, we describe a data set of low energy tandem mass spectra generated from a control mixture of known protein components that can be used to evaluate the accuracy of these methods. As an example, these spectra were searched by the SEQUEST application against a human peptide sequence database. The numbers of resulting correct and incorrect peptide assignments were then determined. We show how the sensitivity and error rate are affected by the use of various filtering criteria based upon SEQUEST scores and the number of tryptic termini of assigned peptides.  相似文献   

10.

Background  

Tandem mass spectrometry (MS/MS) is a powerful tool for protein identification. Although great efforts have been made in scoring the correlation between tandem mass spectra and an amino acid sequence database, improvements could be made in three aspects, including characterization ofpeaks in spectra, adoption of effective scoring functions and access to thereliability of matching between peptides and spectra.  相似文献   

11.
A method for the rapid correlation of tandem mass spectra to a list of protein sequences in a database has been developed. The combination of the fast and accurate computational search algorithm, X!Tandem, and a Linux cluster parallel computing environment with PVM or MPI, significantly reduces the time required to perform the correlation of tandem mass spectra to protein sequences in a database. A file of tandem mass spectra is divided into a specified number of files, each containing an equal number of the spectra from the larger file. These files are then searched in parallel against a protein sequence database. The results of each parallel output file are collated into one file for viewing through a web interface. Thousands of spectra can be searched in an accurate, practical, and time effective manner. The source code for running Parallel Tandem utilizing either PVM or MPI on Linux operating system is available from http://www.thegpm.org. This source code is made available under Artistic License from the authors.  相似文献   

12.
13.

Background  

In proteomics experiments, database-search programs are the method of choice for protein identification from tandem mass spectra. As amino acid sequence databases grow however, computing resources required for these programs have become prohibitive, particularly in searches for modified proteins. Recently, methods to limit the number of spectra to be searched based on spectral quality have been proposed by different research groups, but rankings of spectral quality have thus far been based on arbitrary cut-off values. In this work, we develop a more readily interpretable spectral quality statistic by providing probability values for the likelihood that spectra will be identifiable.  相似文献   

14.

Background  

Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has become one of the most used tools in mass spectrometry based proteomics. Various algorithms have since been developed to automate the process for modern high-throughput LC-MS/MS experiments.  相似文献   

15.
Peptide identification by tandem mass spectrometry is the dominant proteomics workflow for protein characterization in complex samples. The peptide fragmentation spectra generated by these workflows exhibit characteristic fragmentation patterns that can be used to identify the peptide. In other fields, where the compounds of interest do not have the convenient linear structure of peptides, fragmentation spectra are identified by comparing new spectra with libraries of identified spectra, an approach called spectral matching. In contrast to sequence-based tandem mass spectrometry search engines used for peptides, spectral matching can make use of the intensities of fragment peaks in library spectra to assess the quality of a match. We evaluate a hidden Markov model approach (HMMatch) to spectral matching, in which many examples of a peptide's fragmentation spectrum are summarized in a generative probabilistic model that captures the consensus and variation of each peak's intensity. We demonstrate that HMMatch has good specificity and superior sensitivity, compared to sequence database search engines such as X!Tandem. HMMatch achieves good results from relatively few training spectra, is fast to train, and can evaluate many spectra per second. A statistical significance model permits HMMatch scores to be compared with each other, and with other peptide identification tools, on a unified scale. HMMatch shows a similar degree of concordance with X!Tandem, Mascot, and NIST's MS Search, as they do with each other, suggesting that each tool can assign peptides to spectra that the others miss. Finally, we show that it is possible to extrapolate HMMatch models beyond a single peptide's training spectra to the spectra of related peptides, expanding the application of spectral matching techniques beyond the set of peptides previously observed.  相似文献   

16.
When performing bioinformatics analysis on tandem mass spectrometry data, there is a computational need to efficiently store and sort these semi-ordered datasets. To solve this problem, a new data structure based on dynamic arrays was designed and implemented in an algorithm that parses semi-ordered data made by Mascot, a separate software program that matches peptide tandem mass spectra to protein sequences in a database. By accommodating the special features of these large datasets, the combined dynamic array (CDA) provides efficient searching and insertion operations. The operations on real datasets using this new data structure are hundreds times faster than operations using binary tree and red-black tree structures. The difference becomes more significant when the dataset size grows. This data structure may be useful for improving the speed of other related types of protein assembling software or other types of software that operate on datasets with similar semi-ordered features.  相似文献   

17.
Zhao Y  Lin YH 《Proteomics》2005,5(4):853-855
Instead of using the probability mean, a simple and yet effective heuristic approach was employed to treat experimentally obtained tandem mass spectrometry (MS/MS) data for protein identification. The proposed approach is based on the total number (T) of identified experimental MS/MS data. To warrant the subsequent ranking, the total number of identified b- and y-type ions (Tb+y) must be greater than 50% of T. Peptides having the same T and Tb+y are either ranked by the contiguity of identified ions or discarded during identification. When compared to other protein identification tools, good agreement with the searched results was seen.  相似文献   

18.
Complexome profiling is a rapidly spreading, powerful technique to gain insight into the nature of protein complexes. It identifies and quantifies protein complexes separated into multiple fractions of increasing molecular mass using mass spectrometry-based, label-free bottom-up proteomics. Complexome profiling enables a sophisticated and thorough characterization of the composition, molecular mass, assembly, and interactions of protein complexes. However, in practice, its application is limited by the large number of samples it generates and the related time of mass spectrometry analyses. Here, we report an improved process workflow that implements tandem mass tags for multiplexing complexome profiling. This workflow substantially reduces the number of samples and measuring time without compromising protein identification or quantification reliability. In profiles from mitochondrial fractions of cells recovering from chloramphenicol treatment, tandem mass tags-multiplexed complexome profiling exhibited migration patterns of mature ATP synthase (complex V) and assembly intermediates that were consistent in composition and abundance with profiles obtained by the label-free approach. Reporter ion quantifications of proteins and complexes unaffected by the chloramphenicol treatment presented less variation in comparison to the label-free method. Incorporation of tandem mass tags enabled an efficient and robust complexome profiling analysis and may foster broader application for protein complex profiling in biomedical research and diagnostics.  相似文献   

19.
Using fast atom bombardment (FAB) and tandem mass spectrometry (MS/MS), we examined 12 synthetic N-carbamoylamino acids (CAA) as tert-butyldimethylsilyl (TBDMS) derivatives. In FAB mass spectrometry and FAB MS/MS, spectra of protonated molecules for CAA provide specific cleavages involving the TBDMS carbamoyl moiety. The daughter scan spectrum of the parent ion indicated that it was useful for structural elucidation and differentiation of structural isomers of CAA. We have also identified each CAA separately in a mixture using a neutral loss scan for characteristic ions. In addition, we demonstrated that CAA in urine samples from patients with ornithine carbamoyl transferase deficiency gave collision-induced dissociation (CID) spectra which correspond well with CID spectra obtained using synthetically prepared CAA.  相似文献   

20.
Motivation: Peptide mass fingerprinting (PMF) is a method for protein identification in which a protein is fragmented by a defined cleavage protocol (usually proteolysis with trypsin), and the masses of these products constitute a 'fingerprint' that can be searched against theoretical fingerprints of all known proteins. In the first stage of PMF, the raw mass spectrometric data are processed to generate a peptide mass list. In the second stage this protein fingerprint is used to search a database of known proteins for the best protein match. Although current software solutions can typically deliver a match in a relatively short time, a system that can find a match in real time could change the way in which PMF is deployed and presented. In a paper published earlier we presented a hardware design of a raw mass spectra processor that, when implemented in Field Programmable Gate Array (FPGA) hardware, achieves almost 170-fold speed gain relative to a conventional software implementation running on a dual processor server. In this article we present a complementary hardware realization of a parallel database search engine that, when running on a Xilinx Virtex 2 FPGA at 100 MHz, delivers 1800-fold speed-up compared with an equivalent C software routine, running on a 3.06 GHz Xeon workstation. The inherent scalability of the design means that processing speed can be multiplied by deploying the design on multiple FPGAs. The database search processor and the mass spectra processor, running on a reconfigurable computing platform, provide a complete real-time PMF protein identification solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号