首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heckler EJ  Alon A  Fass D  Thorpe C 《Biochemistry》2008,47(17):4955-4963
The flavoprotein quiescin-sulfhydryl oxidase (QSOX) rapidly inserts disulfide bonds into unfolded, reduced proteins with the concomitant reduction of oxygen to hydrogen peroxide. This study reports the first heterologous expression and enzymological characterization of a human QSOX1 isoform. Like QSOX isolated from avian egg white, recombinant HsQSOX1 is highly active toward reduced ribonuclease A (RNase) and dithiothreitol but shows a >100-fold lower k cat/ K m for reduced glutathione. Previous studies on avian QSOX led to a model in which reducing equivalents were proposed to relay through the enzyme from the first thioredoxin domain (C70-C73) to a distal disulfide (C509-C512), then across the dimer interface to the FAD-proximal disulfide (C449-C452), and finally to the FAD. The present work shows that, unlike the native avian enzyme, HsQSOX1 is monomeric. The recombinant expression system enabled construction of the first cysteine mutants for mechanistic dissection of this enzyme family. Activity assays with mutant HsQSOX1 indicated that the conserved distal C509-C512 disulfide is dispensable for the oxidation of reduced RNase or dithiothreitol. The four other cysteine residues chosen for mutagenesis, C70, C73, C449, and C452, are all crucial for efficient oxidation of reduced RNase. C452, of the proximal disulfide, is shown to be the charge-transfer donor to the flavin ring of QSOX, and its partner, C449, is expected to be the interchange thiol, forming a mixed disulfide with C70 in the thioredoxin domain. These data demonstrate that all the internal redox steps occur within the same polypeptide chain of mammalian QSOX and commence with a direct interaction between the reduced thioredoxin domain and the proximal disulfide of the Erv/ALR domain.  相似文献   

2.
Conway ME  Coles SJ  Islam MM  Hutson SM 《Biochemistry》2008,47(19):5465-5479
Redox regulation of proteins through oxidation and S-thiolation are important regulatory processes, acting in both a protective and adaptive role in the cell. In the current study, we investigated the sensitivity of the neuronal human cytosolic branched-chain aminotransferase (hBCATc) protein to oxidation and S-thiolation, with particular attention focused on functionality and modulation of its CXXC motif. Thiol specific reagents showed significant redox cycling between the reactive thiols and the TNB anion, and using NEM, four of the six reactive thiols are critical to the functionality of hBCATc. Site-directed mutagenesis studies supported these findings where a reduced kcat (ranging from 50-70% of hBCATc) for C335S, C338S, C335/8S, and C221S, respectively, followed by a modest effect on C242S was observed. However, only the thiols of the CXXC motif (C335 and C338) were directly involved in the reversible redox regulation of hBCATc through oxidation (with a loss of 40-45% BCAT activity on air oxidation alone). Concurrent with these findings, under air oxidation, the X-ray crystallography structure of hBCATc showed a disulphide bond between C335 and C338. Further oxidation of the other four thiols was not evident until levels of hydrogen peroxide were elevated. S-thiolation experiments of hBCATc exposed to GSH provided evidence for significant recycling between GSH and the thiols of hBCATc, which implied that under reducing conditions GSH was operating as a thiol donor with minimal S-glutathionylation. Western blot analysis of WT hBCATc and mutant proteins showed that as the ratio of GSH:GSSG decreased significant S-glutathionylation occurred (with a further loss of 20% BCAT activity), preferentially at the thiols of the CXXC motif, suggesting a shift in function toward a more protective role for GSH. Furthermore, the extent of S-glutathionylation increased in response to oxidative stress induced by hydrogen peroxide potentially through a C335 sulfenic acid intermediate. Deglutathionylation of hBCATc-SSG using the GSH/glutaredoxin system provides evidence that this protein may play an important role in cellular redox regulation. Moreover, redox associations between hBCATc and several neuronal proteins were identified using targeted proteomics. Thus, our data provides strong evidence that the reactive thiol groups, in particular the thiols of the CXXC motif, play an integral role in redox regulation and that hBCATc has redox mediated associations with several neuronal proteins involved in G-protein cell signaling, indicating a novel role for hBCATc in cellular redox control.  相似文献   

3.
In the Escherichia coli protein disulphide bond formation pathway, membrane-bound DsbB oxidizes periplasmic DsbA, the disulphide bond-introducing enzyme. The Cys-41-Val-Leu-Cys-44 motif in the first periplasmic domain of DsbB is kept strongly oxidized by the respiratory function of the cell. We now show that the characteristic dithiothreitol resistance of the Cys-41-Cys-44 bond was retained even when the flanked Val-Leu combination was replaced by XX sequences from other oxidoreductases. Results of insertion mutagenesis showed that only the insertions (1-31 amino acids) in the region C-terminally adjacent to the CXXC motif impaired the oxidized state of DsbB. Deletion of a single amino acid from this region also rendered DsbB reduced and inactive. However, single amino acid substitutions of the four residues flanked by CXXC and the transmembrane segment did not abolish the oxidation of DsbB. These results suggest that some physical property, such as distance of the CXXC motif from the membrane, is important for the respiration-coupled oxidation of DsbB.  相似文献   

4.
5.
McsA is a key modulator of stress response in Staphylococcus aureus that contains four CXXC potential metal-binding motifs at the N-terminal. Staphylococcus aureus ctsR operon encodes ctsR, clpC, and putative mcsA and mcsB genes. The expression of the ctsR operon in S. aureus was shown to be induced in response to various types of heavy metals such as copper and cadmium. McsA was cloned and overexpressed, and purified product was tested for metal-binding activity. The protein bound to Cu(II), Zn(II), Co(II), and Cd(II). No binding with any heavy metal except copper was found when we performed site-directed mutagenesis of Cys residues of three CXXC motifs of McsA. These data suggest that two conserved cysteine ligands provided by one CXXC motif are required to bind copper ions. In addition, using a bacterial two-hybrid system, McsA was found to be able to bind to McsB and CtsR of S. aureus and the CXXC motif was needed for the binding. This indicates that the Cys residues in the CXXC motif are involved in metal binding and protein interaction.  相似文献   

6.
人肝再生增强因子CXXC活性结构域的研究   总被引:2,自引:0,他引:2  
人肝再生增强因子(human augmenter of liver regeneration, hALR)蛋白序列中有一段保守的Cys-Xaa-Xaa-Cys (CXXC)氨基酸序列,针对hALRp的CXXC结构,对hALR分别进行C65A和Q88C突变,表达、纯化突变体蛋白。体外检测hALRp和突变体的黄素腺嘌呤二核苷酸(flavin adenine dinucleotide, FAD)辅助的巯基氧化酶活性,hALR-FAD和hALRQ88C-FAD组与对照组比较有显著差异(P<0.05),hALR-FAD和hALRQ88C-FAD组之间无差异;hALRC65A-FAD组与对照组比较无差异。结果显示,通过C65A突变将CXXC结构破坏后,该突变体的巯基氧化酶活性完全丧失;通过Q88C突变增加一个CXXC序列后,该突变体的巯基氧化酶活性较hALR-FAD未见明显增加;同时,FAD不仅是hALRp发挥巯基氧化酶活性必须的辅助因子,而且有助于hALRp突变体蛋白的复性。  相似文献   

7.
Thioredoxin superfamily proteins introduce disulfide bonds into substrates, catalyze the removal of disulfides, and operate in electron relays. These functions rely on one or more dithiol/disulfide exchange reactions. The flavoenzyme quiescin sulfhydryl oxidase (QSOX), a catalyst of disulfide bond formation with an interdomain electron transfer step in its catalytic cycle, provides a unique opportunity for exploring the structural environment of enzymatic dithiol/disulfide exchange. Wild‐type Rattus norvegicus QSOX1 (RnQSOX1) was crystallized in a conformation that juxtaposes the two redox‐active di‐cysteine motifs in the enzyme, presenting the entire electron‐transfer pathway and proton‐transfer participants in their native configurations. As such a state cannot generally be enriched and stabilized for analysis, RnQSOX1 gives unprecedented insight into the functional group environments of the four cysteines involved in dithiol/disulfide exchange and provides the framework for analysis of the energetics of electron transfer in the presence of the bound flavin adenine dinucleotide cofactor. Hybrid quantum mechanics/molecular mechanics (QM/MM) free energy simulations based on the X‐ray crystal structure suggest that formation of the interdomain disulfide intermediate is highly favorable and secures the flexible enzyme in a state from which further electron transfer via the flavin can occur.  相似文献   

8.
The quiescin sulfhydryl oxidase (QSOX) family of enzymes generates disulfide bonds in peptides and proteins with the reduction of oxygen to hydrogen peroxide. Determination of the potentials of the redox centers in Trypanosoma brucei QSOX provides a context for understanding catalysis by this facile oxidant of protein thiols. The CXXC motif of the thioredoxin domain is comparatively oxidizing (E0 of −144 mV), consistent with an ability to transfer disulfide bonds to a broad range of thiol substrates. In contrast, the proximal CXXC disulfide in the ERV (essential for respiration and vegetative growth) domain of TbQSOX is strongly reducing (E0 of −273 mV), representing a major apparent thermodynamic barrier to overall catalysis. Reduction of the oxidizing FAD cofactor (E0 of −153 mV) is followed by the strongly favorable reduction of molecular oxygen. The role of a mixed disulfide intermediate between thioredoxin and ERV domains was highlighted by rapid reaction studies in which the wild-type CGAC motif in the thioredoxin domain of TbQSOX was replaced by the more oxidizing CPHC or more reducing CGPC sequence. Mixed disulfide bond formation is accompanied by the generation of a charge transfer complex with the flavin cofactor. This provides thermodynamic coupling among the three redox centers of QSOX and avoids the strongly uphill mismatch between the formal potentials of the thioredoxin and ERV disulfides. This work identifies intriguing mechanistic parallels between the eukaryotic QSOX enzymes and the DsbA/B system catalyzing disulfide bond generation in the bacterial periplasm and suggests that the strategy of linked disulfide exchanges may be exploited in other catalysts of oxidative protein folding.  相似文献   

9.
The genome sequence of Mycobacterium tuberculosis H37Rv revealed the presence of seven whiB-like open reading frames. In spite of several genetic studies on whiB genes, the biochemical properties of WhiB proteins are poorly understood. All WhiB-like proteins have four conserved cysteine residues, out of which two are present in a CXXC motif. We report for the first time the detailed biochemical and biophysical properties of M. tuberculosis WhiB4/Rv3681c and demonstrate the functional relevance of four conserved cysteines and the CXXC motif. UV-visible absorption spectra of freshly purified mWhiB4 showed the presence of a [2Fe-2S] cluster, whereas the electron paramagnetic resonance (EPR) spectra of reconstituted protein showed the presence of a [4Fe-4S] cluster. The iron-sulphur cluster was redox sensitive but stably co-ordinated to the protein even in the presence of high concentration of chaotropic agents. Despite primary sequence divergence from thioredoxin family proteins, the apo mWhiB4 has properties similar to thioredoxins and functions as a protein disulphide reductase, whereas holo mWhiB4 is enzymatically inactive. Apart from the cysteine thiol of CXXC motif the distantly placed thiol pair also contributes equally to the enzymatic activity of mWhiB4. A functional model of mWhiB4 in redox signaling during oxidative stress in M. tuberculosis has been presented.  相似文献   

10.
Sulphydryl oxidase is known to catalyse the synthesis de novo of disulphide bonds in a variety of thiol-containing compounds. Reduced glutathione is the best thiol substrate; however, D- and L-cysteine, cysteamine and N-acetyl-L-cysteine, as well as cysteine-containing peptides and proteins, are also effectively oxidized. In contrast, oxidation of the thiol groups of mercaptoethanol, mercaptopyridine, dithiothreitol, dithioerythritol, mercaptoacetate, mercaptopropionate or lipoic acid is not detectably catalysed. In bovine milk, sulphydryl oxidase is closely associated with another glutathione-metabolizing enzyme, gamma-glutamyltransferase. Covalent chromatography of crude preparations on cysteinylsuccinamidopropyl-glass resolves the oxidase from the transferase, thus permitting the kinetic characterization of glutathione oxidation. Initial-rate data imply a Ter Bi substituted-enzyme mechanism, and the observed substrate inhibition by thiols suggest that O2 binds first. Independent, non-kinetic, data, namely the immobilization of sulphydryl oxidase on cysteinyl-matrices, support formation of a mixed-disulphide intermediate between the thiol and enzyme, as predicted by the proposed mechanism. The enzyme-catalysed reaction appears not to be mediated via a superoxide intermediate, since O2 consumption is not affected by the presence of Nitro Blue Tetrazolium. FAD, NAD+, NADP+ and Nitro Blue Tetrazolium are all inactive as electron acceptors for sulphydryl oxidase catalysis.  相似文献   

11.
All cloned sialyltransferases from vertebrates are classified into four subfamilies and are characterized as having type II transmembrane topology. The catalytic domain has highly conserved motifs known as sialylmotifs. Besides sialylmotifs, each family has several unique conserved cysteine (Cys) residues mainly in the catalytic domain. The number and loci of conserved amino acids, however, differ with each subfamily, suggesting that the conserved Cys-residues and/or disulphide linkages they make may contribute to linkage specificity. Using Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF)-mass spectrometry, the present study performed disulphide linkage analysis on soluble mouse ST6Gal-I, which has six Cys-residues. Results confirmed that there were no free Cys-residues, and all six residues contributed to disulphide linkage formation, C(139)-C(403), C(181)-C(332) and C(350)-C(361). Study of single amino acid-substituted mutants revealed that the disulphide linkage C(181)-C(332) was necessary for molecular expression of the enzyme, and that the disulphide linkage C(350)-C(361) was necessary for enzyme activity. The remaining disulphide linkage C(139)-C(403) was not necessary for enzyme expression or for activity, including substrate specificity. Crystallographic study of pig ST3Gal I has recently been reported. Interestingly, the loci of disulphide linkages in ST6Gal-I differ from those in ST3Gal I, suggesting that the linkage specificity of sialyltransferase may results from significant structural differences, including the loci of disulphide linkages.  相似文献   

12.
1. DNA synthesis in Echinus esculentus eggs kept at 10°C takes place just after fusion, 0.75–1.5h after fertilization, and at telophase at about 2.67–3.33h after fertilization. 2. An increase in the thiol/thiol+disulphide ratio in acid extracts from washed nuclear fractions of the eggs is found at fusion, at early stages of mitosis and at telophase. When DNA is being synthesized, the relative amount of thiol in the extracts increases. 3. There are at least five thiol-containing histones in the acid extract together with a diffusible thiol peptide containing methyl-lysine and 3-methylhistidine and a thiol-containing acidic protein.  相似文献   

13.
Recently, we identified a novel disulfide oxidoreductase, SdbA, in the oral bacterium Streptococcus gordonii. Disulfide oxidoreductases form disulfide bonds in nascent proteins using a CXXC catalytic motif. Typically, the N‐terminal cysteine interacts with substrates, whereas the C‐terminal cysteine is buried and only reacts with the first cysteine of the motif. In this study, we investigated the SdbA C86P87D88C89 catalytic motif. In vitro, SdbA single cysteine variants at the N or C‐terminal position (SdbAC86P and SdbAC89A) were active but displayed different susceptibility to oxidation, and N‐terminal cysteine was prone to sulfenylation. In S. gordonii, mutants with a single N‐terminal cysteine were inactive and formed unstable disulfide adducts with other proteins. Activity was partially restored by inactivation of pyruvate oxidase, a hydrogen peroxide generator. Presence of the C‐terminal cysteine alone (in the SdbAC86P variant) could complement the ΔsdbA mutant and restore disulfide bond formation in recombinant and natural protein substrates. These results provide evidence that certain disulfide oxidoreductases can catalyze disulfide bond formation using a single cysteine of the CXXC motif, including the buried C‐terminal cysteine.  相似文献   

14.
Quiescin sulfhydryl oxidase 1 (QSOX1) is a catalyst of disulfide bond formation that undergoes regulated secretion from fibroblasts and is over-produced in adenocarcinomas and other cancers. We have recently shown that QSOX1 is required for incorporation of particular laminin isoforms into the extracellular matrix (ECM) of cultured fibroblasts and, as a consequence, for tumor cell adhesion to and penetration of the ECM. The known role of laminins in integrin-mediated cell survival and motility suggests that controlling QSOX1 activity may provide a novel means of combating metastatic disease. With this motivation, we developed a monoclonal antibody that inhibits the activity of human QSOX1. Here, we present the biochemical and structural characterization of this antibody and demonstrate that it is a tight-binding inhibitor that blocks one of the redox-active sites in the enzyme, but not the site at which de novo disulfides are generated catalytically. Sulfhydryl oxidase activity is thus prevented without direct binding of the sulfhydryl oxidase domain, confirming the model for the interdomain QSOX1 electron transfer mechanism originally surmised based on mutagenesis and protein dissection. In addition, we developed a single-chain variant of the antibody and show that it is a potent QSOX1 inhibitor. The QSOX1 inhibitory antibody will be a valuable tool in studying the role of ECM composition and architecture in cell migration, and the recombinant version may be further developed for potential therapeutic applications based on manipulation of the tumor microenvironment.  相似文献   

15.
16.
An unusual fumarate reductase was purified from cell extracts of Methanobacterium thermoautotrophicum and partially characterized. Two coenzymes previously isolated from cell extracts, 2-mercaptoethane-sulfonic acid (HS-CoM) and N-(7-mercaptoheptanoyl)threonine-O3-phosphate (HS-HTP), were established as direct electron donors for fumarate reductase. By measuring the consumption of free thiol, we determined that fumarate reductase catalyzed the oxidation of HS-CoM and HS-HTP; by the direct measurement of succinate and the heterodisulfide of HS-CoM and HS-HTP (CoM-S-S-HTP), we established that these compounds were products of the fumarate reductase reaction. A number of thiol-containing compounds did not function as substrates for fumarate reductase, but this enzyme had high specific activity when HS-CoM and HS-HTP were used as electron donors. HS-CoM and HS-HTP were quantitatively oxidized by the fumarate reductase reaction, and results indicated that this reaction was irreversible. Additionally, by measuring formylmethanofuran, we demonstrated that the addition of fumarate to cell extracts activated CO2 fixation for the formation of formylmethanofuran. Results indicated that this activation resulted from the production of CoM-S-S-HTP (a compound known to be involved in the activation of formylmethanofuran synthesis) by the fumarate reductase reaction.  相似文献   

17.
18.
We have previously described a method for isolating Escherichia coli-produced methionyl bovine prolactin (Met-bPRL) and its renaturation using thioredoxin. This report describes an alternative renaturation procedure in which extracted Met-bPRL is incubated in air at pH 10 and 20 degrees C. Within 1 h of such treatment essentially all of the reduced Met-bPRL was converted to the oxidized form; this was accompanied by an increase to full mitogenic activity in the Nb2 cell bioassay. It was also found that, to minimize contamination by high mol. wt Met-bPRL derivatives, it is essential to have a reducing agent (dithiothreitol) present during disruption of the bacteria and to extract the protein at neutral pH. The contribution of each of the three disulphide bridges in bPRL to its bioactivity was studied with Met-bPRL variants, prepared via site-specific mutagenesis, in which cysteines were replaced by serines to prevent disulphide bond formation. Variants lacking the C4-C11 bridge, the C191-C199 bridge or both these terminal bridges were as mitogenic as authentic bPRL. (Variants lacking the C191-C199 bridge had markedly increased solubility in the presence of deoxycholate.) In contrast, variants lacking the C58-C174 bridge had greatly reduced bioactivity, indicating that integrity of the large disulphide loop is crucial to the hormone's mitogenic activity.  相似文献   

19.
Elution of complex protein mixtures on a matrix containing reactive disulphide bonds (Thiopropyl-Sepharose 6B, Pharmacia) results in immobilisation of thiol-containing molecules. Specific protein fractions can be displaced from the gel using different low-molecular-weight reducing agents. Thus a single sequential elution can separate and resolve thiol-containing proteins in a rapid and convenient step. The method is illustrated with reference to beef liver thiol: disulphide oxidoreductases.  相似文献   

20.
The ERV/ALR sulfhydryl oxidase domain is a versatile module adapted for catalysis of disulfide bond formation in various organelles and biological settings. Its four-helix bundle structure juxtaposes a Cys-X-X-Cys dithiol/disulfide motif with a bound flavin adenine dinucleotide (FAD) cofactor, enabling transfer of electrons from thiol substrates to non-thiol electron acceptors. ERV/ALR family members contain an additional di-cysteine motif outside the four-helix-bundle core. Although the location and context of this "shuttle" disulfide differs among family members, it is proposed to perform the same basic function of mediating electron transfer from substrate to the enzyme active site. We have determined by X-ray crystallography the structure of AtErv1, an ERV/ALR enzyme that contains a Cys-X4-Cys shuttle disulfide and oxidizes thioredoxin in vitro, and compared it to ScErv2, which has a Cys-X-Cys shuttle and does not oxidize thioredoxin at an appreciable rate. The AtErv1 shuttle disulfide is in a region of the structure that is disordered and thus apparently mobile and exposed. This feature may facilitate access of protein substrates to the shuttle disulfide. To test whether the shuttle disulfide region is modular and can confer on other enzymes oxidase activity toward new substrates, we generated chimeric enzyme variants combining shuttle disulfide and core elements from AtErv1 and ScErv2 and monitored oxidation of thioredoxin by the chimeras. We found that the AtErv1 shuttle disulfide region could indeed confer thioredoxin oxidase activity on the ScErv2 core. Remarkably, various chimeras containing the ScErv2 Cys-X-Cys shuttle disulfide were found to function efficiently as well. Since neither the ScErv2 core nor the Cys-X-Cys motif is therefore incapable of participating in oxidation of thioredoxin, we conclude that wild-type ScErv2 has evolved to repress activity on substrates of this type, perhaps in favor of a different, as yet unknown, substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号