首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
《Current biology : CB》2020,30(9):1579-1588.e6
  1. Download : Download high-res image (131KB)
  2. Download : Download full-size image
  相似文献   

6.
7.
Polyclonal antibodies were developed against the flavonoid biosynthetic enzymes, CHS, CHI, F3H, FLS, and LDOX from Arabidopsis thaliana. These antibodies were used to perform the first detailed analysis of coordinate expression of flavonoid metabolism at the protein level. The pattern of flavonoid enzyme expression over the course of seedling development was consistent with previous studies indicating that chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), and flavonol synthase (FLS) are encoded by early genes while leucoanthocyanidin dioxygenase (LDOX) is encoded by a late gene. This sequential expression may underlie the variations in flavonoid end-products produced during this developmental stage, as determined by HPLC analysis, which includes a shift in the ratio of the flavonols, quercetin and kaempferol. Moreover, immunoblot and HPLC analyses revealed that several transparent testa lines blocked at intermediate steps of the flavonoid pathway actually accumulated higher levels of specific flavonoid enzymes and end-products. These results suggest that specific intermediates may act as inducers of flavonoid metabolism.  相似文献   

8.
9.
Anthocyanin accumulation is a common phenom-enon seen in plants under environmental stress. In this study, we identified a new allele of ROOT HAIR DEFECTIVE3 (RHD3) showing an anthocyanin overaccumulat...  相似文献   

10.
Inorganic phosphate (Pi) is often limited in soils due to precipitation with iron (Fe) and aluminum (Al). To scavenge heterogeneously distributed phosphorus (P) resources, plants have evolved a local Pi signaling pathway that induces malate secretion to solubilize the occluded Fe-P or Al-P oxides. In this study, we show that Pi limitation impaired brassinosteroid signaling and downregulated BRASSINAZOLE-RESISTANT 1 (BZR1) expression in Arabidopsis thaliana. Exogenous 2,4-epibrassinolide treatment or constitutive activation of BZR1 (in the bzr1-D mutant) significantly reduced primary root growth inhibition under Pi-starvation conditions by downregulating ALUMINUM-ACTIVATED MALATE TRANSPORTER 1 (ALMT1) expression and malate secretion. Furthermore, AtBZR1 competitively suppressed the activator effect of SENSITIVITY TO PROTON RHIZOTOXICITY 1 (STOP1) on ALMT1 expression and malate secretion in Nicotiana benthamiana leaves and Arabidopsis. The ratio of nuclear-localized STOP1 and BZR1 determined ALMT1 expression and malate secretion in Arabidopsis. In addition, BZR1-inhibited malate secretion is conserved in rice (Oryza sativa). Our findings provide insight into plant mechanisms for optimizing the secretion of malate, an important carbon resource, to adapt to Pi-deficiency stress.  相似文献   

11.
12.
13.
14.
15.
《Current biology : CB》2023,33(11):2201-2212.e3
  1. Download : Download high-res image (155KB)
  2. Download : Download full-size image
  相似文献   

16.
17.
18.
19.
20.
The flavonoid pathway leading to anthocyanin biosynthesis in maize is controlled by multiple regulatory genes and induced by various developmental and environmental factors. We have investigated the effect of the regulatory loci R, B, and Pl on anthocyanin accumulation and on the expression of four genes (C2, A1, Bz1, and Bz2) in the biosynthetic pathway during an inductive light treatment. The results show that light-mediated anthocyanin biosynthesis is regulated solely by R; the contributions of B and Pl are negligible in young seedlings. Induction of the A1 and Bz2 genes by high fluence-rate white light requires the expression of a dominant R allele, whereas accumulation of C2 and Bz1 mRNA occurs with either a dominant or recessive allele at R. A1 and Bz2 mRNA accumulate only in response to high fluence-rate white light, but Bz1 is fully expressed in dim red light. Some C2 mRNA is induced by dim red light, but accumulation is far greater in high fluence-rate white light. Furthermore, expression from both dominant and recessive alleles of the regulatory gene R is enhanced by high fluence-rate white light. Seedlings with a recessive allele at R produce functional chalcone synthase protein (the C2 gene product) but accumulate no anthocyanins, suggesting that, in contrast to the R-mediated coordinate regulation of C2 and Bz1 observed in the aleurone, C2 expression in seedlings is independent of R and appears to be regulated by a different light-sensitive pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号