首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triiodothyronine (T3) regulates the expression of genes involved in muscle metabolism. Therefore, we examined the effects of a 7-day T3 treatment on the monocarboxylate transporters (MCT)1 and MCT4 in heart and in red (RG) and white gastrocnemius muscle (WG). We also examined rates of lactate transport into giant sarcolemmal vesicles and the plasmalemmal MCT1 and MCT4 in these vesicles. Ingestion of T3 markedly increased circulating serum T3 (P < 0.05) and reduced weight gain (P < 0.05). T3 upregulated MCT1 mRNA (RG +77, WG +49, heart +114%, P < 0.05) and MCT4 mRNA (RG +300, WG +40%). However, only MCT4 protein expression was increased (RG +43, WG +49%), not MCT1 protein expression. No changes in MCT1 protein were observed in any tissue. T3 treatment doubled the rate of lactate transport when vesicles were exposed to 1 mM lactate (P < 0.05). However, plasmalemmal MCT4 was only modestly increased (+13%, P < 0.05). We conclude that T3 1) regulates MCT4, but not MCT1, protein expression and 2) increases lactate transport rates. This latter effect is difficult to explain by the modest changes in plasmalemmal MCT4. We speculate that either the activity of sarcolemmal MCTs has been altered or else other MCTs in muscle may have been upregulated.  相似文献   

2.
PGC-1alpha is a key regulator of tissue metabolism, including skeletal muscle. Because it has been shown that PGC-1alpha alters the capacity for lipid metabolism, it is possible that PGC-1alpha expression is regulated by the intramuscular lipid milieu. Therefore, we have examined the relationship between PGC-1alpha protein expression and the intramuscular fatty acid accumulation in hindlimb muscles of animals in which the capacity for fatty acid accumulation in muscle is increased (Zucker obese rat) or reduced [FAT/CD36 null (KO) mice]. Rates of palmitate incorporation into triacylglycerols were determined in perfused red (RG) and white gastrocnemius (WG) muscles of lean and obese Zucker rats and in perfused RG and WG muscles of FAT/CD36 KO and wild-type (WT) mice. In obese Zucker rats, the rate of palmitate incorporation into triacylglycerol depots in RG and WG muscles were 28 and 24% greater than in lean rats (P < 0.05). In FAT/CD36 KO mice, the rates of palmitate incorporation into triacylglycerol depots were lower in RG (-50%) and WG muscle (-24%) compared with the respective muscles in WT mice (P < 0.05). In the obese animals, PGC-1alpha protein content was reduced in both RG (-13%) and WG muscles (-15%) (P < 0.05). In FAT/CD36 KO mice, PGC-1alpha protein content was upregulated in both RG (+32%, P < 0.05) and WG muscles (+50%, P < 0.05). In conclusion, from studies in these two animal models, it appears that PGC-1alpha protein expression is inversely related to components of intramuscular lipid metabolism, because 1) PGC-1alpha protein expression is downregulated when triacylglycerol synthesis rates, an index of intramuscular lipid metabolism, are increased, and 2) PGC-1alpha protein expression is upregulated when triacylglycerol synthesis rates are reduced. Therefore, we speculate that the intramuscular lipid sensing may be involved in regulating the protein expression of PGC-1alpha in skeletal muscle.  相似文献   

3.
Fiber type specificity for expression of all three rat skeletal muscle pyruvate dehydrogenase kinase (PDK) isoforms (PDK1, 2, and 4) was determined in fed and 24-h fasted rats. PDK activity and isoform protein and mRNA contents were determined in white gastrocnemius (WG; fast-twitch glycolytic), red gastrocnemius (RG; fast-twitch oxidative), and soleus (Sol; slow-twitch oxidative) muscles. PDK activity was lower in WG compared with oxidative muscles (RG, Sol) in both fed and fasted rats. PDK activities from fed muscles were 0.12 +/- 0.04, 0.30 +/- 0.01, and 0.36 +/- 0.08 min(-1) in WG, Sol, and RG, respectively, and increased in fasted muscles (0.36 +/- 0.09, 0.68 +/- 0.18, and 0.80 +/- 0.14 min(-1)). This correlated with increased PDK4 protein and to a lesser extent with PDK4 mRNA. PDK2 protein was not different between fiber types in fed or fasted rats, but PDK2 mRNA content was twofold greater in RG from fasted rats compared with fed rats. PDK1 was unaltered by fasting in all muscle types at both the protein and mRNA level, but in both fed and fasted rats had much greater protein and mRNA content in the oxidative vs. glycolytic muscles. In conclusion, PDK activity and PDK1 and 4 protein and mRNA were lower in glycolytic vs. oxidative muscles from fed and fasted rats. Fasting for 24 h induced a two- to threefold increase in PDK activity that was mainly due to increases in PDK4 protein and mRNA. PDK1 and 2 protein and mRNA were generally unaltered by fasting in all fiber types, except for increased PDK2 mRNA in the fast oxidative fibers. Because the PDK isoforms vary greatly in their kinetic properties, their relative proportions in the three fiber types at any given time during fasting could significantly alter the acute regulation of the pyruvate dehydrogenase complex.  相似文献   

4.
The rate-limiting enzyme in lipolysis, adipose triglyceride lipase (ATGL), is activated by comparative gene identification-58 (CGI-58) and inhibited by the G(0)/G(1) switch gene-2 (G0S2) protein. It is speculated that inhibition of ATGL is through a dose dependent manner of relative G0S2 protein content. There is little work examining G0S2 expression in lipolytic tissues, and the relative expression across oxidative tissues such as skeletal muscle has not yet been described. Three muscles, soleus (SOL), red gastrocnemius (RG), and white gastrocnemius (WG) were excised from 57-day old male Sprague-Dawley rats (n = 9). QRT-PCR was used for mRNA analysis, and western blotting was conducted to determine protein content. ATGL and G0S2 protein content were both greatest in the lipolytic SOL, with the least amount of both ATGL and G0S2 protein content found in the WG. CGI-58 protein content however did not mirror ATGL and G0S2 protein content, since the RG had the greatest CGI-58 protein content when compared to the SOL and WG. When comparing our tissues based on CGI-58-to-ATGL ratio and G0S2-to-ATGL ratio, it was discovered that contrary to oxidative demand, the glycolytic WG had the greatest activator CGI-58-to-ATGL ratio with the oxidative SOL having the least, and no differences in G0S2-to-ATGL across the three muscle types. These data suggest that the content of G0S2 relative to the lipase in skeletal muscle would not predict lipolytic potential.  相似文献   

5.
The present study examined the geneexpression and cellular localization of the creatine transporter(CreaT) protein in rat skeletal muscle. Soleus (SOL) and red (RG) andwhite gastrocnemius (WG) muscles were analyzed for CreaT mRNA, CreaTprotein, and total creatine (TCr) content. Cellular location of theCreaT protein was visualized with immunohistochemical analysis ofmuscle cross sections. TCr was higher (P  0.05) in WGthan in both RG and SOL, and was higher in RG than in SOL. Total CreaTprotein content was greater (P  0.05) in SOL and RGthan in WG. Two bands (55 and 70 kDa) of the CreaT protein were foundin all muscle types. Both the 55-kDa (CreaT-55) and the 70-kDa(CreaT-70) bands were present in greater (P  0.05)amounts in SOL and RG than in WG. SOL and RG had a greater amount(P  0.05) of CreaT-55 than CreaT-70. Immunohistochemical analysis revealed that the CreaT was mainly associated with the sarcolemmal membrane in all muscle types. CreaTmRNA expression per microgram of total RNA was similar across the threemuscle types. These data indicate that rat SOL and RG have an enhancedpotential to transport Cr compared with WG, despite a higher TCr in the latter.

  相似文献   

6.
Although apoptosis has been demonstrated in soleus during hindlimb suspension (HS), it is not known whether apoptosis is also involved in the loss of muscles dominated by mixed fibers. Therefore, we examined the apoptotic responses in gastrocnemius muscles of young adult and aged Fischer 344 x Brown Norway rats after 14 days of HS. The medial gastrocnemius muscle wet weight significantly decreased by 30 and 32%, and muscle wet weight normalized to the animal body weight decreased by 11 and 15% in young adult and aged animals, respectively, after HS. The extent of apoptotic DNA fragmentation increased by 119 and 61% in suspended muscles from young and aged rats, respectively. Bax mRNA increased by 73% in young muscles after HS. Bax and Bcl-2 protein levels were greater in suspended muscles relative to control muscles in both age groups. The level of cytosolic mitochondria-housed apoptotic factor cytochrome c was significantly increased in the mitochondria-free cytosol of suspended muscles from young and aged rats. In contrast, the release/accumulation of AIF, a caspase-independent apoptogenic factor, was exclusively expressed in the suspended muscles from aged rats. Our data also show that aging favors the proapoptotic signaling in skeletal muscle by altering the contents of Bax, Bcl-2, Apaf-1, AIF, caspases, XIAP, Smac/DIABLO, and cytochrome c. Furthermore, these results indicate that apoptosis occurs not only in slow-twitch soleus muscle but also in the mixed-fiber (predominately fast fibered) gastrocnemius muscle. Our data are consistent with the hypothesis that apoptotic signaling differs in young adult and aged gastrocnemius muscles during HS.  相似文献   

7.
Fiber type specificity of pyruvate dehydrogenase (PDH) phosphatase (PDP) was determined in fed (CON) and 48-h food-deprived (FD) rats. PDP activity and isoform protein content were determined in soleus (slow-twitch oxidative), red gastrocnemius (RG; fast-twitch oxidative glycolytic), and white gastrocnemius (WG; fast-twitch glycolytic) muscles. When normalized for mitochondrial volume, there was no difference in PDP activity between muscle types or CON and FD. When expressed per gram wet tissue weight, PDP activity was higher in RG compared with soleus and WG in both CON and FD rats. PDP activities from CON muscles were 1.48 +/- 0.19, 2.68 +/- 0.65, and 1.20 +/- 0.33 nmol x min(-1) x g wet tissue wt(-1) in soleus, RG, and WG, respectively, and decreased in FD muscles (1.22 +/- 0.22, 2.00 +/- 0.57, and 0.84 +/- 0.18 nmol x min(-1) x g wet tissue wt(-1)). This correlated with increased PDP2 protein, however, only in RG, as PDP2 was not detectable in soleus or WG. PDP1 protein was not responsive to food deprivation in all fiber types. In conclusion, PDP activity and protein content were higher in fast-twitch oxidative glycolytic muscles from CON and FD rats, identifying a unique inter- and intramuscular distribution. FD induced a small but significant decrease in PDP activity that was partially due to decreases in PDP2 protein. As a result, coordinate changes to PDP activity opposite to those of the other regulatory enzyme, PDH kinase, during food deprivation would maximize the inactivation of skeletal muscle PDH and enhance carbohydrate conservation during periods of limited carbohydrate supply.  相似文献   

8.
The hyperemic response in exercising skeletal muscle is dependent on muscle fiber-type composition and fiber recruitment patterns, but the vascular control mechanisms producing exercise hyperemia in skeletal muscle remain poorly understood. The purpose of this study was to test the hypothesis that arterioles from white, low-oxidative skeletal muscle are less responsive to adenosine-induced dilation than are arterioles from diaphragm (Dia) and red, high-oxidative skeletal muscle. Second-order arterioles (2As) were isolated from the white portion of gastrocnemius muscle (WG; low-oxidative, fast-twitch muscle tissue) and two types of high-oxidative skeletal muscle [Dia and red portion of gastrocnemius muscle (RG)] of rats. Results reveal that 2As from all three types of muscle dilated in response to the endothelium-dependent dilator acetylcholine (WG: 48 +/- 3%, Dia: 51 +/- 3%, RG: 74 +/- 3%). In contrast, adenosine dilated only 2As from WG (48 +/- 4%) and Dia (46 +/- 5%) but not those from RG (5 +/- 5%). Thus adenosine-induced dilator responses differed among 2As of these different types of muscle tissue. However, the results do not support our hypothesis because 2As from Dia and WG dilated in response to adenosine, whereas 2As from RG did not. We conclude that the adenosine responsiveness of 2As from rat skeletal muscle cannot be predicted only by the fiber-type composition or oxidative capacity of the skeletal muscle tissue wherein the arteriole lies.  相似文献   

9.
5'-AMP-activated protein kinase (AMPK) signaling initiates adaptive changes in skeletal muscle fibers that restore homeostatic energy balance. The purpose of this investigation was to examine, in rats, the fiber-type protein expression patterns of the alpha-catalytic subunit isoforms in various skeletal muscles, and changes in their respective contents within the tibialis anterior (TA) after chronic low-frequency electrical stimulation (CLFS; 10 Hz, 10 h daily), applied for 4 +/- 1.2 or 25 +/- 4.8 days. Immunocytochemical staining of soleus (SOL) and medial gastrocnemius (MG) showed that 86 +/- 4.1 to 97 +/- 1.4% of type IIA fibers stained for both the alpha1- and alpha2-isoforms progressively decreased to 63 +/- 12.2% of type IID/X and 9 +/- 2.4% of IIB fibers. 39 +/- 11.4% of IID/X and 83 +/- 7.9% of IIB fibers expressed only the alpha2 isoform in the MG, much of which was localized within nuclei. alpha1 and alpha2 contents, assessed by immunoblot, were lowest in the white gastrocnemius [WG; 80% myosin heavy chain (MHC) IIb; 20% MHCIId/x]. Compared with the WG, alpha1 content was 1.6 +/- 0.08 (P < 0.001) and 1.8 +/- 0.04 (P < 0.0001)-fold greater in the red gastrocnemius (RG: 13%, MHCIIa) and SOL (21%, MHCIIa), respectively, and increased in proportion to MHCIIa content. Similarly, alpha2 content was 1.4 +/- 0.10 (P < 0.02) and 1.5 +/- 0.07 (P < 0.001)-fold greater in RG and SOL compared with WG. CLFS induced 1.43 +/- 0.13 (P < 0.007) and 1.33 +/- 0.08 (P < 0.009)-fold increases in the alpha1 and alpha2 contents of the TA and coincided with the transition of faster type IIB and IID/X fibers toward IIA fibers. These findings indicate that fiber types differ with regard to their capacity for AMPK signaling and that this potential is increased by CLFS.  相似文献   

10.
11.
We investigated the hypothesis that muscles of different oxidative potential would display differences in sarcoplasmic reticulum (SR) Ca2+ handling responses to repetitive contractile activity and recovery. Repetitive activity was induced in two muscles of high oxidative potential, namely, soleus (SOL) and red gastrocnemius (RG), and in white gastrocnemius (WG), a muscle of low oxidative potential, by stimulation in adult male rats. Measurements of SR properties, performed in crude homogenates, were made on control and stimulated muscles at the start of recovery (R0) and at 25 min of recovery (R25). Maximal Ca2+-ATPase activity (Vmax, micromol x g protein(-1) x min(-1)) at R0 was lower in stimulated SOL (105 +/- 9 vs. 135 +/- 7) and RG (269 +/- 22 vs. 317 +/- 26) and higher (P < 0.05) in WG (795 +/- 32 vs. 708 +/- 34). At R25, Vmax remained lower (P < 0.05) in SOL and RG but recovered in WG. Ca2+ uptake, measured at 2,000 nM, was depressed (P < 0.05) in SOL and RG by 34 and 13%, respectively, in stimulated muscles at R0 and remained depressed (P < 0.05) at R25. In contrast, Ca2+ uptake was elevated (P < 0.05) in stimulated WG at R0 by 9% and remained elevated (P < 0.05) at R25. Ca2+ release, unaltered in SOL and RG at both R0 and R25, was increased (P < 0.05) in stimulated WG at both R0 and R25. We conclude that SR Ca2+-handling responses to repetitive contractile activity and recovery are related to the oxidative potential of muscle.  相似文献   

12.
We investigated the role of AMPKalpha2in basal, exercise training-, and AICAR-induced protein expression of GLUT4, hexokinase II (HKII), mitochondrial markers, and AMPK subunits. This was conducted in red (RG) and white gastrocnemius (WG) muscle from wild-type (WT) and alpha2-knockout (KO) mice after 28 days of activity wheel running or daily AICAR injection. Additional experiments were conducted to measure acute activation of AMPK by exercise and AICAR. At basal, mitochondrial markers were reduced by approximately 20% in alpha2-KO muscles compared with WT. In both muscle types, AMPKalpha2 activity was increased in response to both stimuli, whereas AMPKalpha1 activity was increased only in response to exercise. Furthermore, AMPK signaling was estimated to be 60-70% lower in alpha2-KO compared with WT muscles. In WG, AICAR treatment increased HKII, GLUT4, cytochrome c, COX-1, and CS, and the alpha2-KO abolished the AICAR-induced increases, whereas no AICAR responses were observed in RG. Exercise training increased GLUT4, HKII, COX-1, CS, and HAD protein in WG, but the alpha2-KO did not affect training-induced increases. Furthermore, AMPKalpha1, -alpha2, -beta1, -beta2, and -gamma3 subunits were reduced in RG, but not in WG, by 30-60% in response to exercise training. In conclusion, the alpha2-KO was associated with an approximately 20% reduction in mitochondrial markers in both muscle types and abolished AICAR-induced increases in protein expression in WG. However, the alpha2-KO did not reduce training-induced increases in HKII, GLUT4, COX-1, HAD, or CS protein in WG, suggesting that AMPKalpha2 may not be essential for metabolic adaptations of skeletal muscles to exercise training.  相似文献   

13.
The sympathetic nervous system has greater influence on vascular resistance in low-oxidative, fast-twitch skeletal muscle than in high-oxidative skeletal muscle (17). The purpose of this study was to test the hypothesis that arterioles isolated from low-oxidative, fast-twitch skeletal muscle [the white portion of gastrocnemius (WG)] possess greater responsiveness to adrenergic constriction than arterioles isolated from high-oxidative skeletal muscle [red portion of the gastrocnemius muscle (RG) and diaphragm (Dia)]. Second-order arterioles (2As) were isolated from WG, RG, and Dia of rats and reactivity examined in vitro. Results reveal that Dia 2As constrict less to norepinephrine (NE) (10(-9) to 10 (-4) M) than 2As from RG and WG, which exhibited similar NE-induced constrictions. This difference was not endothelium dependent, because responses of denuded 2As were similar to those of intact arterioles. The blunted NE-induced constrictor response of Dia 2As appears to be the result of differences in alpha1-receptor effects because 1) arterioles from Dia also responded less to selective alpha1-receptor stimulation with phenylephrine than RG and WG arterioles; 2) arterioles from Dia, RG, and WG dilated similarly to isoproterenol (10(-9) to 10(-4) M) and did not respond to selective alpha2-receptor stimulation with UK-14304; and 3) endothelin-1 produced similar constriction in 2As from Dia, RG, and WG. We conclude that differences in oxidative capacity and/or fiber type composition of muscle tissue do not explain different NE responsiveness of Dia 2As compared with 2As from gastrocnemius muscle. Differences in alpha1-adrenergic constrictor responsiveness among arterioles in skeletal muscle may contribute to nonuniform muscle blood flow responses observed during exercise and serve to maintain blood flow to Dia during exercise-induced increases in sympathetic nerve activity.  相似文献   

14.
Mitochondrial dysfunction is implicated in a number of skeletal muscle pathologies, most notably aging-induced atrophy and loss of type II myofibers. Although oxygen-derived free radicals are thought to be a primary cause of mitochondrial dysfunction, the underlying factors governing mitochondrial superoxide production in different skeletal myofiber types is unknown. Using a novel in situ approach to measure H2O2 production (indicator of superoxide formation) in permeabilized rat skeletal muscle fiber bundles, we found that mitochondrial free radical leak (H2O2 produced/O2 consumed) is two- to threefold higher (P < 0.05) in white (WG, primarily type IIB fibers) than in red (RG, type IIA) gastrocnemius or soleus (type I) myofibers during basal respiration supported by complex I (pyruvate + malate) or complex II (succinate) substrates. In the presence of respiratory inhibitors, maximal rates of superoxide produced at both complex I and complex III are markedly higher in RG and WG than in soleus muscle despite 50% less mitochondrial content in WG myofibers. Duplicate experiments conducted with ±exogenous superoxide dismutase revealed striking differences in the topology and/or dismutation of superoxide in WG vs. soleus and RG muscle. When normalized for mitochondrial content, overall H2O2 scavenging capacity is lower in RG and WG fibers, whereas glutathione peroxidase activity, which is largely responsible for H2O2 removal in mitochondria, is similar in all three muscle types. These findings suggest that type II myofibers, particularly type IIB, possess unique properties that potentiate mitochondrial superoxide production and/or release, providing a potential mechanism for the heterogeneous development of mitochondrial dysfunction in skeletal muscle. superoxide; reactive oxygen species; skeletal muscle; respiration; fiber type  相似文献   

15.
16.
Carnitine palmitoyltransferase I (CPT I), which is expressed as two distinct isoforms in liver (alpha) and muscle (beta), catalyzes the rate-limiting step in the transport of fatty acid into the mitochondria. Malonyl-CoA, a potent inhibitor of CPT I, is considered a key regulator of fatty acid oxidation in both tissues. Still unanswered is how muscle beta-oxidation proceeds despite malonyl-CoA concentrations that exceed the IC(50) for CPT Ibeta. We evaluated malonyl-CoA-suppressible [(14)C]palmitate oxidation and CPT I activity in homogenates of red (RG) and white (WG) gastrocnemius, soleus (SOL), and extensor digitorum longus (EDL) muscles. Adding 10 microM malonyl-CoA inhibited palmitate oxidation by 29, 39, 60, and 89% in RG, SOL, EDL, and WG, respectively. Thus malonyl-CoA resistance, which correlated strongly (0.678) with absolute oxidation rates (RG > SOL > EDL > WG), was greater in red than in white muscles. Similarly, malonyl-CoA-resistant palmitate oxidation and CPT I activity were greater in mitochondria from RG compared with WG. Ribonuclease protection assays were performed to evaluate whether our data might be explained by differential expression of CPT I splice variants. We detected the presence of two CPT Ibeta splice variants that were more abundant in red compared with white muscle, but the relative expression of the two mRNA species was unrelated to malonyl-CoA resistance. These results provide evidence of a malonyl-CoA-insensitive CPT I activity in red muscle, suggesting fiber type-specific expression of distinct CPT I isoforms and/or posttranslational modulations that have yet to be elucidated.  相似文献   

17.
The purpose of this study was to investigate the hypothesis that muscle Na+-K+-ATPase activity is directly related to Na+-K+-ATPase content and the content of the alpha2-catalytic isoform in muscles of different fiber-type composition. To investigate this hypothesis, tissue was sampled from soleus (Sol), red gastrocnemius (RG), white gastrocnemius (WG), and extensor digitorum longus (EDL) muscles at rest from 38 male Wistar rats weighing 413 +/- 6.0 g (mean +/- SE). Na+-K+-ATPase activity was determined in homogenates (Hom) and isolated crude membranes (CM) by the regenerating ouabain-inhibitable hydrolytic activity assay (ATPase) and the 3-O-methylfluorescein K+-stimulated phosphatase (3-O-MFPase) assay in vitro. In addition, Na+-K+-ATPase content (Bmax) and the distribution of alpha1-, alpha2-, beta1-, and beta2-isoforms were determined by [3H]ouabain binding and Western blot, respectively. For the ATPase assay, differences (P < 0.05) in enzyme activity between muscles were observed in Hom (EDL > WG) and in CM (Sol > EDL = WG). For the 3-O-MFPase assay, differences (P < 0.05) were also found for Hom (Sol > RG = EDL > WG) and CM (Sol = WG > RG). For Bmax, differences in the order of RG = EDL > Sol = WG (P < 0.05) were observed. Isoform distribution was similar between Hom and CM and indicated in CM, a greater density (P < 0.05) of alpha1 in Sol than WG and EDL (P < 0.05), but more equal distribution of alpha2 between muscles. The beta1 was greater (P < 0.05) in Sol and RG, and the beta2 was greater in EDL and WG (P < 0.05). Over all muscles, the correlation (r) between Hom 3-O-MFPase and Bmax was 0.45 (P < 0.05) and between Hom alpha2 and Bmax, 0.59 (P < 0.05). The alpha1 distribution correlated to Hom 3-O-MFPase (r = 0.79, P < 0.05) CM ATPase (r = 0.69, P < 0.005) and CM 3-O-MFPase activity (r = 0.32, P < 0.05). The alpha2 distribution was not correlated with any of the Na+-K+-ATPase activity measurements. The results indicate generally poor relationships between activity and total pump content and alpha2 isoform content of the Na+-K+-ATPase. Several factors, including the type of preparation and the type of assay, appear important in this regard.  相似文献   

18.
The mechanisms of apoptosis in the loss of myocytes in skeletal muscle with age and the role of mitochondrial and sarcoplasmic reticulum-mediated pathways of apoptosis are unknown. Moreover, it is unknown whether lifelong calorie restriction prevents apoptosis in skeletal muscle and reverses age-related alterations in apoptosis signaling. We investigated key apoptotic regulatory proteins in the gastrocnemius muscle of 12 and 26 month old ad libitum fed and 26 month old calorie-restricted male Fischer-344 rats. We found that apoptosis increased with age and that calorie-restricted rats showed less apoptosis compared with their age-matched cohorts. Moreover, pro- and cleaved caspase-3 levels increased significantly with age and calorie-restricted rats had significantly lower levels than the aged ad libitum group. Neither age nor calorie restriction had any effect on muscle caspase-3 enzyme activity, but the levels of X-linked inhibitor of apoptosis, particularly an inhibitor of caspase-3, increased with age and were reduced significantly in the 26 month old calorie-restricted cohort. The apoptotic inhibitor apoptosis repressor with a caspase recruitment domain (ARC), which inhibits cytochrome c release, underwent an age-associated decline in the cytosol but increased with calorie restriction. In contrast, mitochondrial ARC levels increased with age and were lower in calorie-restricted rats than in age-matched controls, suggesting a translocation of this protein to attenuate oxidative stress. The translocation of ARC may explain the reduction in cytosolic cytochrome c levels observed with age and calorie restriction. Moreover, we found a striking approximately 350% increase in the expression of procaspase-12 (caspase located at the sarcoplasmic reticulum) with age which was significantly lower in the 26 month old calorie-restricted group. The total protein level of apoptosis-inducing factor in the plantaris muscle increased with age and was reduced calorie-restricted rats compared with age-matched controls, but there were no significant changes in this pro-apoptotic protein in the isolated nuclei. Calorie restriction is able to lower the apoptotic potential in aged skeletal muscle by altering several key apoptotic proteins toward cellular survival, thereby reducing the potential for sarcopenia.  相似文献   

19.
The purpose of this study was to test the hypothesis that interval sprint training (IST) selectively increases endothelium-dependent dilation (EDD) and endothelial nitric oxide synthase and/or superoxide dismutase-1 protein content in arteries and/or arterioles that perfuse the white portion of rat gastrocnemius muscle (WG). Male Sprague-Dawley rats completed 10 wk of IST (n = 62) or remained sedentary (Sed) (n = 63). IST rats performed six 2.5-min exercise bouts, with 4.5 min of rest between bouts (60 m/min, 15% incline), 5 days/wk. EDD was assessed from acetylcholine (ACh)-induced increases in muscle blood flow measured in situ and by ACh-induced dilation of arteries and arterioles [first to third order (1A-3A)] that perfuse red gastrocnemius muscle (RG) and WG. Artery protein content was determined with immunoblot analysis. ACh-induced increases in blood flow were enhanced in WG of IST rats. eNOS content was increased in conduit arteries, gastrocnemius feed artery, and fourth-order arterioles from WG and fifth-order arterioles of RG but not in 2As from RG. EDD was examined in 2As and 3As from a subset of IST and Sed rats. Arterioles were canulated with micropipettes, and intraluminal pressure was set at 60 cmH2O. Results indicate that passive diameter (measured in 0 calcium PSS) of WG 2As was similar in IST and Sed, whereas diameter of WG 3As was greater in IST (96 +/- 8 microm) than Sed (73 +/- 4 microm). WG 2As and 3As of IST rats exhibited greater spontaneous tone, but sensitivity to stretch, phenylephrine, and sodium nitroprusside was similar to Sed arterioles. ACh-induced dilation was enhanced by IST in WG 2As but not in RG 2As or WG 3As. We conclude that IST induces vascular adaptations nonuniformly among arteries that perfuse WG muscle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号