首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The A2A receptor is a class A/rhodopsin-like G protein-coupled receptor. Coupling to its cognate protein, Gs, occurs via restricted collision coupling and is contingent on the presence of cholesterol. Agonist activation slows diffusion of the A2A adenosine receptor in the lipid bilayer. We explored the contribution of the hydrophobic core and of the extended C terminus by examining diffusion of quantum dot-labeled receptor variants in dissociated hippocampal neurons. Single particle tracking of the A2A receptor(1–311), which lacks the last 101 residues, revealed that agonist-induced confinement was abolished and that the agonist-induced decrease in diffusivity was reduced substantially. A fragment comprising the SH3 domain and the guanylate kinase domain of synapse-associated protein 102 (SAP102) was identified as a candidate interactor that bound to the A2A receptor C terminus. Complex formation between the A2A receptor and SAP102 was verified by coimmunoprecipitation and by tracking its impact on receptor diffusion. An analysis of all trajectories by a hidden Markov model was consistent with two diffusion states where agonist activation reduced the transition between the two states and, thus, promoted the accumulation of the A2A receptor in the compartment with slow mobility. Overexpression of SAP102 precluded the access of the A2A receptor to a compartment with restricted mobility. In contrast, a mutated A2A receptor (with 383DVELL387 replaced by RVRAA) was insensitive to the action of SAP102. These observations show that the hydrophobic core per se does not fully account for the agonist-promoted change in mobility of the A2A receptor. The extended carboxyl terminus allows for regulatory input by scaffolding molecules such as SAP102.  相似文献   

2.
The adenosine A2A receptor is a prototypical rhodopsin-like G protein-coupled receptor but has several unique structural features, in particular a long C terminus (of >120 residues) devoid of a palmitoylation site. It is known to interact with several accessory proteins other than those canonically involved in signaling. However, it is evident that many more proteins must interact with the A2A receptor, if the trafficking trajectory of the receptor is taken into account from its site of synthesis in the endoplasmic reticulum (ER) to its disposal by the lysosome. Affinity-tagged versions of the A2A receptor were expressed in HEK293 cells to identify interacting partners residing in the ER by a proteomics approach based on tandem affinity purification. The receptor-protein complexes were purified in quantities sufficient for analysis by mass spectrometry. We identified molecular chaperones (heat-shock proteins HSP90α and HSP70-1A) that interact with and retain partially folded A2A receptor prior to ER exit. Complex formation between the A2A receptor and HSP90α (but not HSP90β) and HSP70-1A was confirmed by co-affinity precipitation. HSP90 inhibitors also enhanced surface expression of the receptor in PC12 cells, which endogenously express the A2A receptor. Finally, proteins of the HSP relay machinery (e.g. HOP/HSC70-HSP90 organizing protein and P23/HSP90 co-chaperone) were recovered in complexes with the A2A receptor. These observations are consistent with the proposed chaperone/coat protein complex II exchange model. This posits that cytosolic HSP proteins are sequentially recruited to folding intermediates of the A2A receptor. Release of HSP90 is required prior to recruitment of coat protein complex II components. This prevents premature ER export of partially folded receptors.  相似文献   

3.
We have previously established that isoprenylation of the prostacyclin receptor (IP) is required for its efficient G protein coupling and effector signaling (Hayes, J. S., Lawler, O. A., Walsh, M. T., and Kinsella, B. T. (1999) J. Biol. Chem. 274, 23707-23718). In the present study, we sought to investigate whether the IP may actually be subject to palmitoylation in addition to isoprenylation and to establish the functional significance thereof. The human (h) IP was efficiently palmitoylated at Cys(308) and Cys(311), proximal to transmembrane domain 7 within its carboxyl-terminal (C)-tail domain, whereas Cys(309) was not palmitoylated. The isoprenylation-defective hIP(SSLC) underwent palmitoylation but did not efficiently couple to G(s) or G(q), confirming that isoprenylation is required for G protein coupling. Deletion of C-tail sequences distal to Val(307) generated hIP(Delta307) that was neither palmitoylated nor isoprenylated and did not efficiently couple to G(s) or to G(q), whereas hIP(Delta312) was palmitoylated and ably coupled to both effector systems. Conversion of Cys(308), Cys(309), Cys(311), Cys(308,309), or Cys(309,311) to corresponding Ser residues, while leaving the isoprenylation CAAX motif intact, did not affect hIP coupling to G(s) signaling, whereas mutation of Cys(308,311) and Cys(308,309,311) abolished signaling, indicating that palmitoylation of either Cys(308) or Cys(311) is sufficient to maintain functional G(s) coupling. Although mutation of Cys(309) and Cys(311) did not affect hIP-mediated G(q) coupling, mutation of Cys(308) abolished signaling, indicating a specific requirement for palmitoylation of Cys(308) for G(q) coupling. Consistent with this, neither hIP(C308S,C309S), hIP(C308S,C311S), nor hIP(C308S,C309S,C311S) coupled to G(q). Taken together, these data confirm that the hIP is isoprenylated and palmitoylated, and collectively these modifications modulate its G protein coupling and effector signaling. We propose that through lipid modification followed by membrane insertion, the C-tail domain of the IP may contain a double loop structure anchored by the dynamically regulated palmitoyl groups proximal to transmembrane domain 7 and by a distal farnesyl isoprenoid permanently attached to its carboxyl terminus.  相似文献   

4.
Endothelin receptor A (ETA), a G protein-coupled receptor, mediates endothelin signaling, which is regulated by GRK2. Three Ser and seven Thr residues recently proven to be phosphoacceptor sites are located in the C-terminal extremity (CTE) of the receptor following its palmitoylation site. We created various phosphorylation-deficient ETA mutants. The phospholipase C activity of mutant receptors in HEK-293 cells was analyzed during continuous endothelin stimulation to investigate the impact of phosphorylation sites on ETA desensitization. Total deletion of phosphoacceptor sites in the CTE affected proper receptor regulation. However, proximal and distal phosphoacceptor sites both turned out to be sufficient to induce WT-like desensitization. Overexpression of the Gαq coupling-deficient mutant GRK2-D110A suppressed ETA-WT signaling but failed to decrease phospholipase C activity mediated by the phosphorylation-deficient mutant ETA-6PD. In contrast, GRK2-WT acted on both receptors, whereas the kinase-inactive mutant GRK2-D110A/K220R failed to inhibit signaling of ETA-WT and ETA-6PD. This demonstrates that ETA desensitization involves at least two autonomous GRK2-mediated components: 1) a phosphorylation-independent signal decrease mediated by blocking of Gαq and 2) a mechanism involving phosphorylation of Ser and Thr residues in the CTE of the receptor in a redundant fashion, able to incorporate either proximal or distal phosphoacceptor sites. High level transfection of GRK2 variants influenced signaling of ETA-WT and ETA-6PD and hints at an additional phosphorylation-independent regulatory mechanism. Furthermore, internalization of mRuby-tagged receptors was observed with ETA-WT and the phosphorylation-deficient mutant ETA-14PD (lacking 14 phosphoacceptor sites) and turned out to be based on a phosphorylation-independent mechanism.  相似文献   

5.
GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane.  相似文献   

6.
Initiation and termination of signaling of the type I angiotensin receptor (AT(1)-R) can lead to dynamic changes in its localization in plasma membrane microdomains. Several markers were recently developed to investigate membrane microdomains. Here, we used several YFP-labeled fusion constructs (i.e. raft or non-raft plasma membrane markers) to analyze the agonist-induced changes in compartmentalization of AT(1)-R, including internalization or lateral movement between plasma membrane compartments in response to stimulation using bioluminescence resonance energy transfer measurements. Our data demonstrate that angiotensin II (AngII) stimulus changes the microdomain localization of wild type or mutated (DRY → AAY or TSTS → AAAA) AT(1)-Rs co-expressed with the fluorescent probes in HEK293 cells. The comparison of the trafficking of AT(1)-R upon AngII stimulus with those of [Sar(1),Ile(8)]AngII or [Sar(1),Ile(4),Ile(8)]AngII stimulus revealed different types of changes, depending on the nature of the ligand. The observed changes in receptor compartmentalization of the AT(1)-R are strikingly different from those of 5HT-2C and EGF receptors, which demonstrate the usefulness of the bioluminescence resonance energy transfer-based measurements in the investigation of receptor trafficking in the plasma membrane in living cell experiments.  相似文献   

7.
G protein-coupled receptors (GPCRs) transduce extracellular signals to the interior of the cell by activating membrane-bound guanine nucleotide-binding regulatory proteins (G proteins). An increasing number of proteins have been reported to bind to and regulate GPCRs. We report a novel regulation of the alpha2A adrenergic receptor (α2A-R) by the ubiquitous stress-inducible 70 kDa heat shock protein, hsp70. Hsp70, but not hsp90, attenuated G protein-dependent high affinity agonist binding to the α2A-R in Sf9 membranes. Antagonist binding was unchanged, suggesting that hsp70 uncouples G proteins from the receptor. As hsp70 did not bind G proteins but complexed with the α2A-R in intact cells, a direct interaction with the receptor seems likely. In the presence of hsp70, α2A-R-catalyzed [35S]GTPγS binding was reduced by approximately 70%. In contrast, approximately 50-fold higher concentrations of hsp70 were required to reduce agonist binding to the stress-inducible 5-hydroxytryptamine1A receptor (5-HT1A-R). In heat-stressed CHO cells, the α2A-R was significantly uncoupled from G proteins, coincident with an increased localization of hsp70 at the membrane. The contrasting effect of hsp70 on the α2A-R compared to the 5-HT1A-R suggests that during stress, upregulation of hsp70 may attenuate signaling from specific GPCRs as part of the stress response to foster survival.  相似文献   

8.
BKCa channels are palmitoylated at a cluster of cysteine residues within the cytosolic linker connecting the 1st and 2nd transmembrane domains, and this lipid modification affects their surface expression. To verify the effects of palmitoylation on the diffusional dynamics of BKCa channels, we investigated their lateral movement. Compared to wild-type channels, the movement of mutant palmitoylation-deficient channels was much less confined and close to random. The diffusion of the mutant channel was also much faster than that of the wild type. Thus, the lateral movement of BKCa channels is greatly influenced by palmitoylation.  相似文献   

9.
G protein-coupled receptor (GPCR) heteromers are macromolecular complexes with unique functional properties different from those of its individual protomers. Little is known about what determines the quaternary structure of GPCR heteromers resulting in their unique functional properties. In this study, using resonance energy transfer techniques in experiments with mutated receptors, we provide for the first time clear evidence for a key role of intracellular domains in the determination of the quaternary structure of GPCR heteromers between adenosine A2A, cannabinoid CB1, and dopamine D2 receptors. In these interactions, arginine-rich epitopes form salt bridges with phosphorylated serine or threonine residues from CK1/2 consensus sites. Each receptor (A2A, CB1, and D2) was found to include two evolutionarily conserved intracellular domains to establish selective electrostatic interactions with intracellular domains of the other two receptors, indicating that these particular electrostatic interactions constitute a general mechanism for receptor heteromerization. Mutation experiments indicated that the interactions of the intracellular domains of the CB1 receptor with A2A and D2 receptors are fundamental for the correct formation of the quaternary structure needed for the function (MAPK signaling) of the A2A-CB1-D2 receptor heteromers. Analysis of MAPK signaling in striatal slices of CB1 receptor KO mice and wild-type littermates supported the existence of A1-CB1-D2 receptor heteromer in the brain. These findings allowed us to propose the first molecular model of the quaternary structure of a receptor heteromultimer.  相似文献   

10.
The skeletal muscle dihydropyridine receptor (DHPR) in the t-tubular membrane serves as the Ca2+ channel and voltage sensor for excitation-contraction (EC) coupling, triggering Ca2+ release via the type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum (SR). The two proteins appear to be physically linked, and both the α1S and β1a subunits of the DHPR are essential for EC coupling. Within α1S, cytoplasmic domains of importance include the I-II loop (to which β1a binds), the II-III and III-IV loops, and the C terminus. However, the spatial relationship of these domains to one another has not been established. Here, we have taken the approach of measuring FRET between fluorescent proteins inserted into pairs of α1S cytoplasmic domains. Expression of these constructs in dyspedic (RyR1 null) and dysgenic (α1S null) myotubes was used to test for function and targeting to plasma membrane/SR junctions and to test whether the presence of RyR1 caused altered FRET. We found that in the absence of RyR1, measureable FRET occurred between the N terminus and C terminus (residue 1636), and between the II-III loop (residue 626) and both the N and C termini; the I-II loop (residue 406) showed weak FRET with the II-III loop but not with the N terminus. Association with RyR1 caused II-III loop FRET to decrease with the C terminus and increase with the N terminus and caused I-II loop FRET to increase with both the II-III loop and N terminus. Overall, RyR1 appears to cause a substantial reorientation of the cytoplasmic α1S domains consistent with their becoming more closely packed.  相似文献   

11.
The epithelial sodium channel (ENaC) is composed of three homologous subunits (α, β, and γ) with cytoplasmic N and C termini. Our previous work revealed that two cytoplasmic Cys residues in the β subunit, βCys-43 and βCys-557, are Cys-palmitoylated. ENaCs with mutant βC43A/C557A exhibit normal surface expression but enhanced Na+ self-inhibition and reduced channel open probability. Although the α subunit is not palmitoylated, we now show that the two cytoplasmic Cys residues in the γ subunit are palmitoylated. ENaCs with mutant γC33A, γC41A, or γC33A/C41A exhibit reduced activity compared with wild type channels but normal surface expression and normal levels of α and γ subunit-activating cleavage. These mutant channels have significantly enhanced Na+ self-inhibition and reduced open probability compared with wild type ENaCs. Channel activity was enhanced by co-expression with the palmitoyltransferase DHHC2 that also co-immunoprecipitates with ENaCs. Secondary structure prediction of the N terminus of the γ subunit places γCys-33 within an α-helix and γCys-44 on a coil before the first transmembrane domain within a short tract that includes a well conserved His-Gly motif, where mutations have been associated with altered channel gating. Our current and previous results suggest that palmitoylation of the β and γ subunits of ENaCs enhances interactions of their respective cytoplasmic domains with the plasma membrane and stabilizes the open state of the channel. Comparison of activities of channels lacking palmitoylation sites in individual or multiple subunits revealed that γ subunit palmitoylation has a dominant role over β subunit palmitoylation in modulating ENaC gating.  相似文献   

12.

Residues of the second extracellular loop are believed to be important for ligand recognition in adenosine receptors. Molecular modeling studies have suggested that one such residue, Gln 167 of the human A 3 receptor, is in proximity to the C2 moiety of some adenosine analogs when bound. Here this putative interaction was systematically explored using a neoceptor strategy, i.e., by site-directed mutagenesis and examination of the affinities of nucleosides modified to have complementary functionality. Gln 167 was mutated to Ala, Glu, and Arg, while the 2-position of several adenosine analogs was substituted with amine or carboxylic acid groups. All compounds tested lost affinity to the mutant receptors in comparison to the wild type. However, comparing affinities among the mutant receptors, several compounds bearing charge at the 2-position demonstrated preferential affinity for the mutant receptor bearing a residue of complementary charge. 13, with a positively-charged C2 moiety, displayed an 8.5-fold increase in affinity at the Q167E mutant receptor versus the Q167R mutant receptor. Preferential affinity for specific mutant receptors was also observed for 8 and 12. The data suggests that a direct contact is made between the C2 substituent of some charged ligands and the mutant receptor bearing the opposite charge at position 167.  相似文献   

13.
Flp-InTM T-RExTM 293 cells expressing a wild type human M3 muscarinic acetylcholine receptor construct constitutively and able to express a receptor activated solely by synthetic ligand (RASSL) form of this receptor on demand maintained response to the muscarinic agonist carbachol but developed response to clozapine N-oxide only upon induction of the RASSL. The two constructs co-localized at the plasma membrane and generated strong ratiometric fluorescence resonance energy transfer (FRET) signals consistent with direct physical interactions. Increasing levels of induction of the FRET donor RASSL did not alter wild type receptor FRET-acceptor levels substantially. However, ratiometric FRET was modulated in a bell-shaped fashion with maximal levels of the donor resulting in decreased FRET. Carbachol, but not the antagonist atropine, significantly reduced the FRET signal. Cell surface homogeneous time-resolved FRET, based on SNAP-tag technology and employing wild type and RASSL forms of the human M3 receptor expressed stably in Flp-InTM TRExTM 293 cells, also identified cell surface dimeric/oligomeric complexes. Now, however, signals were enhanced by appropriate selective agonists. At the wild type receptor, large increases in FRET signal to carbachol and acetylcholine were concentration-dependent with EC50 values consistent with the relative affinities of the two ligands. These studies confirm the capacity of the human M3 muscarinic acetylcholine receptor to exist as dimeric/oligomeric complexes at the surface of cells and demonstrate that the organization of such complexes can be modified by ligand binding. However, conclusions as to the effect of ligands on such complexes may depend on the approach used.  相似文献   

14.
Single-point fluorescence correlation spectroscopy (FCS) of membrane-bound molecules suffers from a number of limitations leading to inaccurate estimation of diffusion parameters. To overcome such problems and with the overall goal of addressing membrane heterogeneities, we performed z-scan FCS (zFCS) of the serotonin1A receptor. We analyzed the results according to FCS diffusion laws that provide information on the organization of the diffusing species. Analysis of our results shows that the diffusion coefficients of the receptor and a fluorescently labeled phospholipid are similar when probed at length scales ∼210 nm. We discuss the significance of the spatiotemporal evolution of dynamics of membrane-bound molecules in the overall context of membrane domains and heterogeneity. Importantly, our results show that the serotonin1A receptor exhibits confinement in cell membranes, possibly due to interaction with the actin cytoskeleton. Surprisingly, depletion of membrane cholesterol appears to reduce receptor confinement in a manner similar to that observed in the case of cytoskeletal destabilization, implying possible changes in the actin cytoskeleton induced upon cholesterol depletion. These results constitute the first report on G-protein-coupled receptor dynamics utilizing a combination of zFCS and the FCS diffusion laws, and present a convenient approach to explore cell membrane heterogeneity at the submicron level.  相似文献   

15.
The neuropeptide FF2 (NPFF2) receptor belongs to the rhodopsin family of G protein-coupled receptors and mediates the effects of several related RFamide neuropeptides. One of the main pharmacological interests of this system resides in its ability to regulate endogenous opioid systems, making it a potential target to reduce the negative effects of chronic opioid use. Phosphorylation of intracellular residues is the most extensively studied post-translational modification regulating G protein-coupled receptor activity. However, until now, no information concerning NPFF2 receptor phosphorylation is available. In this study, we combined mass spectrometric analysis and site-directed mutagenesis to analyze for the first time the phosphorylation pattern of the NPFF2 receptor and the role of the various phosphorylation sites in receptor signaling, desensitization, and trafficking in a SH-SY5Y model cell line. We identified the major, likely GRK-dependent, phosphorylation cluster responsible for acute desensitization, 412TNST415 at the end of the C terminus of the receptor, and additional sites involved in desensitization (372TS373) and internalization (Ser395). We thus demonstrate the key role played by phosphorylation in the regulation of NPFF2 receptor activity and trafficking. Our data also provide additional evidence supporting the concept that desensitization and internalization are partially independent processes relying on distinct phosphorylation patterns.  相似文献   

16.
Cholesterol is an essential constituent of eukaryotic membranes and plays a crucial role in membrane organization, dynamics, function, and sorting. It is often found distributed non-randomly in domains or pools in biological and model membranes and is thought to contribute to a segregated distribution of membrane constituents. Signal transduction events mediated by seven transmembrane domain G-protein coupled receptors (GPCRs) are the primary means by which cells communicate with and respond to their external environment. We analyzed the role of cholesterol in the plasma membrane organization of the G-protein coupled serotonin1A receptor by fluorescence recovery after photobleaching (FRAP) measurements with varying bleach spot sizes. Our results show that lateral diffusion parameters of serotonin1A receptors in normal cells are consistent with models describing diffusion of molecules in a homogenous membrane. Interestingly, these characteristics are altered in cholesterol-depleted cells in a manner that is consistent with dynamic confinement of serotonin1A receptors in the plasma membrane. Importantly, analysis of ligand binding and downstream signaling of the serotonin1A receptor suggests that receptor function is affected in a significantly different manner when intact cells or isolated membranes are depleted of cholesterol. These results assume significance in the context of interpreting effects of cholesterol depletion on diffusion characteristics of membrane proteins in particular, and cholesterol-dependent cellular processes in general.  相似文献   

17.
The γ-amino butyric acid type A receptors (GABAA-Rs) are the key players in the mammalian brain that meditate fast inhibitory neurotransmission events. The structural integrity of these ligand-gated ion channel controls chloride ion permeability, which in turn monitors important pharmacological functions. Despite ample studies on GABAA-Rs, there was a need for a study on full-length receptor structures, devoted to track structure–function correlations based on their dynamic behavior consideration. We have employed molecular dynamics simulations accompanied by other biophysical methods to shed light on sequential and unaddressed questions like How GABAA-R structure facilitates the entry of GABA molecules at its two orthosteric binding sites? After entry, what structural features and changes monitor site-wise GABA binding differences? In the same context, what are the roles and responsibilities of loops such as C and F? On physiologically relevant time scales, how open to close state transition occurs? How salt bridges such as E155-R207 and E153-R207 maintain state-dependent C-loop structures? In an attempt, our simulation study unravels the complete course of GABA binding-unbinding pathway. This provides us with the relevant understanding of state-dependent dynamic events of GABAA-Rs.  相似文献   

18.
The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of “regulator of G protein signaling” (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 420AKKAA424 mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.  相似文献   

19.
Unlike formyl peptide receptor 1 (FPR1), FPR2/ALX (FPR2) interacts with peptides of diverse sequences but has low affinity for the Escherichia coli-derived chemotactic peptide fMet-Leu-Phe (fMLF). Using computer modeling and site-directed mutagenesis, we investigated the structural requirements for FPR2 to interact with formyl peptides of different length and composition. In calcium flux assay, the N-formyl group of these peptides is necessary for activation of both FPR2 and FPR1, whereas the composition of the C-terminal amino acids appears more important for FPR2 than FPR1. FPR2 interacts better with pentapeptides (fMLFII, fMLFIK) than tetrapeptides (fMLFK, fMLFW) and tripeptide (fMLF) but only weakly with peptides carrying negative charges at the C terminus (e.g. fMLFE). In contrast, FPR1 is less sensitive to negative charges at the C terminus. A CXCR4-based homology model of FPR1 and FPR2 suggested that Asp-2817.32 is crucial for the interaction of FPR2 with certain formyl peptides as its negative charge may be repulsive with the terminal COO- group of fMLF and negatively charged Glu in fMLFE. Asp-2817.32 might also form a stable interaction with the positively charged Lys in fMLFK. Site-directed mutagenesis was performed to remove the negative charge at position 281 in FPR2. The D2817.32G mutant showed improved affinity for fMLFE and fMLF and reduced affinity for fMLFK compared with wild type FPR2. These results indicate that different structural determinants are used by FPR1 and FPR2 to interact with formyl peptides.  相似文献   

20.
Brain-specific angiogenesis inhibitor-1 (BAI1) is an adhesion G protein-coupled receptor that has been studied primarily for its anti-angiogenic and anti-tumorigenic properties. We found that overexpression of BAI1 results in activation of the Rho pathway via a Gα12/13-dependent mechanism, with truncation of the BAI1 N terminus resulting in a dramatic enhancement in receptor signaling. This constitutive activity of the truncated BAI1 mutant also resulted in enhanced downstream phosphorylation of ERK as well as increased receptor association with β-arrestin2 and increased ubiquitination of the receptor. To gain insights into the regulation of BAI1 signaling, we screened the C terminus of BAI1 against a proteomic array of PDZ domains to identify novel interacting partners. These screens revealed that the BAI1 C terminus interacts with a variety of PDZ domains from synaptic proteins, including MAGI-3. Removal of the BAI1 PDZ-binding motif resulted in attenuation of receptor signaling to Rho but had no effect on ERK activation. Conversely, co-expression with MAGI-3 was found to potentiate signaling to ERK by constitutively active BAI1 in a manner that was dependent on the PDZ-binding motif of the receptor. Biochemical fractionation studies revealed that BAI1 is highly enriched in post-synaptic density fractions, a finding consistent with our observations that BAI1 can interact with PDZ proteins known to be concentrated in the post-synaptic density. These findings demonstrate that BAI1 is a synaptic receptor that can activate both the Rho and ERK pathways, with the N-terminal and C-terminal regions of the receptor playing key roles in the regulation of BAI1 signaling activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号