首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Rad23 is a DNA repair protein that promotes the assembly of the nucleotide excision repair complex. Rad23 can interact with the 26S proteasome through an N-terminal ubiquitin-like domain, and inhibits the assembly of substrate-linked multi-ubiquitin (multi-Ub) chains in vitro and in vivo. Significantly, Rad23 can bind a proteolytic substrate that is conjugated to a few ubiquitin (Ub) moieties. We report here that two ubiquitin-associated (UBA) domains in Rad23 form non-covalent interactions with Ub. A mutant that lacked either UBA sequence was capable of blocking the assembly of substrate-linked multi-Ub chains, although a mutant that lacked both UBA domains was significantly impaired. These studies suggest that the interaction with Ub is required for Rad23 activity, and that other UBA-containing proteins may have a similar function.  相似文献   

2.
The ubiquitin (Ub)/26S proteasome system (UPS) directs the turnover of numerous regulatory proteins, thereby exerting control over many aspects of plant growth, development, and survival. The UPS is directed in part by a group of Ub-like/Ub-associated (UBL/UBA) proteins that help shuttle ubiquitylated proteins to the 26S proteasome for breakdown. Here, we describe the collection of UBL/UBA proteins in Arabidopsis thaliana, including four isoforms that comprise the RADIATION SENSITIVE23 (RAD23) family. The nuclear-enriched RAD23 proteins bind Ub conjugates, especially those linked internally through Lys-48, via their UBA domains, and associate with the 26S proteasome Ub receptor RPN10 via their N-terminal UBL domains. Whereas homozygous mutants individually affecting the four RAD23 genes are without phenotypic consequences (rad23a, rad23c, and rad23d) or induce mild phyllotaxy and sterility defects (rad23b), higher-order mutant combinations generate severely dwarfed plants, with the quadruple mutant displaying reproductive lethality. Both the synergistic effects of a rad23b-1 rpn10-1 combination and the response of rad23b plants to mitomycin C suggest that RAD23b regulates cell division. Taken together, RAD23 proteins appear to play an essential role in the cell cycle, morphology, and fertility of plants through their delivery of UPS substrates to the 26S proteasome.  相似文献   

3.
hHR23B is the human homologue of the yeast protein RAD23 and is known to participate in DNA repair by stabilizing xeroderma pigmentosum group C protein. However, hHR23B and RAD23 also have many important functions related to general proteolysis. hHR23B consists of N-terminal ubiquitin-like (UbL), ubiquitin association 1 (UBA1), xeroderma pigmentosum group C binding, and UBA2 domains. The UBA domains interact with ubiquitin (Ub) and inhibit the assembly of polyubiquitin. On the other hand, the UbL domain interacts with the poly-Ub binding site 2 (PUbS2) domain of the S5a protein, which can carry polyubiquitinated substrates into the proteasome. We calculated the NMR structure of the UbL domain of hHR23B and determined binding surfaces of UbL and Ub to UBA1, UBA2, of hHR23B and PUbS2 of S5a by using chemical shift perturbation. Interestingly, the surfaces of UbL and Ub that bind to UBA1, UBA2, and PUbS2 are similar, consisting of five beta-strands and their connecting loops. This is the first report that an intramolecular interaction between UbL and UBA domains is possible, and this interaction could be important for the control of proteolysis by hHR23B. The binding specificities of UbL and Ub for PUbS1, PUbS2, and general ubiquitin-interacting motifs, which share the LALA motif, were evaluated. The UBA domains bind to the surface of Ub including Lys-48, which is required for multiubiquitin assembly, possibly explaining the observed inhibition of multiubiquitination by hHR23B. The UBA domains bind to UbL through electrostatic interactions supported by hydrophobic interactions and to Ub mainly through hydrophobic interactions supported by electrostatic interactions.  相似文献   

4.
The human homolog of the yeast DNA repair protein RAD23, hHR23A, has been found previously to interact with the human immunodeficiency virus, type 1 accessory protein Vpr. hHR23A is a modular protein containing an N-terminal ubiquitin-like (UBL) domain and two ubiquitin-associated domains (UBA1 and UBA2) separated by a xeroderma pigmentosum complementation group C binding (XPCB) domain. All domains are connected by flexible linkers. hHR23A binds ubiquitinated proteins and acts as a shuttling factor to the proteasome. Here, we show that hHR23A utilizes both the UBA2 and XPCB domains to form a stable complex with Vpr, linking Vpr directly to cellular DNA repair pathways and their probable exploitation by the virus. Detailed structural mapping of the Vpr contacts on hHR23A, by NMR, revealed substantial contact surfaces on the UBA2 and XPCB domains. In addition, Vpr binding disrupts an intramolecular UBL-UBA2 interaction. We also show that Lys-48-linked di-ubiquitin, when binding to UBA1, does not release the bound Vpr from the hHR23A-Vpr complex. Instead, a ternary hHR23A·Vpr·di-UbK48 complex is formed, indicating that Vpr does not necessarily abolish hHR23A-mediated shuttling to the proteasome.  相似文献   

5.
Rad23 contains a ubiquitin-like domain (UbL(R23)) that interacts with catalytically active proteasomes and two ubiquitin (Ub)-associated (UBA) sequences that bind Ub. The UBA domains can bind Ub in vitro, although the significance of this interaction in vivo is poorly understood. Rad23 can interfere with the assembly of multi-Ub chains in vitro, and high-level expression caused stabilization of proteolytic substrates in vivo. We report here that Rad23 interacts with ubiquitinated cellular proteins through the synergistic action of its UBA domains. Rad23 plays an overlapping role with Rpn10, a proteasome-associated multi-Ub chain binding protein. Mutations in the UBA domains prevent efficient interaction with ubiquitinated proteins and result in poor suppression of the growth and proteolytic defects of a rad23 Delta rpn10 Delta mutant. High-level expression of Rad23 revealed, for the first time, an interaction between ubiquitinated proteins and the proteasome. This increase was not observed in rpn10 Delta mutants, suggesting that Rpn10 participates in the recognition of proteolytic substrates that are delivered by Rad23. Overexpression of UbL(R23) caused stabilization of a model substrate, indicating that an unregulated UbL(R23)-proteasome interaction can interfere with the efficient delivery of proteolytic substrates by Rad23. Because the suppression of a rad23 Delta rpn10 Delta mutant phenotype required both UbL(R23) and UBA domains, our findings support the hypothesis that Rad23 encodes a novel regulatory factor that translocates ubiquitinated substrates to the proteasome.  相似文献   

6.
Ubiquitin-associated (UBA) domains are found in a large number of proteins with diverse functions involved in ubiquitination, DNA repair, and signaling pathways. Recent studies have shown that several UBA domain proteins interact with ubiquitin (Ub), specifically p62, the phosphotyrosine-independent ligand of the SH2 domain of p56(lck); HHR23A, a human nucleotide excision repair protein; and DDI1, another damage-inducible protein. NMR chemical shift mapping reveals that Ub binds specifically but weakly to a conserved hydrophobic epitope on HHR23A UBA(1) and UBA(2) and that the UBA domains bind on the hydrophobic patch on the surface of the five-stranded beta-sheet of Ub. Models of the UBA(1)-Ub and UBA(2)-Ub complexes obtained from de novo docking reveal different orientations of the UBA domains on the Ub surface compared with those obtained by homology modeling with the related CUE domains, which also bind Ub. Our results suggest that UBA domains may interact with Ub as well as other proteins in more than one way while utilizing the same binding surface.  相似文献   

7.

Background

The proteasome is a multi-subunit protein machine that is the final destination for cellular proteins that have been marked for degradation via an ubiquitin (Ub) chain appendage. These ubiquitylated proteins either bind directly to the intrinsic proteasome ubiqutin chain receptors Rpn10, Rpn13, or Rpt5, or are shuttled to the proteasome by Rad23, Dsk2, or Ddi1. The latter proteins share an Ub association domain (UBA) for binding poly-Ub chains and an Ub-like-domain (UBL) for binding to the proteasome. It has been proposed that shuttling receptors dock on the proteasome via Rpn1, but the precise nature of the docking site remains poorly defined.

Results

To shed light on the recruitment of shuttling receptors to the proteasome, we performed both site-directed mutagenesis and genetic screening to identify mutations in Rpn1 that disrupt its binding to UBA-UBL proteins. Here we demonstrate that delivery of Ub conjugates and docking of Ddi1 (and to a lesser extent Dsk2) to the proteasome are strongly impaired by an aspartic acid to alanine point mutation in the highly-conserved D517 residue of Rpn1. Moreover, degradation of the Ddi1-dependent proteasome substrate, Ufo1, is blocked in rpn1-D517A yeast cells. By contrast, Rad23 recruitment to the proteasome is not affected by rpn1-D517A.

Conclusions

These studies provide insight into the mechanism by which the UBA-UBL protein Ddi1 is recruited to the proteasome to enable Ub-dependent degradation of its ligands. Our studies suggest that different UBA-UBL proteins are recruited to the proteasome by distinct mechanisms.  相似文献   

8.
UBDs [Ub (ubiquitin)-binding domains], which are typically small protein motifs of <50 residues, are used by receptor proteins to transduce post-translational Ub modifications in a wide range of biological processes, including NF-κB (nuclear factor κB) signalling and proteasomal degradation pathways. More than 20 families of UBDs have now been characterized in structural detail and, although many recognize the canonical Ile44/Val70-binding patch on Ub, a smaller number have alternative Ub-recognition sites. The A20 Znf (A20-like zinc finger) of the ZNF216 protein is one of the latter and binds with high affinity to a polar site on Ub centred around Asp58/Gln62. ZNF216 shares some biological function with p62, with both linked to NF-κB signal activation and as shuttle proteins in proteasomal degradation pathways. The UBA domain (Ub-associated domain) of p62, although binding to Ub through the Ile44/Val70 patch, is unique in forming a stable dimer that negatively regulates Ub recognition. We show that the A20 Znf and UBA domain are able to form a ternary complex through independent interactions with a single Ub molecule, supporting functional models for Ub as a 'hub' for mediating multi-protein complex assembly and for enhancing signalling specificity.  相似文献   

9.
Most substrates of the 26 S proteasome are recognized only following conjugation to a Lys48-linked polyubiquitin chain. Rad23 is one member of a family of proteins that possesses an N-terminal ubiquitin-like domain (UbL) and a C-terminal ubiquitin-associated domain(s) (UBA). Recent studies have shown that UbLs interact with 26 S proteasomes, whereas UBAs bind polyubiquitin chains. These biochemical properties suggest that UbL-UBA proteins may shuttle polyubiquitinated substrates to proteasomes. Here we show that contrary to prediction from this model, the effect of human Rad23A on the degradation of polyubiquitinated substrates catalyzed by purified proteasomes is exclusively inhibitory. Strong inhibition is dependent on the presence of both UBAs, independent of the UbL, and can be explained by competition between the UBA domains and the proteasome for binding to substrate-linked polyubiquitin chains. The UBA domains bind Lys48-linked polyubiquitin chains in strong preference to Lys63 or Lys29-linked chains, leading to selective inhibition of the assembly and disassembly of Lys48-linked chains. These results place constraints on the mechanism(s) by which UbL-UBA proteins promote proteasome-catalyzed proteolysis and reveal new properties of UBA domains.  相似文献   

10.
Ubiquitin receptor proteins play an important role in delivering ubiquitylated protein substrates to the proteasome for degradation. HHR23a and hPLIC2 are two such ubiquitin receptors that contain ubiquitin-like (UBL) domains, which interact with the proteasome, and ubiquitin-associated (UBA) domains, which interact with ubiquitin. Depending on their abundance UBL/UBA family members can either promote or inhibit the degradation of other proteins, which suggests their participation in the delivery of substrates to the proteasome is highly regulated. In previous work, we determined UBL/UBA domain interactions to promote intramolecular interactions in hHR23a that are abrogated with the addition of either ubiquitin or the proteasome component S5a. In yeast, we determined the hHR23a ortholog (Rad23) to interact with another UBL/UBA family member (Ddi1) and to bind a common tetraubiquitin chain. Here, we use NMR spectroscopy to reveal that hHR23a interacts with hPLIC2 via UBL/UBA domain interactions and to map their binding surfaces. In addition, we demonstrate that these two proteins associate in mammalian cells. Intriguingly, inhibition of the proteasome mitigates hHR23a/hPLIC2 interaction.  相似文献   

11.
UBA domains are a commonly occurring sequence motif of approximately 45 amino acid residues that are found in diverse proteins involved in the ubiquitin/proteasome pathway, DNA excision-repair, and cell signaling via protein kinases. The human homologue of yeast Rad23A (HHR23A) is one example of a nucleotide excision-repair protein that contains both an internal and a C-terminal UBA domain. The solution structure of HHR23A UBA(2) showed that the domain forms a compact three-helix bundle. We report the structure of the internal UBA(1) domain of HHR23A. Comparison of the structures of UBA(1) and UBA(2) reveals that both form very similar folds and have a conserved large hydrophobic surface patch. The structural similarity between UBA(1) and UBA(2), in spite of their low level of sequence conservation, leads us to conclude that the structural variability of UBA domains in general is likely to be rather small. On the basis of the structural similarities as well as analysis of sequence conservation, we predict that this hydrophobic surface patch is a common protein-interacting surface present in diverse UBA domains. Furthermore, accumulating evidence that ubiquitin binds to UBA domains leads us to the prediction that the hydrophobic surface patch of UBA domains interacts with the hydrophobic surface on the five-stranded beta-sheet of ubiquitin. Detailed comparison of the structures of the two UBA domains, combined with previous mutagenesis studies, indicates that the binding site of HIV-1 Vpr on UBA(2) does not completely overlap the ubiquitin binding site.  相似文献   

12.
Rad23 is a highly conserved protein involved in nucleotide excision repair (NER) that associates with the proteasome via its N-terminus. Its C-terminal ubiquitin-associated (UBA) domain is evolutionarily conserved from yeast to humans. However, the cellular function of UBA domains is not completely understood. Recently, RAD23 and DDI1, both DNA damage-inducible genes encoding proteins with UBA domains, were implicated genetically in Pds1-dependent mitotic control in yeast. The UBA domains of RAD23 and DDI1 are required for these interactions. Timely degradation of Pds1 via the ubiquitin/proteasome pathway allows anaphase onset and is crucial for chromosome maintenance. Here, we show that Rad23 and Ddi1 interact directly with ubiquitin and that this interaction is dependent on their UBA domains, providing a possible mechanism for UBA-dependent cell cycle control. Moreover, we show that a hydrophobic surface on the UBA domain, which from structural work had been predicted to be a protein-protein interaction interface, is indeed required for ubiquitin binding. By demonstrating that UBA domains interact with ubiquitin, we have provided the first indication of a cellular function for the UBA domain.  相似文献   

13.
《Journal of molecular biology》2014,426(24):4049-4060
Rad23 was identified as a DNA repair protein, although a role in protein degradation has been described. The protein degradation function of Rad23 contributes to cell cycle progression, stress response, endoplasmic reticulum proteolysis, and DNA repair. Rad23 binds the proteasome through a UbL (ubiquitin-like) domain and contains UBA (ubiquitin-associated) motifs that bind multiubiquitin chains. These domains allow Rad23 to function as a substrate shuttle-factor. This property is shared by structurally similar proteins (Dsk2 and Ddi1) and is conserved among the human and mouse counterparts of Rad23. Despite much effort, the regulation of Rad23 interactions with ubiquitinated substrates and the proteasome is unknown. We report here that Rad23 is extensively phosphorylated in vivo and in vitro. Serine residues in UbL are phosphorylated and influence Rad23 interaction with proteasomes. Replacement of these serine residues with acidic residues, to mimic phosphorylation, reduced proteasome binding. We reported that when UbL is overexpressed, it can compete with Rad23 for proteasome interaction and can inhibit substrate turnover. This effect is not observed with UbL containing acidic substitutions, consistent with results that phosphorylation inhibits interaction with the proteasome. Loss of both Rad23 and Rpn10 caused pleiotropic defects that were suppressed by overexpressing either Rad23 or Rpn10. Rad23 bearing a UbL domain with acidic substitutions failed to suppress rad23Δ rpn10Δ, confirming the importance of regulated Rad23/proteasome binding. Strikingly, threonine 75 in human HR23B also regulates interaction with the proteasome, suggesting that phosphorylation is a conserved mechanism for controlling Rad23/proteasome interaction.  相似文献   

14.
PUB domains are identified in several proteins functioning in the ubiquitin (Ub)-proteasome system and considered as p97-binding modules. To address the further functional roles of these domains, we herein characterized the interactions of the PUB domain of peptide:N-glycanase (PNGase) with Ub and Ub-like domain (UBL) of the proteasome shuttle factor HR23. NMR data indicated that PNGase-PUB exerts an acceptor preferentially for HR23-UBL, electrostatically interacting with the UBL surface employed for binding to other Ub/UBL motifs. Our findings imply that PNGase-PUB serves not only as p97-binding module but also as a possible activator of HR23 in endoplasmic reticulum-associated degradation mechanisms.  相似文献   

15.
The Cbl proteins, RING-type E3 ubiquitin ligases, are responsible for ubiquitinating the activated tyrosine kinases and targeting them for degradation. Both c-Cbl and Cbl-b have a UBA (ubiquitin-associated) domain at their C-terminal ends, and these two UBA domains share a high sequence similarity (75%). However, only the UBA from Cbl-b, but not from c-Cbl, can bind ubiquitin (Ub). To understand the mechanism by which the UBA domains specifically interact with Ub with different affinities, we determined the solution NMR structures of these two UBA domains, cUBA from human c-Cbl and UBAb from Cbl-b. Their structures show that these two UBA domains share the same fold, a compact three-helix bundle, highly resembling the typical UBA fold. Chemical shift perturbation experiments reveal that the helix-1 and loop-1 of UBAb form a predominately hydrophobic surface for Ub binding. By comparing the Ub-interacting surface on UBAb and its counterpart on cUBA, we find that the hydrophobic patch on cUBA is interrupted by a negatively charged residue Glu12. Fluorescence titration data show that the Ala12Glu mutant of UBAb completely loses the ability to bind Ub, whereas the mutation disrupting the dimerization has no significant effect on Ub binding. This study provides structural and biochemical insights into the Ub binding specificities of the Cbl UBA domains, in which the hydrophobic surface distribution on the first helix plays crucial roles in their differential affinities for Ub binding. That is, the amino acid residue diversity in the helix-1 region, but not the dimerization, determines the abilities of various UBA domains binding with Ub.  相似文献   

16.
Swa2p is an auxilin-like yeast protein that is involved in vesicular transport and required for uncoating of clathrin-coated vesicles. Swa2p contains a ubiquitin-associated (UBA) domain, which is present in a variety of proteins involved in ubiquitin (Ub)-mediated processes. We have determined a structural model of the Swa2p UBA domain in complex with Ub using NMR spectroscopy and molecular docking. Ub recognition occurs predominantly through an atypical interaction in which UBA helix α1 and the N-terminal part of helix α2 bind to Ub. Mutation of Ala148, a key residue in helix α1, to polar residues greatly reduced the affinity of the UBA domain for Ub and revealed a second low-affinity Ub-binding site located on the surface formed by helices α1 and α3. Surface plasmon resonance showed that the Swa2p UBA domain binds K48- and K63-linked di-Ub in a non-linkage-specific manner. These results reveal convergent evolution of a Ub-binding site on helix α1 of UBA domains involved in membrane protein trafficking.  相似文献   

17.
The ubiquitin (Ub)–proteasome system is the primary mechanism for maintaining protein homeostasis in eukaryotes, yet the underlying signaling events and specificities of its components are poorly understood. Proteins destined for degradation are tagged with covalently linked polymeric Ub chains and subsequently delivered to the proteasome, often with the assistance of shuttle proteins that contain Ub-like domains. This degradation pathway is riddled with apparent redundancy—in the form of numerous polyubiquitin chains of various lengths and distinct architectures, multiple shuttle proteins, and at least three proteasomal receptors. Moreover, the largest proteasomal receptor, Rpn1, contains one known binding site for polyubiquitin and shuttle proteins, although several studies have recently proposed the existence of an additional uncharacterized site. Here, using a combination of NMR spectroscopy, photocrosslinking, mass spectrometry, and mutagenesis, we show that Rpn1 does indeed contain another recognition site that exhibits affinities and binding preferences for polyubiquitin and Ub-like signals comparable to those of the known binding site in Rpn1. Surprisingly, this novel site is situated in the N-terminal section of Rpn1, a region previously surmised to be devoid of functionality. We identified a stretch of adjacent helices as the location of this previously uncharacterized binding site, whose spatial proximity and similar properties to the known binding site in Rpn1 suggest the possibility of multivalent signal recognition across the solvent-exposed surface of Rpn1. These findings offer new mechanistic insights into signal recognition processes that are at the core of the Ub–proteasome system.  相似文献   

18.
Although several proteasome subunits have been shown to bind ubiquitin (Ub) chains, many ubiquitylated substrates also associate with 26S proteasomes via “shuttling factors.” Unlike the well-studied yeast shuttling factors Rad23 and Dsk2, vertebrate homologs Ddi2 and Ddi1 lack a Ub-associated domain; therefore, it is unclear how they bind Ub. Here, we show that deletion of Ddi2 leads to the accumulation of Ub conjugates with K11/K48 branched chains. We found using affinity copurifications that Ddi2 binds Ub conjugates through its Ub-like domain, which is also required for Ddi2 binding to proteasomes. Furthermore, in cell extracts, adding Ub conjugates increased the amount of Ddi2 associated with proteasomes, and adding Ddi2 increased the binding of Ub conjugates to purified proteasomes. In addition, Ddi2 also contains a retroviral protease domain with undefined cellular roles. We show that blocking the endoprotease activity of Ddi2 either genetically or with the HIV protease inhibitor nelfinavir increased its binding to Ub conjugates but decreased its binding to proteasomes and reduced subsequent protein degradation by proteasomes leading to further accumulation of Ub conjugates. Finally, nelfinavir treatment required Ddi2 to induce the unfolded protein response. Thus, Ddi2 appears to function as a shuttling factor in endoplasmic reticulum–associated protein degradation and delivers K11/K48-ubiquitylated proteins to the proteasome. We conclude that the protease activity of Ddi2 influences this shuttling factor activity, promotes protein turnover, and helps prevent endoplasmic reticulum stress, which may explain nelfinavir’s ability to enhance cell killing by proteasome inhibitors.  相似文献   

19.
Ubiquitin (Ub) regulates important cellular processes through covalent attachment to its substrates. The fate of a substrate depends on the number of ubiquitin moieties conjugated, as well as the lysine linkage of Ub-Ub conjugation. The major function of Ub is to regulate the in vivo half-life of its substrates. Once a multi-Ub chain is attached to a substrate, it must be shielded from deubiquitylating enzymes for the 26 S proteasome to recognize it. Molecular mechanisms of the postubiquitylation processes are poorly understood. Here, we have characterized a family of proteins that preferentially binds ubiquitylated substrates and multi-Ub chains through a motif termed the ubiquitin-associated domain (UBA). Our in vivo genetic analysis demonstrates that such interactions require specific lysine residues of Ub that are important for Ub chain formation. We show that Saccharomyces cerevisiae cells lacking two of these UBA proteins, Dsk2 and Rad23, are deficient in protein degradation mediated by the UFD pathway and that the intact UBA motif of Dsk2 is essential for its function in proteolysis. Dsk2 and Rad23 can form a complex(es), suggesting that they cooperate to recognize a subset of multi-Ub chains and deliver the Ub-tagged substrates to the proteasome. Our results suggest a molecular mechanism for differentiation of substrate fates, depending on the precise nature of the mono-Ub or multi-Ub lysine linkage, and provide a foundation to further investigate postubiquitylation events.  相似文献   

20.
Fas-associated factor 1 (FAF1) is a ubiquitin receptor containing multiple ubiquitin-related domains including ubiquitin-associated (UBA), ubiquitin-like (UBL) 1, UBL2, and ubiquitin regulatory X (UBX). We previously showed that N-terminal UBA domain recognizes Lys48-ubiquitin linkage to recruit polyubiquitinated proteins and that a C-terminal UBX domain interacts with valosin-containing protein (VCP). This study shows that FAF1 interacts only with VCP complexed with Npl4-Ufd1 heterodimer, a requirement for the recruitment of polyubiquitinated proteins to UBA domain. Intriguingly, VCP association to C-terminal UBX domain regulates ubiquitin binding to N-terminal UBA domain without direct interaction between UBA and UBX domains. These interactions are well characterized by structural and biochemical analysis. VCP-Npl4-Ufd1 complex is known as the machinery required for endoplasmic reticulum-associated degradation. We demonstrate here that FAF1 binds to VCP-Npl4-Ufd1 complex via UBX domain and polyubiquitinated proteins via UBA domain to promote endoplasmic reticulum-associated degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号