首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With aging, structural and functional changes occur in the myocardium without obvious impairment of systolic left ventricular (LV) function. Transmural differences in myocardial vulnerability for these changes may result in increase of transmural inhomogeneity in contractile myofiber function. Subendocardial fibrosis and impairment of subendocardial perfusion due to hypertension might change the transmural distribution of contractile myofiber function. The ratio of LV torsion to endocardial circumferential shortening (torsion-to-shortening ratio; TSR) during systole reflects the transmural distribution of contractile myofiber function. We investigated whether the transmural distribution of systolic contractile myofiber function changes with age. Magnetic resonance tissue tagging was performed to derive LV torsion and endocardial circumferential shortening. TSR was quantified in asymptomatic young [age 23.2 (SD 2.6) yr, n = 15] and aged volunteers [age 68.8 (SD 4.4) yr, n = 16]. TSR and its standard deviation were significantly elevated in the aged group [0.47 (SD 0.12) aged vs. 0.34 (SD 0.05) young; P = 0.0004]. In the aged group, blood pressure and the ratio of LV wall mass to end-diastolic volume were mildly elevated but could not be correlated to the increase in TSR. There were no significant differences in other indexes of systolic LV function such as end-systolic volume and ejection fraction. The elevated systolic TSR in the asymptomatic aged subjects suggests that aging is associated with local loss of contractile myofiber function in the subendocardium relative to the subepicardium potentially caused by subclinical pathological incidents.  相似文献   

2.
To investigate the effects of colchicine on left ventricular (LV) function and hypertrophy (LVH) of rats subjected to constriction of transverse aorta (TAoC), we evaluated SO (sham operated, vehicle; n = 25), SO-T (sham operated, colchicine 0.4 mg/kg body wt ip daily; n = 38), TAoC (vehicle; n = 37), and TAoC-T (TAoC, colchicine; n = 34) on the 2nd, 6th, and 15th day after surgery. Colchicine attenuated LVH of TAoC-T compared with TAoC rats, as evaluated by ratio between LV mass (LV(M)) and right ventricular mass, LV wall thickness, and average diameter of cardiac myocytes. Systolic gradient across TAoC ( approximately 45 mmHg), LV systolic pressure, LV end-diastolic pressure, and rate of LV pressure increase (+dP/dt) were comparable in TAoC-T and TAoC rats. However, the baseline and increases of LV systolic pressure-to-LV(M) and +dP/dt-to-LV(M) ratios induced by phenylephrine infusion were greater in TAoC-T and SO-T compared with SO rats. Baseline and increases of +dP/dt-to-LV(M) ratio were reduced in TAoC compared with SO rats. TAoC rats increased polymerized fraction of tubulin compared with SO, SO-T, and TAoC-T rats. Our results indicate that colchicine treatment reduced LVH to pressure overload but preserved LV function.  相似文献   

3.
It is generally accepted that the left ventricle (LV) hypertrophies (LVH) to normalize systolic wall stress (sigma(s)) in chronic pressure overload. However, LV filling pressure (P(v)) may be elevated as well, supporting the alternative hypothesis of end-diastolic wall stress (sigma(d)) normalization in LVH. We used an LV time-varying elastance model coupled to an arterial four-element lumped-parameter model to study ventricular-arterial interaction in hypertension-induced LVH. We assessed model parameters for normotensive controls and applied arterial changes as observed in hypertensive patients with LVH (resistance +40%, compliance -25%) and assumed 1) no cardiac adaptation, 2) normalization of sigma(s) by LVH, and 3) normalization of sigma(s) by LVH and increase in P(v), such that sigma(d) is normalized as well. In patients, systolic and diastolic blood pressures increase by approximately 40%, cardiac output (CO) is constant, and wall thickness increases by 30-55%. In scenarios 1 and 2, blood pressure increased by only 10% while CO dropped by 20%. In scenario 2, LV wall thickness increased by only 10%. The predictions of scenario 3 were in qualitative and quantitative agreement with in vivo human data. LVH thus contributes to the elevated blood pressure in hypertension, and cardiac adaptations include an increase in P(v), normalization of sigma(s), and preservation of CO in the presence of an impaired diastolic function.  相似文献   

4.
Cardiac left ventricle hypertrophy (LVH) constitutes a major risk factor for heart failure. Although LVH is most commonly caused by chronic elevation in arterial blood pressure, reduction of blood pressure to normal levels does not always result in regression of LVH, suggesting that additional factors contribute to the development of this pathology. We tested whether genetic preconditions associated with the imbalance in sodium homeostasis could trigger the development of LVH without concomitant increases in blood pressure. The results showed that the presence of a hypertensive variant of α-adducin gene in Milan rats (before they become hypertensive) resulted in elevated expression of genes associated with LVH, and of salt-inducible kinase 2 (SIK2) in the left ventricle (LV). Moreover, the mRNA expression levels of SIK2, α-adducin, and several markers of cardiac hypertrophy were positively correlated in tissue biopsies obtained from human hearts. In addition, we found in cardiac myocytes that α-adducin regulates the expression of SIK2, which in turn mediates the effects of adducin on hypertrophy markers gene activation. Furthermore, evidence that SIK2 is critical for the development of LVH in response to chronic high salt diet (HS) was obtained in mice with ablation of the sik2 gene. Increases in the expression of genes associated with LVH, as well as increases in LV wall thickness upon HS, occurred only in sik2+/+ but not in sik2−/− mice. Thus LVH triggered by HS or the presence of a genetic variant of α-adducin requires SIK2 and is independent of elevated blood pressure. Inhibitors of SIK2 may constitute part of a novel therapeutic regimen aimed at prevention/regression of LVH.  相似文献   

5.
Transgenic animal models have provided a vital insight into the pathogenesis of cardiovascular disease, but functional cardiac assessment is often limited by high heart rates and small heart size. We hypothesized that in the presence of concentric left ventricular (LV) hypertrophy (LVH), load-sensitive measures of contractility may be misinterpreted as overestimating global cardiac function, because the normal function of excess sarcomeres may displace a greater volume of blood during contraction. Conductance catheter technology was used to evaluate pressure-volume (P-V) relationships as a load-insensitive method of assessing cardiac function in vivo in 18-wk-old heterozygous (mRen-2)27 transgenic rats (a model of LVH), compared with age-matched Sprague-Dawley (SD) controls. Anesthetized animals underwent echocardiography followed by P-V loop analysis. Blood pressure, body weight, and heart rate were higher in the Ren-2 rats (P < 0.05). Load-sensitive measures of systolic function, including fractional area change, fractional shortening, ejection fraction, and positive peak rate of LV pressure development, were greater in the Ren-2 than control animals (P < 0.05). Load-insensitive measures of systolic function, including the preload recruitable stroke work relationship and the end-systolic P-V relationship, were not different between Ren-2 and SD rats. Regional wall motion assessed by circumferential shortening velocity suggested enhanced circumferential fiber contractility in the Ren-2 rats (P = 0.02), but tissue Doppler imaging, used to assess longitudinal function, was not different between groups. Although conventional measures suggested enhanced systolic function in the Ren-2 rat, load-insensitive measures of contractility were not different between Ren-2 and SD animals. These findings suggest that the normal range of values for load-sensitive indexes of contractility needs to be altered according to the degree of LVH. To accurately identify changes in systolic function, we suggest that a combination of echocardiography with assessment of load-insensitive measures be used routinely.  相似文献   

6.
It is currently unclear whether left ventricular (LV) myofilament function is depressed in experimental LV hypertrophy (LVH) or congestive heart failure (CHF). To address this issue, we studied pressure overload-induced LV hypertrophy (POLVH) and myocardial infarction-elicited congestive heart failure (MICHF) in rats. LV myocytes were isolated from control, POLVH, and MICHF hearts by mechanical homogenization, skinned with Triton, and attached to micropipettes that projected from a sensitive force transducer and high-speed motor. A subset of cells was treated with either unphosphorylated, recombinant cardiac troponin (cTn) or cTn purified from either control or failing ventricles. LV myofilament function was characterized by the force-[Ca(2+)] relation yielding Ca(2+)-saturated maximal force (F(max)), myofilament Ca(2+) sensitivity (EC(50)), and cooperativity (Hill coefficient, n(H)) parameters. POLVH was associated with a 35% reduction in F(max) and 36% increase in EC(50). Similarly, MICHF resulted in a 42% reduction in F(max) and a 30% increase in EC(50). Incorporation of recombinant cTn or purified control cTn into failing cells restored myofilament Ca(2+) sensitivity toward levels observed in control cells. In contrast, integration of cTn purified from failing ventricles into control myocytes increased EC(50) to levels observed in failing myocytes. The F(max) parameter was not markedly affected by troponin exchange. cTnI phosphorylation was increased in both POLVH and MICHF left ventricles. We conclude that depressed myofilament Ca(2+) sensitivity in experimental LVH and CHF is due, in part, to a decreased functional role of cTn that likely involves augmented phosphorylation of cTnI.  相似文献   

7.
Transverse aortic constriction (TAC) has been widely used to study cardiac hypertrophy, fibrosis, diastolic dysfunction, and heart failure in rodents. Few studies have been reported in preclinical animal models. The similar physiology and anatomy between non-human primates (NHPs) and humans make NHPs valuable models for disease modeling and testing of drugs and devices. In the current study, we aimed to establish a TAC model in NHPs and characterize the structural and functional profiles of the heart after TAC. A non-absorbable suture was placed around the aorta between the brachiocephalic artery and left common carotid artery to create TAC. NHPs were divided into 2 groups according to pressure gradient (PG): the Mild Group (PG=31.01 ± 12.40 mmHg, n=3) and the Moderate Group (PG=53.00 ± 9.37 mmHg, n=4). At 4 weeks after TAC, animals in both TAC groups developed cardiac hypertrophy: enlarged myocytes and increased wall thickness of the left ventricular (LV) anterior wall. Although both TAC groups had normal systolic function that was similar to a Sham Group, the Moderate Group showed diastolic dysfunction that was associated with more severe cardiac fibrosis, as evidenced by a reduced A wave velocity, large E wave velocity/A wave velocity ratio, and short isovolumic relaxation time corrected by heart rate. Furthermore, no LV arrhythmia was observed in either animal group after TAC. A diastolic dysfunction model with cardiac hypertrophy and fibrosis was successfully developed in NHPs.  相似文献   

8.
In the early stages of left ventricular hypertrophy (LVH) acute adaptive changes occur in the coronary vasculature as it remodels. Plasminogen activators (PAs) and inhibitors (PAIs) have the potential effects of proteolytic degradation that is relevant to tissue remodeling and angiogenesis. Our study focused on the possible roles of PAI-1, PAI-2, uPA and tPA in myocyte hypertrophy and angiogenesis in the early and late stages of pressure overload induced left ventricular hypertrophy (LVH). We divided seventeen adult swine, weighing 24.2 ± 6.5 kg, into four groups: control, sham-operated, early LVH and late heart failure LVH group. At surgery we placed a fixed constrictor on the ascending aorta immediately above the aortic valve. This increased LV systolic pressure from 133 ± 15 to 193 ± 24 mm Hg after the surgery. We subdivided the early group into groups of 3 animals each that we euthanized at 8, 24 and 72 h after operation and obtained heart samples for analysis. In the late heart failure group individual animals were euthanized at 55, 59, 62 and 72 days after the detection of congestive heart failure. We also obtained tissue samples from the control and sham-operated swine. Sections for histologic analysis were fixed in 10% buffered formalin. We isolated RNA, size fractionated it using 1% formaldehyde-agarose gel electrophoresis and then did Northern blots. The mRNAs from both PAI-1 and PAI-2 showed a remarkable increase at 8 and 24 h after acute aortic constriction and returned to control by 72 h. Regional differences showed that most of the increases were in the endocardium. Three animals in the late heart failure LVH group were determined to be in congestive heart failure at about 2 months after the onset of aortic constriction. In these animals PAI-1 and PAI-2 were increased in both the left and right ventricles but remained low in an animal of the same elevation in aortic pressure seen by the LV who did not have congestive failure. These data suggest that PA and PAI gene expressions change before morphologic changes occur in the early stages of developing LVH. Also at the time of onset of congestive heart failure this increased expression reappears. PAs and PA inhibitors mRNA levels vary in the different regions of the heart reflecting changing wall stresses. Thus, the PAs and PA inhibitors may play an important role in angiogenesis that occurs during the early stages of LVH. The increased expression in the late stage of LVH may reflect further changes in wall stresses since these animals also showed overt clinical signs of heart failure.  相似文献   

9.
This study utilized porcine models of postinfarction left ventricular (LV) remodeling [myocardial infarction (MI); n = 8] and concentric LV hypertrophy secondary to aortic banding (AoB; n = 8) to examine the relationships between regional myocardial contractile function (tagged MRI), wall stress (MRI and LV pressure), and bioenergetics ((31)P-magnetic resonance spectroscopy). Physiological assessments were conducted at a 4-wk time point after MI or AoB surgery. Comparisons were made with size-matched normal animals (normal; n = 8). Both MI and AoB instigated significant LV hypertrophy. Ejection fraction was not significantly altered in the AoB group, but significantly decreased in the MI group (P < 0.01 vs. normal and AoB). Systolic and diastolic wall stresses were approximately two times greater than normal in the infarct region and border zone. Wall stress in the AoB group was not significantly different from that in normal hearts. The infarct border zone demonstrated profound bioenergetic abnormalities, especially in the subendocardium, where the ratio of PCr/ATP decreased from 1.98 +/- 0.16 (normal) to 1.06 +/- 0.30 (MI; P < 0.01). The systolic radial thickening fraction and the circumferential shortening fraction in the anterior wall were severely reduced (MI, P < 0.01 vs. normal). The radial thickening fraction and circumferential shortening fraction in the AoB group were not significantly different from normal. The severely elevated wall stress in the infarct border zone was associated with a significant increase in chemical energy demand and abnormal myocardial energy metabolism. Such severe metabolic perturbations cannot support normal cardiac function, which may explain the observed regional contractile abnormalities in the infarct border zone.  相似文献   

10.
To determine whether coronary sinus outflow pressure (Pcs) or intramyocardial tissue pressure (IMP) is the effective back pressure in the different layers of the left ventricular (LV) myocardium, we increased Pcs in 14 open-chest dogs under maximal coronary artery vasodilation. Circumflex arterial (flowmeter), LV total, and subendocardial and subepicardial (15-microns radioactive spheres) pressure-flow relationships (PFR) and IMP (needle-tip pressure transducers) were recorded during graded constriction of the artery at two diastolic Pcs levels (7 +/- 3 vs. 23 +/- 4 mmHg). At high Pcs, LV, aortic and diastolic circumflex arterial pressure, heart rate, myocardial oxygen consumption, and lactate extraction were unchanged; IMP in the subendocardium did not change (130/19 mmHg), whereas IMP in the subepicardium increased by 17 mmHg during systole and 10 mmHg during diastole (P < or = 0.001), independently of circumflex arterial pressure. Increasing Pcs did not change the slope of the PFR; however, coronary pressure at zero flow increased in the subepicardium (P < or = 0.008), whereas in the subendocardium it remained unchanged at 24 +/- 3 mmHg. Thus Pcs can regulate IMP independently of circumflex arterial pressure and consequently influence myocardial perfusion, especially in the subepicardial tissue layer of the LV.  相似文献   

11.
We studied an alteration of calcineurin expression in the heart and its modification by cyclosporin A and an ACE inhibitor, temocapril, using Dahl salt-sensitive (DS) rats with hypertensive left ventricular hypertrophy (LVH) and congestive heart failure (CHF). Calcineurin protein expression in the LV myocardium was increased in the LVH stage, but then decreased during CHF transition. Chronic cyclosporin A treatment (10 mg/kg/day), which inhibits calcineurin activity, could not block the increases of LV weight and dimensions and did not improve the LV systolic function during the CHF transition. In contrast, chronic temocapril treatment (20 mg/kg/day) restored the downregulation of calcineurin expression, but progression of the hypertrophic process was inhibited. Therefore, cardiac calcineurin is increased in the hypertensive LVH and may be involved in the development of the adaptive hypertrophic process. However, calcineurin expression is downregulated during CHF transition and may no longer play a major role in the pathogenesis of myocardial hypertrophy in the failing hearts.  相似文献   

12.
In diabetic cardiomyopathy, ventricular dysfunction occurs in the absence of hypertension or atherosclerosis and is accompanied by altered myocardial substrate utilization and depressed mitochondrial respiration. It is not known if mitochondrial function differs across the left ventricular (LV) wall in diabetes. In the healthy heart, the inner subendocardial region demonstrates higher rates of blood flow, oxygen consumption, and ATP turnover compared with the outer subepicardial region, but published transmural respirometric measurements have not demonstrated differences. We aim to measure mitochondrial function in Wistar rat LV to determine the effects of age, streptozotocin-diabetes, and LV layer. High-resolution respirometry measured indexes of respiration in saponin-skinned fibers dissected from the LV subendocardium and subepicardium of 3-mo-old rats after 1 mo of streptozotocin-induced diabetes and 4-mo-old rats following 2 mo of diabetes. Heart rate and heartbeat duration were measured under isoflurane-anesthesia using a fetal-Doppler, and transmission electron microscopy was employed to observe ultrastructural differences. Heart rate decreased with age and diabetes, whereas heartbeat duration increased with diabetes. While there were no transmural respirational differences in young healthy rat hearts, both myocardial layers showed a respiratory depression with age (30-40%). In 1-mo diabetic rat hearts only subepicardial respiration was depressed, whereas after 2 mo diabetes, respiration in subendocardial and subepicardial layers was depressed and showed elevated leak (state 2) respiration. These data provide evidence that mitochondrial dysfunction is first detectable in the subepicardium of diabetic rat LV, whereas there are measureable changes in LV mitochondria after only 4 mo of aging.  相似文献   

13.
In an attempt to provide a better understanding of our finding that regions with contracting left ventricular myofibers need not develop a significant transmural systolic wall thickening gradient, the analytic approach of Costa et al. was applied to the four-dimensional dynamic data obtained 1 and 8 wk after surgical implantation of transmural radiopaque beads in the lateral equatorial left ventricular wall in seven ovine hearts. Quantitative histology of tissue blocks demonstrated that fiber angles varied linearly across the wall in this region from -37 degrees in the subepicardium to +18 degrees in the subendocardium. Sheet angles exhibited a pleated-sheet behavior, alternating sign from subepicardium to subendocardium. From end diastole (reference configuration) to end systole (deformed configuration), fiber strain was uniformly negative, sheet extension and sheet thickening were uniformly positive, and sheet-normal shear contributed to wall thickening at all wall depths. Subepicardial radial wall thickening increased significantly from week 1 to week 8, with significant increases in the contributions from subepicardial sheet extension and sheet-normal shear. At 1 and 8 wk, the contribution of sheet-normal shear to wall thickening was substantial at all transmural depths; the contribution of sheet extension to wall thickening was greatest in the subepicardium and least in the subendocardium, and the contribution of sheet thickening to wall thickening was greatest in the subendocardium and least in the subepicardium. A mechanistic model is proposed that provides a working hypothesis that a selective decrease in subepicardial intercellular matrix stiffness is responsible for elimination of the transmural wall thickening gradient 1-8 wk after marker implantation surgery.  相似文献   

14.
Pressure overload cardiac hypertrophy may be a compensatory mechanism to normalize systolic wall stress and preserve left ventricular (LV) function. To test this concept, we developed a novel in vivo method to measure myocardial stress (sigma)-strain (epsilon) relations in normal and hypertrophied mice. LV volume was measured using two pairs of miniature omnidirectional piezoelectric crystals implanted orthogonally in the endocardium and one crystal placed on the anterior free wall to measure instantaneous wall thickness. Highly linear sigma-epsilon relations were obtained in control (n = 7) and hypertrophied mice produced by 7 days of transverse aortic constriction (TAC; n = 13). Administration of dobutamine in control mice significantly increased the load-independent measure of LV contractility, systolic myocardial stiffness. In TAC mice, systolic myocardial stiffness was significantly greater than in control mice (3,156 +/- 1,433 vs. 1,435 +/- 467 g/cm(2), P < 0.01), indicating enhanced myocardial contractility with pressure overload. However, despite the increased systolic performance, both active (time constant of LV pressure decay) and passive (diastolic myocardial stiffness constant) diastolic properties were markedly abnormal in TAC mice compared with control mice. These data suggest that the development of cardiac hypertrophy is associated with a heightened contractile state, perhaps as an early compensatory response to pressure overload.  相似文献   

15.
The effects of left ventricular hypertrophy (LVH) on the generation of phase 2 early afterdepolarization (EAD) and transmural dispersion of repolarization (TDR) were assessed using arterially perfused rabbit ventricular wedge preparations. Transmembrane action potentials from epicardium, subendocardium, and endocardium were simultaneously recorded together with a transmural ECG. Transmural action potential duration (APD) was also mapped. LVH (renovascular hypertension model) produced significant prolongation in ventricular APD and QT interval. Preferential APD prolongation in subendocardium and endocardium was associated with a marked increase in TDR. Phase 2 EADs were generated from subendocardium or endocardium in all LVH rabbits (15 of 15) in the absence of APD prolonging agents at basic cycle lengths of 2,000-4,000 ms. Phase 2 EAD could produce "R on T" extrasystoles, initiating polymorphic ventricular tachycardia (VT). This study provides the first direct evidence from intracellular recordings that phase 2 EAD could be generated from rabbit intact hypertrophied LV wall in the absence of APD prolonging agents, resulting in R on T extrasystoles capable of initiating polymorphic VT under enhanced TDR.  相似文献   

16.
Hypertension-induced cardiac hypertrophy alters the amplitude and time course of the systolic Ca2+ transient of subepicardial and subendocardial ventricular myocytes. The present study was designed to elucidate the mechanisms underlying these changes. Myocytes were isolated from the left ventricular subepicardium and subendocardium of 20-wk-old spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto rats (WKY; control). We monitored intracellular Ca2+ using fluo 3 or fura 2; caffeine (20 mmol/l) was used to release Ca2+ from the sarcoplasmic reticulum (SR), and Ni2+ (10 mM) was used to inhibit Na+/Ca2+ exchange (NCX) function. SHR myocytes were significantly larger than those from WKY hearts, consistent with cellular hypertrophy. Subepicardial myocytes from SHR hearts showed larger Ca2+ transient amplitude and SR Ca2+ content and less Ca2+ extrusion via NCX compared with subepicardial WKY myocytes. These parameters did not change in subendocardial myocytes. The time course of decline of the Ca2+ transient was the same in all groups of cells, but its time to peak was shorter in subepicardial cells than in subendocardial cells in WKY and SHR and was slightly prolonged in subendocardial SHR cells compared with WKY subendocardial myocytes. It is concluded that the major change in Ca2+ cycling during compensated hypertrophy in SHR is a decrease in NCX activity in subepicardial cells; this increases SR Ca2+ content and hence Ca2+ transient amplitude, thus helping to maintain the strength of contraction in the face of an increased afterload.  相似文献   

17.
Cardiac hypertrophy is frequently caused by pressure overload (i.e., high blood pressure or hypertension) and can lead to heart failure. The major objective of the present study was to investigate the proteomic changes in response to the development of left ventricular hypertrophy (LVH) induced by abdominal aortic banding (AB) and its prevention by antihypertensive treatment with angiotensin II receptor blocker (ARB) telmisartan. One week after AB and Sham surgery, rats were assigned into three groups: SHAM–control, aortic banding without treatment (AB–Ctrl) and aortic banding with telmisartan treatment (AB–Telmi; 5mg/kg/day for 8 weeks). Echocardiography, hemodynamics, and pathology were performed to assess LVH. Left ventricular myocardium was sampled. The analysis of proteomic proteins from myocardium was performed by two-dimensional gel electrophoresis and MALDI–TOF–MS. In AB–Ctrl, heart rate, systolic arterial blood pressure, diastolic blood pressure, left ventricular end systolic pressure, interventricular septal thickness at diastole, posterior wall thickness in diastole, heart weight (HW) and HW/body weight (BW) were increased, indicating that both hypertension and LVH developed. Telmisartan prevented hypertension and LVH. Concurrently, among numerous proteins, there were 17 that were differentially expressed among hypertrophic hearts, normal hearts, and the hearts where hypertrophic response was suppressed by ARB treatment. Primarily, proteins involved in cell structure, metabolism, stress and signal transduction exhibited up-regulations in LVH, providing cellular and molecular mechanism for hypertrophic development. These changes were prevented or greatly attenuated by telmisartan regimen. Interestingly, antioxidative-related heat shock protein 2 was detected neither in SHAM–Ctrl nor in AB–Ctrl, but in AB–Telmi. LVH is accompanied by series changes of protein expression. Both LVH and proteomic changes can be prevented by blockade of renin–angiotensin system with telmisartan. These protein alterations may constitute mechanistic pathways leading to hypertrophy development and experimental targets for novel therapeutic strategy.  相似文献   

18.
Thyroid hormones (THs) play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV) contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH). LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function.  相似文献   

19.
The objective of this study was to determine whether myocardial contractility is depressed by intense activation of the sympathetic nervous system. A massive sympathetic discharge was produced by injecting veratrine or sodium citrate into the cisterna magna of anesthetized rabbits (n = 10). Two and one-half hr later, the hearts were isolated and their left ventricular (LV) performance evaluated and compared with the LV performance of hearts isolated from control animals (n = 10). LV performance was evaluated from steady-state peak isovolumic systolic and end-diastolic pressures that were generated at various end-diastolic volumes (LV function curves). The relationship between peak LV systolic pressure (or the average peak developed LV wall stress) and LV end-diastolic volume was rotated downward (P less than 0.01) in the hearts removed from rabbits treated with veratrine or citrate. The LV end-diastolic pressure or LV end-diastolic wall stress of these hearts was not different from control at any end-diastolic volume. The diminished ability of the experimental hearts to develop systolic pressure or wall stress suggests that intense sympathetic activation depressed contractility. Severely damaged myofibers, located largely in the subendocardium, were found in these hearts. Furthermore, the depressed contractility was not related to pulmonary edema since only 2 of 10 rabbits developed edema.  相似文献   

20.
Diastolic heart failure (HF) accounts for up to 50% of all HF admissions, with hypertension being the major cause of diastolic HF. Hypertension is characterized by left ventricular (LV) hypertrophy (LVH). Proinflammatory cytokines are increased in LVH and hypertension, but it is unknown if they mediate the progression of hypertension-induced diastolic HF. We sought to determine if interferon-γ (IFNγ) plays a role in mediating the transition from hypertension-induced LVH to diastolic HF. Twelve-week old BALB/c (WT) and IFNγ-deficient (IFNγKO) mice underwent either saline (n = 12) or aldosterone (n = 16) infusion, uninephrectomy, and fed 1% salt water for 4 wk. Tail-cuff blood pressure, echocardiography, and gene/protein analyses were performed. Isolated adult rat ventricular myocytes were treated with IFNγ (250 U/ml) and/or aldosterone (1 μM). Hypertension was less marked in IFNγKO-aldosterone mice than in WT-aldosterone mice (127 ± 5 vs. 136 ± 4 mmHg; P < 0.01), despite more LVH (LV/body wt ratio: 4.9 ± 0.1 vs. 4.3 ± 0.1 mg/g) and worse diastolic dysfunction (peak early-to-late mitral inflow velocity ratio: 3.1 ± 0.1 vs. 2.8 ± 0.1). LV ejection fraction was no different between IFNγKO-aldosterone vs. WT-aldosterone mice. LV end systolic dimensions were decreased significantly in IFNγKO-aldosterone vs. WT-aldosterone hearts (1.12 ± 0.1 vs. 2.1 ± 0.3 mm). Myocardial fibrosis and collagen expression were increased in both IFNγKO-aldosterone and WT-aldosterone hearts. Myocardial autophagy was greater in IFNγKO-aldosterone than WT-aldosterone mice. Conversely, tumor necrosis factor-α and interleukin-10 expressions were increased only in WT-aldosterone hearts. Recombinant IFNγ attenuated cardiac hypertrophy in vivo and modulated aldosterone-induced hypertrophy and autophagy in cultured cardiomyocytes. Thus IFNγ is a regulator of cardiac hypertrophy in diastolic HF and modulates cardiomyocyte size possibly by regulating autophagy. These findings suggest that IFNγ may mediate adaptive downstream responses and challenge the concept that inflammatory cytokines mediate only adverse effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号