首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosomal translocations in cancer   总被引:1,自引:0,他引:1  
Genetic alterations in DNA can lead to cancer when it is present in proto-oncogenes, tumor suppressor genes, DNA repair genes etc. Examples of such alterations include deletions, inversions and chromosomal translocations. Among these rearrangements chromosomal translocations are considered as the primary cause for many cancers including lymphoma, leukemia and some solid tumors. Chromosomal translocations in certain cases can result either in the fusion of genes or in bringing genes close to enhancer or promoter elements, hence leading to their altered expression. Moreover, chromosomal translocations are used as diagnostic markers for cancer and its therapeutics. In the first part of this review, we summarize the well-studied chromosomal translocations in cancer. Although the mechanism of formation of most of these translocations is still unclear, in the second part we discuss the recent advances in this area of research.  相似文献   

2.
3.
All vertebrates possess a series of genes which are homologs of the oncogenic genes of acute transforming retroviruses. Two lines of evidence suggest that these genes may play a role in the development of human malignancy: (1) DNA from a variety of human tumors transforms NIH 3T3 mouse fibroblasts and the transforming genes from a number of carcinomas, sarcomas, and hematological malignancies have been identified as members of a family of genes, the ras family, closely related to the oncogenic genes of the Harvey and Kirsten murine sarcoma viruses; and (2) correlations exist between the chromosomal localizations of certain oncogenes and the chromosomal breakpoints in specific translocations and deletions in certain human malignancies. In three separate hematological malignancies, alterations in more than one oncogenic gene may be involved in the neoplastic process.  相似文献   

4.
The mixed lineage leukemia (MLL) locus is involved in more than 60 different rearrangements with a remarkably diverse group of fusion partners in approximately 10% of human leukemias. MLL rearrangements include chromosomal translocations, gene internal duplications, chromosome 11q deletions or inversions and MLL gene insertions into other chromosomes, or vice versa. MLL fusion partners can be classified into four distinct categories: nuclear proteins, cytoplasmatic proteins, histone acetyltransferases and septins. Five different septin genes (SEPT2, SEPT5, SEPT6, SEPT9, and SEPT11) have been identified as MLL fusion partners, giving rise to chimeric fusion proteins in which the N terminus of MLL is fused, in frame, to almost the entire open reading frame of the septin partner gene. The rearranged alleles result from heterogeneous breaks in distinct introns of both MLL and its septin fusion partner, originating distinct gene fusion variants. MLL-SEPTIN rearrangements have been repeatedly identified in de novo and therapy related myeloid neoplasia in both children and adults, and some clinicopathogenetic associations are being uncovered. The fundamental roles of septins in cytokinesis, membrane remodeling and compartmentalization can provide some clues on how abnormalities in the septin cytoskeleton and MLL deregulation could be involved in the pathogenesis of hematological malignancies.  相似文献   

5.
Neurotrophic Tyrosine Receptor Kinase (NTRK) genes undergo chromosomal translocations to create novel open reading frames coding for oncogenic fusion proteins; the N-terminal portion, donated by various partner genes, becomes fused to the tyrosine kinase domain of either NTRK1, NTRK2, or NTRK3. NTRK fusion proteins have been identified as driver oncogenes in a wide variety of tumors over the past three decades, including Pediatric Gliomas, Papillary Thyroid Carcinoma, Spitzoid Neoplasms, Glioblastoma, and additional tumors. Importantly, NTRK fusions function as drivers of pediatric sarcomas, accounting for approximately 15% of childhood cancers including Infantile Fibrosarcoma (IFS), a subset of pediatric soft tissue sarcoma (STS). While tyrosine kinase inhibitors (TKIs), such as larotrectinib and entrectinib, have demonstrated profound results against NTRK fusion-positive cancers, acquired resistance to these TKIs has resulted in the formation of gatekeeper, solvent-front, and compound mutations. We present a comprehensive compilation of oncogenic fusions involving NTRKs focusing specifically on pediatric STS, examining their biological signaling pathways and mechanisms of activation. The importance of an obligatory dimerization or multimerization domain, invariably donated by the N-terminal fusion partner, is discussed using characteristic fusions that occur in pediatric sarcomas. In addition, examples are presented of oncogenic fusion proteins in which the N-terminal partners may contribute additional biological activities beyond an oligomerization domain. Lastly, therapeutic approaches to the treatment of pediatric sarcoma will be presented, using first generation and second-generation agents such as selitrectinib and repotrectinib.  相似文献   

6.
The molecular analysis of recurring chromosome rearrangements, especially of translocations and inversions, has provided us with valuable insight into the pathogenesis of hematological malignancies. Many translocations result in the fusion of genes located at the translocation breakpoints. In recent years we have witnessed a rapid rise in the number of chromosome translocations in leukemias being characterized at the molecular level. However, the number of genes being newly identified as translocation fusion genes has not risen at the same pace. This is due to the fact that several genes are involved in more than one translocation forming fusion genes with a number of other partner genes. Not only does one find star-shaped topologies, with one gene forming fusions with several others (e.g. ETV6/PDGFRB, ETV6/JAK2, ETV6/ABL etc.), but also networks connecting several genes with more than one fusion partner (e.g. ETV6/RUNX1 (AML1), RUNX1/CBFA2T1 (ETO), ETV6/EVI1, RUNX1/EVI1, ETV6/ABL, BCR/ABL). The emergence of such networks with the "recycling" of genes in new fusion combinations suggests that there is a rather limited number of genes which can be altered to cause leukemia.  相似文献   

7.
Genotoxic agents that cause double-strand breaks (DSBs) often generate damage at the break termini. Processing enzymes, including nucleases and polymerases, must remove damaged bases and/or add new bases before completion of repair. Artemis is a nuclease involved in mammalian nonhomologous end joining (NHEJ), but in Saccharomyces cerevisiae the nucleases and polymerases involved in NHEJ pathways are poorly understood. Only Pol4 has been shown to fill the gap that may form by imprecise pairing of overhanging 3′ DNA ends. We previously developed a chromosomal DSB assay in yeast to study factors involved in NHEJ. Here, we use this system to examine DNA polymerases required for NHEJ in yeast. We demonstrate that Pol2 is another major DNA polymerase involved in imprecise end joining. Pol1 modulates both imprecise end joining and more complex chromosomal rearrangements, and Pol3 is primarily involved in NHEJ-mediated chromosomal rearrangements. While Pol4 is the major polymerase to fill the gap that may form by imprecise pairing of overhanging 3′ DNA ends, Pol2 is important for the recession of 3′ flaps that can form during imprecise pairing. Indeed, a mutation in the 3′-5′ exonuclease domain of Pol2 dramatically reduces the frequency of end joins formed with initial 3′ flaps. Thus, Pol2 performs a key 3′ end-processing step in NHEJ.  相似文献   

8.
《Epigenetics》2013,8(1):1-2
The pathogenesis of acute myeloid leukemias involves complex molecular events triggered by diverse alterations of genomic DNA. A limited number of initiating lesions, such as chromosomal translocations generating fusion genes, are constantly identified in specific forms of leukemia and are critical to leukemogenesis. Leukemia fusion proteins derived from chromosomal translocations can mediate epigenetic silencing of gene expression. Epigenetic deregulation of the DNA methylation status and of the chromatin “histone code” at specific gene sites cooperate in the pathogenesis of leukemias. The neutralization of these crucial oncogenic events can revert the leukemia phenotype. Thus, their identification and the study of their molecular and biological consequences is essential for the development of novel and specific therapeutic strategies. In this context, we recently reported a link between the differentiation block of leukemia and the epigenetic silencing of the microRNA-223 gene by the AML1/ETO oncoprotein, the product of the t(8;21) the commonest AML-associated chromosomal translocation. This finding indicates microRNAs as additional epigenetic targets for leukemogenesis and for therapeutic intervention in leukemias.  相似文献   

9.
Nucleocytoplasmic trafficking of macromolecules, a highly specific and tightly regulated process, occurs exclusively through the nuclear pore complex. This immense structure is assembled from approximately 30 proteins, termed nucleoporins. Here we discuss the four nucleoporins that have been linked to cancers, either through elevated expression in tumors (Nup88) or through involvement in chromosomal translocations that encode chimeric fusion proteins (Tpr, Nup98, Nup214). In each case we consider the normal function of the nucleoporin and its translocation partners, as well as what is known about their mechanistic contributions to carcinogenesis, particularly in leukemias. Studies of nucleoporin-linked cancers have revealed novel mechanisms of oncogenesis and in the future, should continue to expand our understanding of cancer biology.  相似文献   

10.
Genome instability, associated with chromosome breakage syndromes and most human cancers, is still poorly understood. In the yeast Saccharomyces cerevisiae, numerous genes with roles in the preservation of genome integrity have been identified. DNA-damage-checkpoint-deficient yeast cells that lack Sgs1, a RecQ-like DNA helicase related to the human Bloom''s-syndrome-associated helicase BLM, show an increased rate of genome instability, and we have previously shown that they accumulate recurring chromosomal translocations between three similar genes, CAN1, LYP1 and ALP1. Here, the chromosomal location, copy number and sequence similarity of the translocation targets ALP1 and LYP1 were altered to gain insight into the formation of complex translocations. Among 844 clones with chromosomal rearrangements, 93 with various types of simple and complex translocations involving CAN1, LYP1 and ALP1 were identified. Breakpoint sequencing and mapping showed that the formation of complex translocation types is strictly dependent on the location of the initiating DNA break and revealed that complex translocations arise via a combination of interchromosomal translocation and template-switching, as well as from unstable dicentric intermediates. Template-switching occurred between sequences on the same chromosome, but was inhibited if the genes were transferred to different chromosomes. Unstable dicentric translocations continuously gave rise to clones with multiple translocations in various combinations, reminiscent of intratumor heterogeneity in human cancers. Base substitutions and evidence of DNA slippage near rearrangement breakpoints revealed that translocation formation can be accompanied by point mutations, and their presence in different translocation types within the same clone provides evidence that some of the different translocation types are derived from each other rather than being formed de novo. These findings provide insight into eukaryotic genome instability, especially the formation of translocations and the sources of intraclonal heterogeneity, both of which are often associated with human cancers.  相似文献   

11.
Meiotic chromosomal aberrations in wild populations of Podophyllum peltatum   总被引:1,自引:1,他引:0  
Meiotic chromosomal aberrations observed in wild populations of the plant Podophyllum peltatum include incomplete homologous pairing, non-homologous pairing, and inversion heterozygosity in pachytene; univalents, asymmetrical bivalents, and translocation heterozygosity in metaphase-I; bridge and fragments in anaphase-I; and non-disjunction as detected in anaphase-II. Incomplete homologous pachytene pairing is believed to result in non-homologous pairing and in the formation of metaphase-I univalents. The unequal distribution and precocious division of univalents in anaphase-I leads to non-disjunction. Non-disjunction chromosomes (varying in frequency from 0.0 to 24.6%) appear to be distributed among the genome on the basis of chromosome length. Asymmetrical bivalents and anaphase-I side-arm bridges are believed to be caused by chromatid breakage and fusion rather than inversion heterozygosity. Of the 135 clones examined, 20 were found to be heterozygous for translocations. The possibility of widespread distribution of some translocations is suggested.  相似文献   

12.
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a common malignancy associated with variable chromosomal translocations, leading to fusion proteins of unknown function. To investigate how such translocations contribute to the development of BCP-ALL , Smeenk et al ( 2017 ) generated mouse models for Pax5 fusion proteins. The results show that a PAX5 fusion is required for BCP-ALL development by preventing B-cell differentiation and retaining cells in an arrested progenitor stage. The occurrence of further genetic aberrations eventually results in oncogenic transformation and proliferation of the arrested cells, triggering the onset of leukemia.  相似文献   

13.
14.
Chromosomal translocations encoding chimeric fusion proteins constitute one of the most common mechanisms underlying oncogenic transformation in human cancer. Fusion peptides resulting from such oncogenic chimeric fusions, though unique to specific cancer subtypes, are unexplored as cancer biomarkers. Here we show, using an approach termed fusion peptide multiple reaction monitoring mass spectrometry, the direct identification of different cancer-specific fusion peptides arising from protein chimeras that are generated from the juxtaposition of heterologous genes fused by recurrent chromosomal translocations. Using fusion peptide multiple reaction monitoring mass spectrometry in a clinically relevant scenario, we demonstrate the specific, sensitive, and unambiguous detection of a specific diagnostic fusion peptide in clinical samples of anaplastic large cell lymphoma, but not in a diverse array of benign lymph nodes or other forms of primary malignant lymphomas and cancer-derived cell lines. Our studies highlight the utility of fusion peptides as cancer biomarkers and carry broad implications for the use of protein biomarkers in cancer detection and monitoring.A cancer biomarker is generally an analyte that indicates the presence or extent of a specific form of cancer. A useful cancer biomarker should reliably distinguish between benign and malignant states and, ideally, distinguish one form of cancer from other, related differential diagnoses. Many human cancers contain recurrent chromosomal translocations and chimeric gene fusions that could be exploited as cancer-specific biomarkers (1, 2). Indeed, several structural aberrations are specific and pathognomonic for distinct types of cancer (3). Moreover, as new molecular therapies increasingly target oncogenic fusion proteins, the detection and quantitation of these proteins may also provide important, direct therapeutic guidance (46). Although genomic techniques targeting fusion partner genes are routinely used for diagnosing cancers, fusion peptides resulting from oncogenic chimeric fusions are unexplored as biomarker candidates for cancer detection. The specificity and qualitative/binary nature (i.e. present or absent) of fusion proteins in specific tumor types make these analytes attractive candidates for cancer detection.Advances in mass spectrometry permit the direct and unbiased interrogation of proteins and peptides in complex mixtures with unambiguous identification of specific proteins (7, 8). Multiple reaction monitoring (MRM)1 via mass spectrometry is a powerful approach for the targeted detection of biomarker candidates in a complex background (9). MRM involves the focused interrogation of specific m/z windows for the precursor analyte, as well as selected fragment ions, following MS/MS analysis. By focusing only on specific m/z windows, one increases the sensitivity of detection dramatically, and within the context of a complex mixture there is the potential for a reproducible dynamic range spanning ≥4 orders of magnitude (10, 11).Despite their enormous potential as biomarkers, fusion peptides resulting from oncogenic chimeric fusions have not been exploited for the specific and sensitive detection of cancer. Here we demonstrate the detection of unique fusion peptides that are specific for various forms of cancer. To demonstrate applicability in a clinically relevant scenario, we show the utility of our MRM-based MS approach combined with an innovative double stable isotope strategy for the identification of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) fusion peptide arising from the corresponding chimeric fusion protein for the identification of NPM-ALK-positive anaplastic large cell lymphoma (ALCL). We show the exquisite specificity and sensitivity of this fusion peptide (FP) MRM approach and the extraordinary accuracy of its application with clinical biopsy material.  相似文献   

15.
This article highlights the recent advances in our understanding of the molecular structure and function of proteins that are activated or created by chromosomal abnormalities and discusses their possible role in tumor development. The molecular characterization of these proteins has revealed that tumor-specific fusion proteins are the consequence of the majority of chromosomal translocations associated with leukemias and solid tumors. A common theme that emerges is that creation of these proteins disrupts the normal development of tumor-specific target cells by blocking apoptosis. These insights identify these chromosomal translocation-associated genes as potential targets for improved cancer therapies. BioEssays 20:922–930, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

16.
17.
Joost H.A. Martens 《FEBS letters》2010,584(12):2662-2669
Acute myeloid leukemia (AML) associated translocations often cause gene fusions that encode oncofusion proteins. Although many of the breakpoints involved in chromosomal translocations have been cloned, in most cases the role of the chimeric proteins in tumorigenesis is not elucidated. Here we will discuss the fusion proteins of the 4 most common translocations associated with AML as well as the common molecular mechanisms that these four and other fusion proteins utilize to transform progenitor cells. Intriguingly, although the individual partners within the fusion proteins represent a wide variety of cellular functions, at the molecular level many commodities can be found.  相似文献   

18.
DNA double-strand breaks (DSBs) are one of the most dangerous DNA lesions, since their erroneous repair by nonhomologous end-joining (NHEJ) can generate harmful chromosomal rearrangements. PolX DNA polymerases are well suited to extend DSB ends that cannot be directly ligated due to their particular ability to bind to and insert nucleotides at the imperfect template-primer structures formed during NHEJ. Herein, we have devised genetic assays in yeast to induce simultaneous DSBs in different chromosomes in vivo. The repair of these breaks in trans could result in reciprocal chromosomal translocations that were dependent on classical Ku-dependent NHEJ. End-joining events leading to translocations were mainly based on the formation of short base pairing between 3′-overhanging DNA ends coupled to gap-filling DNA synthesis. A major proportion of these events were specifically dependent on yeast DNA polymerase Pol4 activity. In addition, we have discovered that Pol4-Thr540 amino acid residue can be phosphorylated by Tel1/ATM kinase, which could modulate Pol4 activity during NHEJ. Our data suggest that the role of Tel1 in preventing break-induced chromosomal translocations can, to some extent, be due to its stimulating effect on gap-filling activity of Pol4 to repair DSBs in cis. Overall, this work provides further insight to the molecular mechanisms of DSB repair by NHEJ and presents a new perspective to the understanding of how chromosomal translocations are formed in eukaryotic cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号