首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cytochrome b6f (cytb6f) complex plays a central role in photosynthesis, coupling electron transport between photosystem II (PSII) and photosystem I to the generation of a transmembrane proton gradient used for the biosynthesis of ATP. Photosynthesis relies on rapid shuttling of electrons by plastoquinone (PQ) molecules between PSII and cytb6f complexes in the lipid phase of the thylakoid membrane. Thus, the relative membrane location of these complexes is crucial, yet remains unknown. Here, we exploit the selective binding of the electron transfer protein plastocyanin (Pc) to the lumenal membrane surface of the cytb6f complex using a Pc-functionalized atomic force microscope (AFM) probe to identify the position of cytb6f complexes in grana thylakoid membranes from spinach (Spinacia oleracea). This affinity-mapping AFM method directly correlates membrane surface topography with Pc-cytb6f interactions, allowing us to construct a map of the grana thylakoid membrane that reveals nanodomains of colocalized PSII and cytb6f complexes. We suggest that the close proximity between PSII and cytb6f complexes integrates solar energy conversion and electron transfer by fostering short-range diffusion of PQ in the protein-crowded thylakoid membrane, thereby optimizing photosynthetic efficiency.  相似文献   

2.
Photosynthetic organisms have the ability to adapt to changes in light quality by readjusting the cross sections of the light-harvesting systems of photosystem II (PSII) and photosystem I (PSI). This process, called state transitions, maintains the redox poise of the photosynthetic electron transfer chain and ensures a high photosynthetic yield when light is limiting. It is mediated by the Stt7/STN7 protein kinase, which is activated through the cytochrome b6f complex upon reduction of the plastoquinone pool. Its probable major substrate, the light-harvesting complex of PSII, once phosphorylated, dissociates from PSII and docks to PSI, thereby restoring the balance of absorbed light excitation energy between the two photosystems. Although the kinase is known to be inactivated under high-light intensities, the molecular mechanisms governing its regulation remain unknown. In this study we monitored the redox state of a conserved and essential Cys pair of the Stt7/STN7 kinase and show that it forms a disulfide bridge. We could not detect any change in the redox state of these Cys during state transitions and high-light treatment. It is only after prolonged anaerobiosis that this disulfide bridge is reduced. It is likely to be mainly intramolecular, although kinase activation may involve a transient covalently linked kinase dimer with two intermolecular disulfide bonds. Using the yeast two-hybrid system, we have mapped one interaction site of the kinase on the Rieske protein of the cytochrome b6f complex.Photosynthetic organisms are subjected to constant changes in light quality and quantity and need to adapt to these changes in order to optimize, on the one hand, their photosynthetic yield, and to minimize photo-oxidative damage on the other. The photosynthetic electron transfer chain consists of photosystem II (PSII), the plastoquinone (PQ) pool, the cytochrome b6f complex (Cyt b6f), plastocyanin, and photosystem I (PSI). All of these complexes and components are integrated or closely associated with the thylakoid membrane. The two antenna systems of PSII and PSI capture and direct the light excitation energy to the corresponding reaction centers in which a chlorophyll dimer is oxidized and charge separation occurs across the thylakoid membrane. These processes lead to the onset of electron flow from water on the donor side of PSII to ferredoxin on the acceptor side of PSI coupled with proton translocation across the thylakoid membrane. In order to sustain optimal electron flow along this electron transfer chain, the redox poise needs to be maintained under changing environmental conditions. Several mechanisms have evolved for the maintenance of this redox balance. In the case of over-reduction of the acceptor side of PSI, excess electrons can reduce molecular oxygen through the Mehler reaction to superoxide, which is then converted to hydrogen peroxide by a plastid superoxide dismutase and ultimately to water by a peroxidase (Asada, 2000). Over-reduction of the PQ pool can be alleviated by PTOX, the plastid terminal oxidase responsible for oxidizing PQH2 to form hydrogen peroxide, which is subsequently converted to water (Carol et al., 1999; Cournac et al., 2000; Wu et al., 1999).In addition to these electron sinks that prevent the over-reduction of the electron transfer chain, the photosynthetic apparatus is able to maintain the redox poise of the PQ pool by readjusting the relative cross sections of the light harvesting systems of PSII and PSI upon unequal excitation of the two photosystems. This readjustment can occur both in the short term through state transitions and in the long term by changing the stoichiometry between PSII and PSI (Bonaventura and Myers, 1969; Murata, 1969; Pfannschmidt, 2003). State transitions occur because of perturbations of the redox state of the PQ pool due to unequal excitation of PSII and PSI, limitations in electron acceptors downstream of PSI, and/or in CO2 availability. Excess excitation of PSII relative to PSI leads to reduction of the PQ pool and thus favors the docking of PQH2 to the Qo site of the Cyt b6f complex. This process activates the Stt7/STN7 protein kinase (Vener et al., 1997; Zito et al., 1999), which is closely associated with this complex and leads to the phosphorylation of some LHCII proteins and to their detachment from PSII and binding to PSI (Depège et al., 2003; Lemeille et al., 2009). Although both Lhcb1 and Lhcb2 are phosphorylated, only the phosphorylated form of Lhcb2 is associated with PSI whereas phosphorylated Lhcb1 is excluded from this complex (Longoni et al., 2015). This state corresponds to state 2. In this way the change in the relative antenna sizes of the two photosystems restores the redox poise of the PQ pool. The process is reversible as over-excitation of PSI relative to PSII leads to the oxidation of the PQ pool and to the inactivation of the kinase. Under these conditions, phosphorylated LHCII associated with PSI is dephosphorylated by the PPH1/TAP38 phosphatase (Pribil et al., 2010; Shapiguzov et al., 2010) and returns to PSII (state 1). It should be noted, however, that a strict causal link between LHCII phosphorylation and its migration from PSII to PSI has been questioned recently by the finding that some phosphorylated LHCII remains associated with PSII supercomplexes and that LHCII serves as antenna for both photosystems under most natural light conditions (Drop et al., 2014; Wientjes et al., 2013).State transitions are important at low light but do not occur under high light because the LHCII kinase is inactivated under these conditions (Schuster et al., 1986). It was proposed that inactivation of the kinase is mediated by the ferredoxin-thioredoxin system and that a disulfide bond in the kinase rather than in the substrate may be the target site of thioredoxin (Rintamäki et al., 1997, 2000). Analysis of the Stt7/STN7 protein sequences indeed reveals the presence of two conserved Cys residues close to the N-terminal end of this kinase, which are conserved in all species examined and both are essential for kinase activity although they are located outside of the kinase catalytic domain (Fig. 1) (Depège et al., 2003; Lemeille et al., 2009). Based on protease protection studies, this model of the Stt7/STN7 kinase proposes that the N-terminal end of the kinase is on the lumen side of the thylakoid membrane separated from the catalytic domain on the stromal side by an unusual transmembrane domain containing several Pro residues (Lemeille et al., 2009). This configuration of the kinase allows its catalytic domain to act on the substrate sites of the LHCII proteins, which are exposed to the stroma. Although in this model the conserved Cys residues in the lumen are on the opposite side from the stromal thioredoxins, it is possible that thiol-reducing equivalents are transferred across the thylakoid membrane through the CcdA and Hcf164 proteins, which have been shown to operate in this way during heme and Cyt b6f assembly (Lennartz et al., 2001; Page et al., 2004) or through the LTO1 protein (Du et al., 2015; Karamoko et al., 2011).Figure 1.Conserved Cys in the Stt7/STN7 kinase. Alignment of the sequences of the Stt7/STN protein kinase from Selaginella moelendorffii (Sm), Physcomitrella patens (Pp), Oryza sativa (Os), Populus trichocarpa (Pt), Arabidopsis thaliana (At), Chlamydomonas reinhardtii ...Here we have examined the redox state of the Stt7/STN7 kinase during state transitions and after illumination with high light to test the proposed model. We find that the Stt7/STN7 kinase contains a disulfide bridge that appears to be intramolecular and maintained not only during state transitions but also in high light when the kinase is inactive. Although these results suggest at first sight that the disulfide bridge of Stt7/STN7 is maintained during its activation and inactivation, we propose that a transient opening of this bridge occurs during the activation process followed by the formation of an intermolecular disulfide bridge and the appearance of a short-lived, covalently linked kinase dimer.  相似文献   

3.
The biogenesis and assembly of photosynthetic multisubunit protein complexes is assisted by a series of nucleus-encoded auxiliary protein factors. In this study, we characterize the dac mutant of Arabidopsis (Arabidopsis thaliana), which shows a severe defect in the accumulation of the cytochrome b6/f complex, and provide evidence suggesting that the efficiency of cytochrome b6/f complex assembly is affected in the mutant. DAC is a thylakoid membrane protein with two predicted transmembrane domains that is conserved from cyanobacteria to vascular plants. Yeast (Saccharomyces cerevisiae) two-hybrid and coimmunoprecipitation analyses revealed a specific interaction between DAC and PetD, a subunit of the cytochrome b6/f complex. However, DAC was found not to be an intrinsic component of the cytochrome b6/f complex. In vivo chloroplast protein labeling experiments showed that the labeling rates of the PetD and cytochrome f proteins were greatly reduced, whereas that of the cytochrome b6 protein remained normal in the dac mutant. DAC appears to be a novel factor involved in the assembly/stabilization of the cytochrome b6/f complex, possibly through interaction with the PetD protein.The cytochrome b6/f (Cyt b6/f) complex is a multisubunit complex that resides in the thylakoid membrane and functions in linear and cyclic electron transport. In the linear process, the complex receives electrons from PSII and transfers them to PSI, a process that is accompanied by the generation of a proton gradient, which is essential for ATP synthesis (Mitchell, 1961; Saraste, 1999). The native form of this complex is present as a dimer with a mass of 310 kD that can be converted into a 140-kD monomer with increasing detergent concentrations (Huang et al., 1994; Breyton et al., 1997; Mosser et al., 1997; Baniulis et al., 2009). In higher plants, the Cyt b6/f monomer contains at least eight subunits: Cyt f, Cyt b6, PetC, PetD, PetM, PetL, PetG, and PetN (Wollman, 2004). PetC and PetM are encoded by nuclear genes, whereas the others are encoded by plastid genes. It has been shown that PetG and PetN are necessary for complex stability in tobacco (Nicotiana tabacum; Schwenkert et al., 2007). By contrast, PetL is not required for the accumulation of other subunits of the Cyt b6/f complex, even though it is involved in the stability and formation of the functional dimer (Bendall et al., 1986; Schwenkert et al., 2007). Inactivation of PetC in Arabidopsis (Arabidopsis thaliana) resulted in significantly reduced amounts of Cyt b6/f subunits and completely blocked linear electron transport, indicating that PetC participates in the formation of the functionally assembled Cyt b6/f complex (Maiwald et al., 2003). In Synechocystis sp. PCC 6803, the PetM subunit has no essential role in Cyt b6/f complex electron transfer or accumulation; however, the absence of this subunit apparently affects the levels of other protein complexes involved in energy transduction (Schneider et al., 2001). In addition to the other proteins, FNR was identified as a subunit of the Cyt b6/f complex isolated from spinach (Spinacia oleracea) thylakoid membranes (Zhang et al., 2001).Previous research has revealed how the Cyt b6/f complex assembles into a functional dimer (Bendall et al., 1986; Lemaire et al., 1986; Kuras and Wollman, 1994). In the Cyt b6/f complex, Cyt b6 and PetD form a mildly protease-resistant subcomplex that serves as a template for the assembly of Cyt f and PetG, producing a protease-resistant cytochrome moiety (Wollman, 2004). The PetC and PetL proteins then participate in the assembly of the functional dimer (Schwenkert et al., 2007). PetD becomes more unstable in the absence of Cyt b6, and the synthesis of Cyt f is greatly reduced when either Cyt b6 or PetD is inactivated, indicating that both Cyt b6 and PetD are prerequisite for the synthesis of Cyt f (Kuras and Wollman, 1994). The reduced synthesis of Cyt f can be explained by the so-called CES (for controlled by epistasy of synthesis) mechanism. It is suggested that, in this mechanism, the synthesis rate of some chloroplast-encoded subunits of photosynthetic protein complexes is regulated by the availability of their assembly partners from the same complexes (Choquet et al., 2001). The mechanism of CES for Cyt f has been studied in detail in Chlamydomonas reinhardtii (Choquet et al., 1998; Choquet and Vallon, 2000). In it, the unassembled Cyt f inhibits its own translation through a negative feedback mechanism, and MCA1 and TCA1 have been demonstrated to be involved in the regulation of Cyt f synthesis (Boulouis et al., 2011).Many studies have focused on understanding the conversion of apocytochrome to holocytochrome via the covalent binding of heme in Cyt f and Cyt b6 during the assembly of Cyt b6/f through the CCS and CCB pathways (Nakamoto et al., 2000; Wollman, 2004; de Vitry, 2011). The CCS pathway was originally discovered in the green alga C. reinhardtii through genetic studies of ccs mutants (for cytochrome c synthesis) that display a specific defect in membrane-bound Cyt f and soluble Cyt c6, two thylakoid lumen-resident c-type cytochromes functioning in photosynthesis (Xie and Merchant, 1998). In the CCS pathway, six loci that include plastid ccsA and nuclear CCS1 to CCS5 have been found in C. reinhardtii (Xie and Merchant, 1998). In these mutants, the apocytochrome is normally synthesized, targeted, and processed, but heme attachment is perturbed. The CCB pathway is involved in the covalent attachment of heme c(i) to Cyt b6 on the stromal side of the thylakoid membranes (Kuras et al., 2007). The ccb mutants show defects in the accumulation of subunits of the Cyt b6/f complex and covalent binding of heme to Cyt b6 (Lyska et al., 2007; Lezhneva et al., 2008). However, heme binding is not a prerequisite for the assembly of Cyt b6 into the Cyt b6/f complex, although the fully formed Cyt b6/f showed an increased sensitivity to protease (Saint-Marcoux et al., 2009).The assembly of the Cyt b6/f complex is a multistep process, and current studies have shown that the covalent binding of heme to Cyt f and Cyt b6 is highly regulated. Thus, it is reasonable to speculate that, similar to the other photosynthetic protein complexes (Mulo et al., 2008; Nixon et al., 2010; Rochaix, 2011), the assembly of the Cyt b6/f complex is also assisted by many nucleus-encoded factors. In this study, we characterized an Arabidopsis protein, DAC (for defective accumulation of Cyt b6/f complex), that seems to be involved in the assembly of the Cyt b6/f complex. In addition, we provide evidence that DAC interacts directly with PetD before it assembles within the Cyt b6/f complex.  相似文献   

4.
Photosystem I (PSI) is a reaction center associated with oxygenic photosynthesis. Unlike the monomeric reaction centers in green and purple bacteria, PSI forms trimeric complexes in most cyanobacteria with a 3-fold rotational symmetry that is primarily stabilized via adjacent PsaL subunits; however, in plants/algae, PSI is monomeric. In this study, we discovered a tetrameric form of PSI in the thermophilic cyanobacterium Chroococcidiopsis sp TS-821 (TS-821). In TS-821, PSI forms tetrameric and dimeric species. We investigated these species by Blue Native PAGE, Suc density gradient centrifugation, 77K fluorescence, circular dichroism, and single-particle analysis. Transmission electron microscopy analysis of native membranes confirms the presence of the tetrameric PSI structure prior to detergent solubilization. To investigate why TS-821 forms tetramers instead of trimers, we cloned and analyzed its psaL gene. Interestingly, this gene product contains a short insert between the second and third predicted transmembrane helices. Phylogenetic analysis based on PsaL protein sequences shows that TS-821 is closely related to heterocyst-forming cyanobacteria, some of which also have a tetrameric form of PSI. These results are discussed in light of chloroplast evolution, and we propose that PSI evolved stepwise from a trimeric form to tetrameric oligomer en route to becoming monomeric in plants/algae.  相似文献   

5.
6.
During oxygenic photosynthesis, metabolic reactions of CO2 fixation require more ATP than is supplied by the linear electron flow operating from photosystem II to photosystem I (PSI). Different mechanisms, such as cyclic electron flow (CEF) around PSI, have been proposed to participate in reequilibrating the ATP/NADPH balance. To determine the contribution of CEF to microalgal biomass productivity, here, we studied photosynthesis and growth performances of a knockout Chlamydomonas reinhardtii mutant (pgrl1) deficient in PROTON GRADIENT REGULATION LIKE1 (PGRL1)–mediated CEF. Steady state biomass productivity of the pgrl1 mutant, measured in photobioreactors operated as turbidostats, was similar to its wild-type progenitor under a wide range of illumination and CO2 concentrations. Several changes were observed in pgrl1, including higher sensitivity of photosynthesis to mitochondrial inhibitors, increased light-dependent O2 uptake, and increased amounts of flavodiiron (FLV) proteins. We conclude that a combination of mitochondrial cooperation and oxygen photoreduction downstream of PSI (Mehler reactions) supplies extra ATP for photosynthesis in the pgrl1 mutant, resulting in normal biomass productivity under steady state conditions. The lower biomass productivity observed in the pgrl1 mutant in fluctuating light is attributed to an inability of compensation mechanisms to respond to a rapid increase in ATP demand.  相似文献   

7.
A method is presented for rapid extraction of the total plastoquinone (PQ) pool from Synechocystis sp. strain PCC 6803 cells that preserves the in vivo plastoquinol (PQH2) to -PQ ratio. Cells were rapidly transferred into ice-cold organic solvent for instantaneous extraction of the cellular PQ plus PQH2 content. After high-performance liquid chromatography fractionation of the organic phase extract, the PQH2 content was quantitatively determined via its fluorescence emission at 330 nm. The in-cell PQH2-PQ ratio then followed from comparison of the PQH2 signal in samples as collected and in an identical sample after complete reduction with sodium borohydride. Prior to PQH2 extraction, cells from steady-state chemostat cultures were exposed to a wide range of physiological conditions, including high/low availability of inorganic carbon, and various actinic illumination conditions. Well-characterized electron-transfer inhibitors were used to generate a reduced or an oxidized PQ pool for reference. The in vivo redox state of the PQ pool was correlated with the results of pulse-amplitude modulation-based chlorophyll a fluorescence emission measurements, oxygen exchange rates, and 77 K fluorescence emission spectra. Our results show that the redox state of the PQ pool of Synechocystis sp. strain PCC 6803 is subject to strict homeostatic control (i.e. regulated between narrow limits), in contrast to the more dynamic chlorophyll a fluorescence signal.The photosynthetic apparatus of oxygenic phototrophs consists of two types of photosynthetic reaction centers: PSII and PSI. Both photosystems are connected in series, with electrons flowing from PSII toward PSI through an intermediate electron transfer chain, which comprises the so-called plastoquinone (PQ) pool, plastocyanin and/or cytochrome c553, and the cytochrome b6f complex. The redox potential of the PQ pool is clamped by the relative rates of electron release into and uptake from this pool. Within the PSII complex, electrons are extracted from water at the lumenal side of the thylakoid membrane and transferred to the primary accepting quinone (QA) at the stromal side. The electron is subsequently transferred to a PQ molecule in the secondary accepting quinone (QB) of PSII. The intermediate QB semiquinone, which is formed accordingly, is stable in the QB site for several seconds (Diner et al., 1991; Mitchell, 1993) and subsequently can be reduced to plastoquinol (PQH2). The midpoint potential of QA reduction is approximately −100 mV (Krieger-Liszkay and Rutherford, 1998; Allakhverdiev et al., 2011), whereas the corresponding midpoint potential of the QB semiquinone is close to zero (Nicholls and Ferguson, 2013). PQH2 equilibrates with the PQ pool in the thylakoid membranes, which has a size that is approximately 1 order of magnitude larger than the number of PSII reaction centers (Melis and Brown, 1980; Aoki and Katoh, 1983).PQ is a lipophilic, membrane-bound electron carrier, with a midpoint potential of +80 mV (Okayama, 1976), that can accept two electrons and two protons to form PQH2 (Rich and Bendall, 1980). PQH2 can donate both electrons to the cytochrome b6f complex, one to low-potential cytochrome b6, by which reduced high-potential cytochrome b6 is formed, and one to the cytochrome f moiety on the lumenal side of the thylakoid membrane, where the two protons are released. High-potential cytochrome b6 then donates an electron back to PQ on the stromal side of the membrane, rendering a semiquinone in the PQ-binding pocket on the cytoplasmic face of the b6f complex ready as an acceptor of another electron from PSII, and reduced cytochrome f feeds an electron to a water-soluble electron carrier (i.e. either plastocyanin or cytochrome c553) for subsequent transfer to the reaction center of PSI or to cytochrome c oxidase, respectively (Rich et al., 1991; Geerts et al., 1994; Schubert et al., 1995; Paumann et al., 2004; Mulkidjanian, 2010).Electron transfer through the cytochrome b6f complex proceeds according to the Q-cycle mechanism (Rich et al., 1991). As a result, maximally two protons from the stroma are released into the lumen per electron transferred. This electrochemical proton gradient can be used for the synthesis of ATP by the ATP synthase complex (Walker, 1998). In PSI, another transthylakoid membrane charge separation process is energized by light. Electron transfer within the PSI complex involves iron-sulfur clusters and quinones and leads to the reduction of ferredoxin, the reduced form of which serves as the electron donor for NADPH by the ferredoxin:NADP+ oxidoreductase enzyme (van Thor et al., 1999). The ATP and NADPH generated this way are used for CO2 fixation in a mutual stoichiometry that is close to the stoichiometry at which these two energy-rich compounds are formed at the thylakoid membrane. Normally, this ratio is ATP:NADPH = 3:2 (Behrenfeld et al., 2008).Photosynthetic and respiratory electron transport in cyanobacteria share a single PQ pool (Aoki and Katoh, 1983; Aoki et al., 1983; Matthijs et al., 1984; Scherer, 1990). Respiratory electron transfer provides cells the ability to form ATP in the dark, but this ability is not limited to those conditions. Transfer of electrons into the PQ pool is the result of the joint activity of PSII, respiratory dehydrogenases [in particular those specific for NAD(P)H and succinate], and cyclic electron transport around PSI (Mi et al., 1995; Cooley et al., 2000; Howitt et al., 2001;Yeremenko et al., 2005), whereas oxidation of PQH2 is catalyzed by the PQH2 oxidase, the cytochrome b6f complex, the respiratory cytochrome c oxidase (Nicholls et al., 1992; Pils and Schmetterer, 2001; Berry et al., 2002), and possibly plasma terminal oxidase (Peltier et al., 2010). Multiples of these partial reactions can proceed simultaneously, including respiratory electron transfer during illumination (Schubert et al., 1995), which includes oxygen uptake through a Mehler-like reaction (Helman et al., 2005; Allahverdiyeva et al., 2013).Because of its central location between the two photosystems, the redox state of the PQ pool has been identified as an important parameter that can signal photosynthetic imbalances (Mullineaux and Allen, 1990; Allen, 1995; Ma et al., 2010; Allen et al., 2011). Yet, an accurate estimation of the in vivo redox state of this pool has not been reported in cyanobacteria so far. Instead, the redox state of the PQ pool is widely assumed to be reflected in, or related to, the intensity of the chlorophyll a fluorescence emissions (Prasil et al., 1996; Yang et al., 2001; Gotoh et al., 2010; Houyoux et al., 2011). Imbalance in electron transport through the two photosystems may lead to a loss of excitation energy and, hence, to a loss of chlorophyll a fluorescence emission (Schreiber et al., 1986). Therefore, patterns of chlorophyll a fluorescence (pulse-amplitude modulated [PAM] fluorimetry; Baker, 2008) have widely been adopted for the analysis of (un)balanced photosynthetic electron transfer and, by inference, for indirect recording of the redox state of the PQ pool. However, the multitude of electron transfer pathways in the thylakoid membranes of cyanobacteria (see above) makes it much more complex to explain PAM signals in these organisms than in chloroplasts (Campbell et al., 1998). Additional regulatory mechanisms of nonphotochemical quenching, via the xanthophyll cycle in chloroplasts (Demmig-Adams et al., 2012) and the orange carotenoid protein (Kirilovsky and Kerfeld, 2012) in cyanobacteria, and energy redistribution via state transitions (Allen, 1995; Van Thor et al., 1998) complicate such comparisons even further.Several years ago, an HPLC-based technique was developed for the detection of the redox state of PQH2 in isolated thylakoids (Kruk and Karpinski, 2006), but these results have neither been related to physiological conditions nor to the results of chlorophyll a fluorescence measurements. In this report, we describe an adaptation of this method with elements of a method for estimation of the redox state of the ubiquinone pool in Escherichia coli (Bekker et al., 2007). This modified method allows for reliable measurements of the redox state of the PQ pool of Synechocystis sp. strain PCC 6803 under physiologically relevant conditions. The method uses rapid cell lysis in an organic solvent to arrest all physiological processes, followed by extraction and identification of PQH2 by HPLC separation with fluorescence detection. Next, we manipulated the redox state of the PQ pool with various redox-active agents, with inhibitors of photosynthetic electron flow, and by illumination with light specific for either PSII or PSI. The measured redox state of the PQ pool was then related to the chlorophyll a fluorescence signal and 77 K fluorescence emission spectra of cell samples taken in parallel and to oxygen-exchange rates measured separately. These experiments reveal that, despite highly fluctuating conditions of photosynthetic and respiratory electron flow, a remarkably stable redox state of the PQ pool is maintained. This homeostatically regulated redox state correlates poorly in many of the conditions tested with the more dynamic signal of chlorophyll a fluorescence emission, as measured with PAM fluorimetry. The latter signal only reflects the redox state of QA and not that of the PQ pool.  相似文献   

8.
9.
We have investigated the importance of carotenoids on the accumulation and function of the photosynthetic apparatus using a mutant of the green alga Chlamydomonas reinhardtii lacking carotenoids. The FN68 mutant is deficient in phytoene synthase, the first enzyme of the carotenoid biosynthesis pathway, and therefore is unable to synthesize any carotenes and xanthophylls. We find that FN68 is unable to accumulate the light-harvesting complexes associated with both photosystems as well as the RC subunits of photosystem II. The accumulation of the cytochrome b6f complex is also strongly reduced to a level approximately 10% that of the wild type. However, the residual fraction of assembled cytochrome b6f complexes exhibits single-turnover electron transfer kinetics comparable to those observed in the wild-type strain. Surprisingly, photosystem I is assembled to significant levels in the absence of carotenoids in FN68 and possesses functional properties that are very similar to those of the wild-type complex.Carotenoids (Cars) are fundamental components of the photosynthetic apparatus (Young and Britton, 1993, and refs. therein). The vast majority of Cars are noncovalently bound to either the core or the antenna subunits of PSI or PSII (Siefermann-Harms, 1985; Bassi et al., 1993). The most abundant Car bound to the core subunits of both photosystems is β-carotene, which is found in the vast majority of oxygenic organisms (Siefermann-Harms, 1985; Bassi et al., 1993). The light-harvesting complexes (LHCs) that act as the outer antenna in plants and green algae bind a wider range of oxygenated Cars, known as xanthophylls, the most abundant of which is lutein (Siefermann-Harms, 1985; Bassi et al., 1993; Jennings et al., 1996). The stoichiometry of xanthophylls binding to LHC complexes depends on the particular complexes and often on the illumination conditions during the organism’s growth (Siefermann-Harms, 1985; Demmig-Adams, 1990; Horton et al., 1996). Intriguingly, a molecule of β-carotene (as well as a molecule of chlorophyll [Chl] a) is found also in the cytochrome (Cyt) b6f complex (Kurisu et al., 2003; Stroebel et al., 2003).Cars have multiple functions in the photosynthetic process; they act as light-harvesting pigments (Frank and Cogdell, 1993), enlarging the optical cross section to radiation that is poorly absorbed by Chl. Moreover, Cars play a crucial role in processes such as nonphotochemical quenching that control the efficiency of light harvesting in response to the intensity of the incident radiation (for review, see Demmig-Adams, 1990; Horton et al., 1996; Niyogi, 1999). Probably the most important role of Cars in photosynthesis is the quenching of the excited triplet state of Chl (for review, see Frank and Cogdell, 1993; Giacometti et al., 2007), preventing the formation of highly reactive singlet oxygen, which represents the principal species active under high light stress (Hideg et al., 1994; Krieger-Liszkay, 2005). The importance of Cars is demonstrated by the observation that disruption of their biosynthesis through mutation, or by inhibition of a key enzyme in the pathway, leads to either lethal phenotypes or to rapid photobleaching of the photosynthetic tissue (Claes, 1957; Faludi-Dániel et al., 1968, 1970; Bolychevtseva et al., 1995; Trebst and Depka, 1997).Moreover, it has been shown that the presence of xanthophylls is absolutely necessary for refolding in vitro of LHC I and LHC II antenna complexes (Plumley and Schmidt, 1987; Paulsen et al., 1993; Sandonà et al., 1998). Such Cars, therefore, have a structural role, as well as their involvement in light harvesting, nonphotochemical quenching regulation, and the quenching of the Chl triplet state. Whether Cars also play a key structural role in the formation and stability of the core complexes of both PSI and PSII has not been systematically explored, since assembly of these complexes in vitro is not feasible. Studies in vivo using higher plants are complicated by the fact that Car deficiency is lethal and can be studied only during the early stages of greening and leaf development (Faludi-Dániel et al., 1968, 1970; Inwood et al., 2008). In these studies, it was shown that the accumulation of PSII complexes was greatly impaired in mutants of maize (Zea mays; Faludi-Dániel et al., 1968, 1970; Inwood et al., 2008), while the assembly of PSI appeared to be less sensitive to Car availability. In mutants of the cyanobacterium Synechocystis sp. PCC 6803 lacking the genes for phytoene desaturase or ζ-carotene desaturase, there was a complete loss of PSII assembly, while functional PSI complexes were assembled, albeit with slightly altered electron transfer kinetics with respect to the wild-type complex (Bautista et al., 2005). In agreement with the higher sensitivity of PSII assembly to Car availability, Trebst and Depka (1997) reported a specific effect on the synthesis of the D1 subunit of PSII RC upon treatment with phytoene desaturase inhibitors. On the other hand, it has recently been reported that in lycopene-β-cyclase mutants of Arabidopsis (Arabidopsis thaliana) that have a decreased amount of β-carotene (bound to the RC) with respect to most of the xanthophyll pool pigments (bound to the LHCs), the level of accumulation of PSI complexes, particularly that of the LHC I complement, was more affected that that of PSII, probably also because of an increased sensitivity to photodamage of mutated PSI RC (Cazzaniga et al., 2012; Fiore et al., 2012).In this investigation, we have studied the accumulation and functionality of the major chromophore-binding complexes of the photosynthetic apparatus, PSI, PSII, and Cyt b6f, in a Car-less mutant of the green alga Chlamydomonas reinhardtii (FN68) that is blocked at the first committed step of Car biosynthesis, namely, phytoene synthesis (McCarthy et al., 2004). Although the mutant is incapable of growing under phototrophic or photomixotrophic conditions, it can grow in complete darkness on a medium supplemented with a carbon source. Here, we show that the PSII core and antenna complexes fail to accumulate in the mutant and that the Cyt b6f complex accumulates to approximately one-tenth of the wild-type level. On the other hand, the PSI reaction center accumulates in FN68 and possesses electron transfer properties that are remarkably similar to those of wild-type PSI. Interestingly, we find that the level of PSI accumulation differs in other phytoene synthase null mutants, suggesting that additional mutations in one or other of these strains affect PSI stability. Nevertheless, our findings demonstrate that Cars are not required for either the assembly or the functionality of PSI in vivo.  相似文献   

10.
When photosynthetic organisms are deprived of nitrogen (N), the capacity to grow and assimilate carbon becomes limited, causing a decrease in the productive use of absorbed light energy and likely a rise in the cellular reduction state. Although there is a scarcity of N in many terrestrial and aquatic environments, a mechanistic understanding of how photosynthesis adjusts to low-N conditions and the enzymes/activities integral to these adjustments have not been described. In this work, we use biochemical and biophysical analyses of photoautotrophically grown wild-type and mutant strains of Chlamydomonas reinhardtii to determine the integration of electron transport pathways critical for maintaining active photosynthetic complexes even after exposure of cells to N deprivation for 3 d. Key to acclimation is the type II NADPH dehydrogenase, NDA2, which drives cyclic electron flow (CEF), chlororespiration, and the generation of an H+ gradient across the thylakoid membranes. N deprivation elicited a doubling of the rate of NDA2-dependent CEF, with little contribution from PGR5/PGRL1-dependent CEF. The H+ gradient generated by CEF is essential to sustain nonphotochemical quenching, while an increase in the level of reduced plastoquinone would promote a state transition; both are necessary to down-regulate photosystem II activity. Moreover, stimulation of NDA2-dependent chlororespiration affords additional relief from the elevated reduction state associated with N deprivation through plastid terminal oxidase-dependent water synthesis. Overall, rerouting electrons through the NDA2 catalytic hub in response to photoautotrophic N deprivation sustains cell viability while promoting the dissipation of excess excitation energy through quenching and chlororespiratory processes.Oxygenic photosynthesis involves the conversion of light energy into chemical bond energy by plants, green algae, and cyanobacteria and the use of that energy to fix CO2. The photosynthetic electron transport system, located in thylakoid membranes, involves several major protein complexes: PSII (water-plastoquinone oxidoreductase), cytochrome b6f (cyt b6f; plastoquinone-plastocyanin oxidoreductase), PSI (plastocyanin-ferredoxin oxidoreductase), and the ATP synthase (CFoCF1). Light energy absorbed by the photosynthetic apparatus is used to establish both linear electron flow (LEF) and cyclic electron flow (CEF), which drive the production of ATP and NADPH, the chemical products of the light reactions needed for CO2 fixation in the Calvin-Benson-Bassham (CBB) cycle.With the absorption of light energy by pigment-protein complexes associated with PSII, energy is funneled into unique chlorophyll (Chl) molecules located in the PSII reaction center (RC), where it can elicit a charge separation that generates a large enough oxidizing potential to extract electrons from water. In LEF, electrons from PSII RCs are transferred sequentially along a set of electron carriers, initially reducing the plastoquinone (PQ) pool, then the cyt b6f complex, and subsequently the lumenal electron carrier plastocyanin (PC). Light energy absorbed by PSI excites a special pair of Chl molecules (P700), causing a charge separation that generates the most negative redox potential in nature (Nelson and Yocum, 2006). The energized electron, which is replaced by electrons from PC, is sequentially transferred to ferredoxin and ferredoxin NADP+ reductase, generating reductant in the form of NADPH.Electron transport from water to NADPH in LEF is accompanied by the transport of H+ into the thylakoid lumen. For each water molecule oxidized, two H+ are released in the thylakoid lumen. In addition, H+ are moved into the lumen by the transfer of electrons through cyt b6f (Q cycle). H+ accumulation in the thylakoid lumen dramatically alters the lumenal pH, and the transmembrane H+ gradient (ΔpH) together with the transmembrane ion gradient constitute the proton motive force (pmf), which drives ATP formation by ATP synthase (Mitchell, 1961, 1966, 2011). This pmf also promotes other cellular processes, including the dissipation of excess absorbed excitation energy as heat in a photoprotective process (see below; Li et al., 2009; Erickson et al., 2015). The NADPH and ATP molecules generated by LEF and CEF fuel the synthesis of reduced carbon backbones (in the CBB cycle) used in the production of many cellular metabolites and fixed carbon storage polymers.A basic role for CEF is to increase the ATP-NADPH ratio, which can satisfy the energy requirements of the cell and augment the synthesis of ATP by LEF, which is required to sustain CO2 fixation by the CBB cycle (Allen, 2003; Kramer et al., 2004; Iwai et al., 2010; Alric, 2014). There are two distinct CEF pathways identified in plants and algae. In both pathways, electrons flow from the PQ pool through cyt b6f to reduce the oxidized form of P700 (P700+). In one CEF pathway, electrons are transferred back to the PQ pool prior to the formation of NADPH. This route involves the proteins PGR5 and PGRL1 (DalCorso et al., 2008; Tolleter et al., 2011; Hertle et al., 2013) and is termed PGR5/L1-dependent CEF. A second route for CEF includes an NADPH dehydrogenase that oxidizes NADPH (product of LEF) to NADP+, simultaneously reducing the PQ (Allen, 2003; Kramer et al., 2004; Rumeau et al., 2007). The reduced PQ pool is then oxidized by cyt b6f, causing H+ translocation into the thylakoid lumen, followed by the transfer of electrons to P700+ via PC. In the green alga Chlamydomonas reinhardtii, this second route for CEF involves a type II NADPH dehydrogenase (NDA2; Jans et al., 2008; Desplats et al., 2009).Oxygenic photosynthetic organisms have inhabited the planet for approximately 3 billion years and have developed numerous strategies to acclimate to environmental fluctuations. These acclimation processes confer flexibility to the photosynthetic machinery, allowing it to adjust to changes in conditions that impact the metabolic/energetic state of the organism and, most importantly, the formation of reactive oxygen species that may damage the photosynthetic apparatus and other cellular components (Li et al., 2009). Several ways in which the photosynthetic apparatus adjusts to environmental fluctuations have been established. A well-studied acclimation process, nonphotochemical quenching (NPQ), reduces the excitation pressure on PSII when oxidized downstream electron acceptors are not available (Eberhard et al., 2008; Li et al., 2009; Erickson et al., 2015). Several processes constitute NPQ, as follows. (1) qT, which involves the physical movement of light-harvesting complexes (LHCs) from one photosystem to another (this is also designated state transitions; Rochaix, 2014). (2) qE, which involves thermal dissipation of the excitation energy. This energy-dependent process requires an elevated ΔpH and involves an LHC-like protein, LHCSR3 (in C. reinhardtii) or PSBS (in plants), as well as the accumulation of specific xanthophylls (mainly lutein in C. reinhardtii and zeaxanthin in plants; Niyogi et al., 1997b; Li et al., 2000, 2004; Peers et al., 2009). (3) qZ, which is energy independent and involves the accumulation of zeaxanthin (Dall’Osto et al., 2005; Nilkens et al., 2010). (4) qI, which promotes quenching following physical damage to PSII core subunits (Aro et al., 1993). Additional mechanisms that can impact LEF and CEF are the synthesis and degradation of pigment molecules, changes in levels of RC and antenna complexes, and the control of electron distribution between LEF and CEF as the energetic demands of the cell change (Allen, 2003; Kramer et al., 2004). In addition, electrons can be consumed by mitochondrial and chlororespiratory activities (Bennoun, 1982; Peltier and Cournac, 2002; Johnson et al., 2014; Bailleul et al., 2015). The latter mainly involves the plastid terminal oxidase PTOX2, which catalyzes the oxidation of the PQ pool and the reduction of oxygen and H+ to form water molecules (Houille-Vernes et al., 2011; Nawrocki et al., 2015).Photosynthetic processes also must be modulated as organisms experience changes in the levels of available nutrients (Grossman and Takahashi, 2001). The macronutrient nitrogen (N), which represents 3% to 5% of the dry weight of photosynthetic organisms, is required to synthesize many biological molecules (e.g. amino acids, nucleic acids, and various metabolites) and also participates in posttranslational modifications of proteins (e.g. S-nitrosylation; Romero-Puertas et al., 2013). Importantly, N is highly abundant in chloroplasts in the form of DNA, ribosomes, Chl, and polypeptides (e.g. Rubisco and LHCs; Evans, 1989; Raven, 2013). Furthermore, there is a strong integration between N and carbon assimilation. During N limitation under photoautotrophic conditions, the inability of the organism to synthesize amino acids and other N-containing molecules necessary for cell growth and division can feed back to inhibit both carbon fixation by the CBB cycle and electron transport processes and also can negatively impact the expression of genes encoding key CBB cycle enzymes (Terashima and Evans, 1988; Huppe and Turpin, 1994; Nunes-Nesi et al., 2010).C. reinhardtii is a well-established model organism in which to study photosynthesis and acclimation processes, including acclimation to nutrient limitation (Wykoff et al., 1998; Grossman and Takahashi, 2001; Moseley et al., 2006; Grossman et al., 2009; Terauchi et al., 2010; Aksoy et al., 2013). This unicellular alga grows rapidly as a photoheterotroph (on fixed carbon in the light) or as a heterotroph (on fixed carbon in the dark), has completely sequenced nuclear, chloroplast, and mitochondrial genomes, can be used for classical genetic analyses, and is haploid, which makes some aspects of molecular manipulation (e.g. the generation of knockout mutants) easier (Merchant et al., 2007; Blaby et al., 2014). In the past few years, there have been many studies on the ways in which C. reinhardtii responds to N deprivation (Bulté and Wollman, 1992; Blaby et al., 2013; Goodenough et al., 2014; Schmollinger et al., 2014; Wei et al., 2015; Juergens et al., 2015). Cells deprived of N under photoheterotrophic conditions (i.e. acetate as an external carbon source) minimize the use of N (referred to as N sparing) and induce mechanisms associated with scavenging N from both external and internal pools, all of which eventually lead to proteome modifications and an elevated carbon-N ratio (Schmollinger et al., 2014). Acclimation under photoheterotrophic conditions also causes dramatic modifications of cellular metabolism and energetics: photosynthesis is down-regulated at multiple levels, with a portion of its N content recycled (mainly Chl and polypeptides of the photosynthetic apparatus), while there is enhanced accumulation of mitochondrial complexes leading to increased respiratory activity (Schmollinger et al., 2014; Juergens et al., 2015). Additionally, while fixed carbon cannot be used for growth in the absence of N, it may be stored as starch and triacylglycerol (Work et al., 2010; Siaut et al., 2011; Davey et al., 2014; Goodenough et al., 2014).In contrast to the acclimation of photoheterotrophically grown C. reinhardtii to N deprivation, little is known about how the photosynthetic machinery in this alga adjusts in response to N deprivation under photoautotrophic conditions, when the cells absolutely require photosynthetic energy generation for maintenance. Specifically, we sought to understand how photosynthesis adjusts to metabolic restrictions that slow down the CBB cycle, which in turn could cause the accumulation of photoreductant, particularly NADPH, as the demand for electrons declines (Peltier and Schmidt, 1991; Rumeau et al., 2007). Based on analyses of mutants and the use of spectroscopic and fluorescence measurements, we established a critical role for NDA2 in the acclimation of C. reinhardtii to N deprivation under photoautotrophic conditions, including (1) an augmented capacity for alternative routes of electron utilization (which decrease the NADPH-NADP+ ratio) based on increased NDA2-dependent CEF and chlororespiration, and (2) elevated qE, which relies on the H+ gradient generated by NDA2-dependent CEF.  相似文献   

11.
12.
In addition to the linear electron flow, a cyclic electron flow (CEF) around photosystem I occurs in chloroplasts. In CEF, electrons flow back from the donor site of photosystem I to the plastoquinone pool via two main routes: one that involves the Proton Gradient Regulation5 (PGR5)/PGRL1 complex (PGR) and one that is dependent of the NADH dehydrogenase-like complex. While the importance of CEF in photosynthesis and photoprotection has been clearly established, little is known about its regulation. We worked on the assumption of a redox regulation and surveyed the putative role of chloroplastic thioredoxins (TRX). Using Arabidopsis (Arabidopsis thaliana) mutants lacking different TRX isoforms, we demonstrated in vivo that TRXm4 specifically plays a role in the down-regulation of the NADH dehydrogenase-like complex-dependent plastoquinone reduction pathway. This result was confirmed in tobacco (Nicotiana tabacum) plants overexpressing the TRXm4 orthologous gene. In vitro assays performed with isolated chloroplasts and purified TRXm4 indicated that TRXm4 negatively controls the PGR pathway as well. The physiological significance of this regulation was investigated under steady-state photosynthesis and in the pgr5 mutant background. Lack of TRXm4 reversed the growth phenotype of the pgr5 mutant, but it did not compensate for the impaired photosynthesis and photoinhibition sensitivity. This suggests that the physiological role of TRXm4 occurs in vivo via a mechanism distinct from direct up-regulation of CEF.In plant thylakoids, photosynthesis involves a linear electron flow (LEF) from water to NADP+ via PSII, cytochrome b6/f, PSI, and soluble carriers. LEF produces NADPH and generates a transthylakoidal electrochemical proton gradient that drives the synthesis of ATP. Besides LEF, cyclic electron flow (CEF) can also occur, involving only PSI (for review, see Johnson, 2011; Kramer and Evans, 2011). These additional reactions include two main distinct pathways involving either the Proton Gradient Regulation5 (PGR5)/PGRL1 complex (Munekage et al., 2002; DalCorso et al., 2008) or the NADH dehydrogenase-like complex (NDH; for review, see Battchikova et al., 2011; Ifuku et al., 2011). The functioning of either CEF pathway, which generates a pH gradient ΔpH without any accumulation of NADPH, is thought to achieve the appropriate ATP/NADPH balance required for the biochemical needs of the plant, especially under certain environmental conditions such as low CO2 (Golding and Johnson, 2003), heat (Clarke and Johnson, 2001), cold (Clarke and Johnson, 2001), drought (Golding and Johnson, 2003; Kohzuma et al., 2009), high light (Munekage et al., 2004), or dark-to-light transitions (Joliot and Joliot, 2005; Fan et al., 2007). CEF-generated ΔpH is also involved in photoprotection owing to the down-regulation of PSII via nonphotochemical quenching (Munekage et al., 2004; Takahashi et al., 2009). Very recently, the role of the PGR5 protein as a regulator of LEF has been established. It has proved to be essential in the protection of PSI from photodamage (Suorsa et al., 2012).The two cyclic pathways are redundant (Munekage et al., 2004), sharing ferredoxin (Fd) as a common stromal electron donor (Yamamoto et al., 2011) and electron carriers from plastoquinone (PQ) to PSI with LEF. Thus, LEF and either of the CEF pathways may be in competition. The molecular events that allow CEF to challenge LEF remain enigmatic, particularly when considering that the conditions that require CEF are also those under which LEF is in excess. Efforts to understand the appropriate functioning of CEF have led to the proposition of several models segregating cyclic and linear pathways at a structural level (for review, see Eberhard et al., 2008; Cardol et al., 2011; Johnson, 2011; Rochaix, 2011). According to the restricted diffusion model, founded on the uneven distribution of the photosynthetic protein complexes in the thylakoids, there is little competition between CEF and LEF, as CEF occurs in stroma lamellae where PSI is concentrated while LEF takes place in the grana stacks. In line with the supercomplex model, whose relevance was demonstrated in the microalga Chlamydomonas reinhardtii, CEF happens within tightly bound supercomplexes containing PSI, with its own light-harvesting complex (LHCI), the PSII light-harvesting complex (LHCII), cytochrome b6/f, Fd, Fd NADP reductase (FNR), and the integral membrane protein PGRL1 (Iwai et al., 2010). In higher plants, an association between NDH and PSI subunits suggests the formation of such supercomplexes (Peng et al., 2009). The availability of FNR, found either free in the stroma or bound to the thylakoids (Zhang et al., 2001), has also been proposed to modulate partitioning between LEF and CEF (Joliot and Joliot, 2006; Joliot and Johnson, 2011). In addition, more dynamic models that illustrate competitive processes involved in the distribution of electrons between the cyclic and linear flows have been proposed. The competition between cytochrome b6/f and FNR for electrons from Fd could regulate the segregation between LEF and CEF (Breyton et al., 2006; Yamamoto et al., 2006; Hald et al., 2008). A few years ago, Joliot and Joliot (2006) suggested that the ATP/ADP ratio was one of the parameters that triggered on the transition between LEF and CEF. It was also established that the redox poise of chloroplast stroma contributed to the regulation of the photosynthetic pathway and played an important role in defining the extent of CEF. Breyton et al. (2006) scrutinized this redox regulation and established that the fraction of PSI complexes engaged in CEF could be modulated by changes in the stromal redox state. Overreduction of the NADPH pool was involved in the repartition between LEF and CEF (Joliot and Joliot, 2006). The NADPH/NADP+ ratio was proposed as a regulator of PGR-dependent CEF in vivo (Okegawa et al., 2008).All the published data supporting a role for the redox status in the regulation of CEF urged us to investigate a putative role of thioredoxins (TRX) in the regulation of CEF. TRX are ubiquitous disulfide reductases regulating the redox status of target proteins (for review, see Lemaire et al., 2007; Meyer et al., 2009). In chloroplast, TRX mediate the light regulation of numerous enzymes, among which some belong to the Calvin cycle (for review, see Schürmann and Buchanan, 2008; Montrichard et al., 2009; Lindahl et al., 2011). Global proteomic approaches have revealed that well-known photosynthetic complex subunits may be partners of TRX, such as PsbO in PSII, plastocyanin, Rieske Fe-S protein in cytochrome b6/f, and PsaK and PsaN in PSI (for review, see Montrichard et al., 2009; Lindahl et al., 2011). Furthermore, regarding the regulation of photosynthesis, TRX have also been involved in state transitions (Rintamäki et al., 2000; Buchanan and Balmer, 2005), and their participation in the control of the redox poise of the electron transport chain has also been suggested (Johnson, 2003).In this work, we have investigated the possible role of TRX in the regulation of CEF. Using Arabidopsis (Arabidopsis thaliana) mutants with altered expression of genes encoding different plastid TRX, we have established in vivo the inhibitor activity of TRXm4 on the NDH-dependent pathway for plastoquinone reduction. This result was confirmed in transplastomic tobacco (Nicotiana tabacum) plants overexpressing the TRXm4 orthologous gene. Moreover, in vitro assays performed with isolated chloroplasts indicated that TRXm4 negatively controls the PGR-dependent electron flow as well.  相似文献   

13.
Two LHC-like proteins, Photosystem II Subunit S (PSBS) and Light-Harvesting Complex Stress-Related (LHCSR), are essential for triggering excess energy dissipation in chloroplasts of vascular plants and green algae, respectively. The mechanism of quenching was studied in Physcomitrella patens, an early divergent streptophyta (including green algae and land plants) in which both proteins are active. PSBS was localized in grana together with photosystem II (PSII), but LHCSR was located mainly in stroma-exposed membranes together with photosystem I (PSI), and its distribution did not change upon high-light treatment. The quenched conformation can be preserved by rapidly freezing the high-light-treated tissues in liquid nitrogen. When using green fluorescent protein as an internal standard, 77K fluorescence emission spectra on isolated chloroplasts allowed for independent assessment of PSI and PSII fluorescence yield. Results showed that both photosystems underwent quenching upon high-light treatment in the wild type in contrast to mutants depleted of LHCSR, which lacked PSI quenching. Due to the contribution of LHCII, P. patens had a PSI antenna size twice as large with respect to higher plants. Thus, LHCII, which is highly abundant in stroma membranes, appears to be the target of quenching by LHCSR.  相似文献   

14.
Two mutants sensitive to heat stress for growth and impaired in NADPH dehydrogenase (NDH-1)-dependent cyclic electron transport around photosystem I (NDH-CET) were isolated from the cyanobacterium Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in the same sll0272 gene, encoding a protein highly homologous to NdhV identified in Arabidopsis (Arabidopsis thaliana). Deletion of the sll0272 gene (ndhV) did not influence the assembly of NDH-1 complexes and the activities of CO2 uptake and respiration but reduced the activity of NDH-CET. NdhV interacted with NdhS, a ferredoxin-binding subunit of cyanobacterial NDH-1 complex. Deletion of NdhS completely abolished NdhV, but deletion of NdhV had no effect on the amount of NdhS. Reduction of NDH-CET activity was more significant in ΔndhS than in ΔndhV. We therefore propose that NdhV cooperates with NdhS to accept electrons from reduced ferredoxin.Cyanobacterial NADPH dehydrogenase (NDH-1) complexes are localized in the thylakoid membrane (Ohkawa et al., 2001, 2002; Zhang et al., 2004; Xu et al., 2008; Battchikova et al., 2011b) and participate in a variety of bioenergetic reactions, such as respiration, cyclic electron transport around photosystem I (NDH-CET), and CO2 uptake (Ogawa, 1991; Mi et al., 1992; Ohkawa et al., 2000). Structurally, the cyanobacterial NDH-1 complexes closely resemble energy-converting complex I in eubacteria and the mitochondrial respiratory chain regardless of the absence of homologs of three subunits in cyanobacterial genomes that constitute the catalytically active core of complex I (Friedrich et al., 1995; Friedrich and Scheide, 2000; Arteni et al., 2006). Over the past decade, new subunits of NDH-1 complexes specific to oxygenic photosynthesis have been identified in several cyanobacterial strains. They are NdhM to NdhQ and NdhS (Prommeenate et al., 2004; Battchikova et al., 2005, 2011b; Nowaczyk et al., 2011; Wulfhorst et al., 2014; Zhang et al., 2014; Zhao et al., 2014b, 2015), in addition to NdhL first identified in the cyanobacterium Synechocystis sp. strain PCC 6803 (hereafter Synechocystis 6803) about 20 years ago (Ogawa, 1992). Among them, NdhS possesses a ferredoxin (Fd)-binding motif and was shown to bind Fd, which suggested that Fd is one of the electron donors to NDH-1 complexes (Mi et al., 1995; Battchikova et al., 2011b; Ma and Ogawa, 2015). Deletion of NdhS strongly reduced the activity of NDH-CET but had no effect on respiration and CO2 uptake (Battchikova et al., 2011b; Ma and Ogawa, 2015). The NDH-CET plays an important role in coping with various environmental stresses regardless of its elusive mechanism. For example, this function can greatly alleviate heat-sensitive growth phenotypes (Wang et al., 2006a; Zhao et al., 2014a). Thus, heat treatment strategy can help in identifying the proteins essential to NDH-CET.Here, a new oxygenic photosynthesis-specific (OPS) subunit NdhV was identified in Synechocystis 6803 with the help of heat treatment strategy, and its deletion did not influence the assembly of NDH-1L and NDH-1MS complexes and the activities of CO2 uptake and respiration but impaired the NDH-CET activity. We give evidence that NdhV interacts with NdhS and is another component of Fd-binding domain of cyanobacterial NDH-1 complex. A possible role of NdhV on the NDH-CET activity is discussed.  相似文献   

15.
Accumulating evidence indicates important functions for phosphoenolpyruvate (PEP) carboxylase (PEPC) in inorganic phosphate (Pi)-starved plants. This includes controlling the production of organic acid anions (malate, citrate) that are excreted in copious amounts by proteoid roots of nonmycorrhizal species such as harsh hakea (Hakea prostrata). This, in turn, enhances the bioavailability of mineral-bound Pi by solubilizing Al3+, Fe3+, and Ca2+ phosphates in the rhizosphere. Harsh hakea thrives in the nutrient-impoverished, ancient soils of southwestern Australia. Proteoid roots from Pi-starved harsh hakea were analyzed over 20 d of development to correlate changes in malate and citrate exudation with PEPC activity, posttranslational modifications (inhibitory monoubiquitination versus activatory phosphorylation), and kinetic/allosteric properties. Immature proteoid roots contained an equivalent ratio of monoubiquitinated 110-kD and phosphorylated 107-kD PEPC polypeptides (p110 and p107, respectively). PEPC purification, immunoblotting, and mass spectrometry indicated that p110 and p107 are subunits of a 430-kD heterotetramer and that they both originate from the same plant-type PEPC gene. Incubation with a deubiquitinating enzyme converted the p110:p107 PEPC heterotetramer of immature proteoid roots into a p107 homotetramer while significantly increasing the enzyme’s activity under suboptimal but physiologically relevant assay conditions. Proteoid root maturation was paralleled by PEPC activation (e.g. reduced Km [PEP] coupled with elevated I50 [malate and Asp] values) via in vivo deubiquitination of p110 to p107, and subsequent phosphorylation of the deubiquitinated subunits. This novel mechanism of posttranslational control is hypothesized to contribute to the massive synthesis and excretion of organic acid anions that dominates the carbon metabolism of the mature proteoid roots.Phosphoenolpyruvate (PEP) carboxylase (PEPC; EC 4.1.1.31) is a ubiquitous and tightly regulated cytosolic enzyme of vascular plants that is also widely distributed in green algae and bacteria. PEPC catalyzes the irreversible β-carboxylation of PEP to form oxaloacetate (OAA) and inorganic phosphate (Pi). Vascular plant PEPCs belong to a small multigene family encoding several closely related plant-type PEPCs (PTPCs), along with a distantly related bacterial-type PEPC (BTPC; O’Leary et al., 2011a). PTPC genes encode 105- to 110-kD polypeptides that typically assemble as approximate 400-kD Class-1 PEPC homotetramers. In contrast, BTPC genes encode larger 116- to 118-kD polypeptides owing to a unique intrinsically disordered region that mediates BTPC’s tight interaction with coexpressed PTPC subunits. This association results in the formation of unusual Class-2 PEPC heterooctameric complexes that are largely desensitized to allosteric effectors and that dynamically associate with the surface of mitochondria in vivo (O’Leary et al., 2009, 2011a; Igawa et al., 2010; Park et al., 2012).The critical role of Class-1 PEPC in assimilating atmospheric CO2 during C4 and Crassulacean acid metabolism photosynthesis has been studied extensively. Class-1 PEPCs also fulfill a wide range of crucial nonphotosynthetic functions, particularly the anaplerotic replenishment of tricarboxylic acid cycle intermediates consumed during biosynthesis (O’Leary et al., 2011a). Class-1 PEPCs are subject to a complex set of posttranslational controls including allosteric effectors, covalent modification via phosphorylation or monoubiquitination, and protein-protein interactions (Uhrig et al., 2008; O’Leary et al., 2009, 2011a, 2011b). Allosteric activation by Glc-6-P and inhibition by l-malate are routinely observed, whereas phosphorylation and dephosphorylation are catalyzed by a Ca2+-independent PEPC protein kinase (PPCK) and a protein phosphatase type-2A (PP2A), respectively (O’Leary et al., 2011a). Phosphorylation at a conserved N-terminal seryl residue activates Class-1 PEPCs by decreasing inhibition by malate while increasing activation by Glc-6-P. By contrast, Class-1 PEPC is subject to inhibitory monoubiquitination during castor oil (Ricinus communis) seed (COS) germination, or following depodding of developing COS (Uhrig et al., 2008; O’Leary et al., 2011b). Immunoblots of germinating COS extracts revealed a 1:1 ratio of immunoreactive 110- and 107-kD PTPC polypeptides (p110 and p107, respectively). PEPC purification and mass spectrometry (MS) demonstrated that (1) p110 and p107 are subunits of a 440-kD Class-1 PEPC heterotetramer, (2) both subunits arise from the same PTPC gene (RcPpc3) that also encodes the phosphorylated 410-kD Class-1 PEPC homotetramer of intact developing COS, and (3) p110 is a monoubiquitinated form of p107 (Uhrig et al., 2008). The monoubiquitination site (Lys-628) of COS p110 is conserved in vascular plant PEPCs and is proximal to a PEP-binding/catalytic domain. Incubation with a deubiquitinating enzyme converted the Class-1 PEPC p110:p107 heterotetramer into a p107 homotetramer while exerting significant effects on the enzyme’s kinetic properties (Uhrig et al., 2008). PTPC monoubiquitination rather than phosphorylation is widespread throughout the astor plant and appears to be the predominant posttranslational modification (PTM) of Class-1 PEPC that occurs in unstressed plants (O’Leary et al., 2011b). The distinctive developmental patterns of Class-1 PEPC phosphoactivation versus monoubiquitination-inhibition indicated that these PTMs might be mutually exclusive in the castor plant (O’Leary et al., 2011a, 2011b).Substantial evidence indicates that PEPC plays a pivotal role in plant acclimation to nutritional Pi deficiency (Duff et al., 1989; Vance et al., 2003; O’Leary et al., 2011a; Plaxton and Tran, 2011; Supplemental Fig. S1), a common abiotic stress that frequently limits plant growth in natural ecosystems. The marked induction of Class-1 PEPCs during Pi stress has been linked to the synthesis and excretion of large amounts of organic acid anions by roots of Pi-starved (–Pi) plants (O’Leary et al., 2011a; Uhde-Stone et al., 2003; Vance et al., 2003; Shane et al., 2004a). The excreted organic acids chelate metal cations such as Al3+ and Ca2+ that immobilize Pi in the soil, thus increasing soluble Pi concentrations by up to 1,000-fold (Vance et al., 2003). Harsh hakea (Hakea prostrata) is a perennial nonmycotroph that has evolved a host of traits that allow it to thrive in the nutrient-impoverished, ancient soils of western Australia. A crucial adaptation of harsh hakea is its proteoid roots, which excrete copious quantities of citrate and malate to mediate Pi solubilization and acquisition from the soil’s mineral-bound Pi (Supplemental Figs. S1 and S2; Shane et al., 2003, 2004a, 2004b; Shane and Lambers, 2005). Shane and coworkers (2004a) correlated proteoid root development in –Pi harsh hakea with marked increases in respiration, internal carboxylate concentrations, and rates of carboxylate exudation. Immunoblotting indicated that PEPC abundance remained relatively constant during proteoid root development, except in senescing 3-week-old roots, where it showed a marked decline. The PEPC immunoblots also revealed approximately 110- and 100-kD immunoreactive polypeptides that were of equal intensity in young proteoid roots, whereas mature proteoid roots showed a marked reduction in the p110 (Shane et al., 2004a). The possible contribution of PTMs such as phosphorylation to the in vivo activation of proteoid root PEPCs is currently unclear (e.g. see Uhde-Stone et al., 2003). However, this is feasible since the pronounced induction of PPCK genes coupled with the reversible phosphorylation-activation of a Class-1 PEPC isozyme (AtPPC1) has been conclusively demonstrated in –Pi Arabidopsis (Arabidopsis thaliana) suspension cells and seedlings (Gregory et al., 2009).The goal of the current study was to test the hypothesis that PEPC PTMs contribute to the metabolic adaptations of harsh hakea proteoid roots. We report a novel metabolic control paradigm that involves the in vivo deubiquitination and consequent kinetic activation of a phosphorylated form of a C3 plant Class-1 PEPC.  相似文献   

16.
The unfolded protein response (UPR) is a conserved eukaryotic signaling pathway regulating endoplasmic reticulum (ER) homeostasis during ER stress, which results, for example, from an increased demand for protein secretion. Here, we characterize the homologs of the central UPR regulatory proteins Hac1 (for Homologous to ATF/CREB1) and Inositol Requiring Enzyme1 in the plant pathogenic fungus Ustilago maydis and demonstrate that the UPR is tightly interlinked with the b mating-type-dependent signaling pathway that regulates pathogenic development. Exact timing of UPR is required for virulence, since premature activation interferes with the b-dependent switch from budding to filamentous growth. In addition, we found crosstalk between UPR and the b target Clampless1 (Clp1), which is essential for cell cycle release and proliferation in planta. The unusual C-terminal extension of the U. maydis Hac1 homolog, Cib1 (for Clp1 interacting bZIP1), mediates direct interaction with Clp1. The interaction between Clp1 and Cib1 promotes stabilization of Clp1, resulting in enhanced ER stress tolerance that prevents deleterious UPR hyperactivation. Thus, the interaction between Cib1 and Clp1 constitutes a checkpoint to time developmental progression and increased secretion of effector proteins at the onset of biotrophic development. Crosstalk between UPR and the b mating-type regulated developmental program adapts ER homeostasis to the changing demands during biotrophy.  相似文献   

17.
Using the automated cell pressure probe, small and highly reproducible hydrostatic pressure clamp (PC) and pressure relaxation (PR) tests (typically, applied step change in pressure = 0.02 MPa and overall change in volume = 30 pL, respectively) were applied to individual Tradescantia virginiana epidermal cells to determine both exosmotic and endosmotic hydraulic conductivity (LpOUT and LpIN, respectively). Within-cell reproducibility of measured hydraulic parameters depended on the method used, with the PR method giving a lower average coefficient of variation (15.2%, 5.8%, and 19.0% for half-time, cell volume [Vo], and hydraulic conductivity [Lp], respectively) than the PC method (25.4%, 22.0%, and 24.2%, respectively). Vo as determined from PC and PR tests was 1.1 to 2.7 nL and in the range of optically estimated Vo values of 1.5 to 4.9 nL. For the same cell, Vo and Lp estimates were significantly lower (about 15% and 30%, respectively) when determined by PC compared with PR. Both methods, however, showed significantly higher LpOUT than LpIN (LpOUT/LpIN ≅ 1.20). Because these results were obtained using small and reversible hydrostatically driven flows in the same cell, the 20% outward biased polarity of water transport is most likely not due to artifacts associated with unstirred layers or to direct effects of externally applied osmotica on the membrane, as has been suggested in previous studies. The rapid reversibility of applied flow direction, particularly for the PR method, and the lack of a clear increase in LpOUT/LpIN over a wide range of Lp values suggest that the observed polarity is an intrinsic biophysical property of the intact membrane/protein complex.The conductivity of membranes to water (hydraulic conductivity [Lp]) is an important property of the cells of all organisms, and whether plant cell membranes exhibit a polarity in this property has been debated for a number of decades (Dainty and Hope, 1959; Steudle, 1993). Most early evidence for polarity was based on transcellular osmotic experiments using giant algal cells in the Characeae, in which the relative areas of cell membrane exposed to conditions of osmotic inflow (endosmosis) or outflow (exosmosis) could be varied and, hence, Lp for both directions determined (Tazawa and Shimmen, 2001). Interpretation of these experiments is complicated by unstirred layer (USL) effects (Dainty, 1963), but even after accounting for these, it was concluded that inflow Lp (LpIN) was higher than outflow Lp (LpOUT) in these cells, with LpOUT/LpIN of about 0.65 (Dainty, 1963). When using osmotic driving forces in algal cells, LpOUT/LpIN values of between 0.5 and 0.91 have been reported in many studies (Steudle and Zimmermann, 1974; Steudle and Tyerman, 1983; Tazawa et al., 1996), and the same direction of polarity was also reported using osmotic driving forces in whole roots of maize (Zea mays; Steudle et al., 1987). When applying hydrostatic driving forces in algal cells using the pressure probe (Steudle, 1993), which is less influenced by USL effects (Steudle et al., 1980), LpOUT/LpIN has been closer to 1 (0.83–1; Steudle and Zimmermann, 1974; Steudle and Tyerman, 1983). However, in higher plant cells, an analysis of the data presented by Steudle et al. (1980, 1982) and Tomos et al. (1981) indicates the opposite polarity, with LpOUT/LpIN averaging from 1.2 to 1.4. Moore and Cosgrove (1991) used two contrasting hydrostatic methods to measure Lp in sugarcane (Saccharum spp.) stem cells: (1) the most commonly used pressure relaxation (PR) method, in which cell turgor pressure (Pcell) changes during the measurement, and (2) the more technically demanding pressure clamp (PC) method, in which Pcell is maintained constant. Consistent with other studies in higher plant cells, Moore and Cosgrove (1991) reported average LpOUT/LpIN from 1.15 (PC) to 1.65 (PR). Using the PR method in epidermal cells of barley (Hordeum vulgare), Fricke (2000) reported only a modest LpOUT/LpIN (based on reported half-time [T1/2]) of 1.08. In view of the contribution of proteins (e.g. aquaporins) to overall membrane Lp, Tyerman et al. (2002) suggested that polarity may result either from asymmetry in the pores themselves or from an active regulation of the conductive state of the pores in response to the experimental conditions that cause inflow or outflow. Either of these mechanisms may explain the wide range of values reported in the literature for LpOUT/LpIN. Cosgrove and Steudle (1981) reported that a substantial (6-fold) and rapid (within 20 s) reduction in Lp could occur in the same cell, and in hindsight, this presumably reflected the influence of aquaporins. Cosgrove and Steudle (1981) did not consider the lower Lp as indicative of the Lp in situ, and Wan et al. (2004) reported that a reduction in Lp was associated with perturbations to Pcell on the order of 0.1 MPa. Hence, if measured membrane Lp itself can exhibit substantial changes over relatively short periods of time in the same cell, then further study of systematic differences between LpOUT and LpIN will require a robust hydrostatic methodology (PC or PR) that can reversibly and reproducibly apply small perturbations in pressure (P) to individual cells over short periods of time.For the PR method, a T1/2 of water exchange is measured by fitting an exponential curve to the observed decay in Pcell over time following a step change in volume, and membrane Lp can be calculated if cell surface area (A), cell volume (Vo), and volumetric elastic modulus (ε) are known (Steudle, 1993). In practice, A and Vo are typically calculated from optical measurements of individual cell dimensions or estimates using average values, and ε is calculated based on Vo and an empirical change in pressure (dP) to change in volume (dV) relation for each cell (Steudle, 1993; Tomos and Leigh, 1999). In the PC method, first developed by Wendler and Zimmermann (1982), Vo (and, given reasonable assumptions about cell geometry, A) is estimated without the need for optical measurements, and Lp can be measured without the need to determine dP/dV or ε. However, this method is technically more demanding because it requires precise P control as well as a continuous record of the volume flow of water across the cell membrane (as measured by changes in the position of the cell solution/oil meniscus within the glass capillary over time) and has rarely been used (Wendler and Zimmermann, 1982, 1985; Cosgrove et al., 1987; Moore and Cosgrove, 1991; Zhang and Tyerman, 1991; Murphy and Smith, 1998). Since volume (V) is continuously changing over time, this approach may also be influenced by the hydraulic conductance of the capillary tip (Kh) used to make the measurements as well as surface tension effects due to the progressive changes in capillary diameter with meniscus position, and these influences have not been quantitatively addressed.Automation of the pressure probe operation, particularly automatic tracking of the meniscus location in the glass microcapillary tip, would address many of the above-mentioned issues, and to date, several attempts have been made to monitor the meniscus location using electrical resistance (Hüsken et al., 1978) or hardware-based image analysis (Cosgrove and Durachko, 1986; Murphy and Smith, 1998). Recently, Wong et al. (2009) redesigned the automated cell pressure probe (ACPP), originally proposed by Cosgrove and Durachko (1986), using a software-based meniscus detection system and a precise pressure control system. In the new ACPP system, both the position of the meniscus and oil pressure (Poil) are recorded frequently (typically at 10 Hz), and Poil is controlled with a resolution of ±0.002 MPa. We have combined the ACPP with a new technique to reproducibly fabricate microcapillary tips of known hydraulic properties (Wada et al., 2011) in order to correct for Kh and surface tension effects in both PC and PR estimates of the water relations parameters of Tradescantia virginiana epidermal cells and have determined the relation of LpOUT to LpIN in these cells.  相似文献   

18.
Phytic acid (inositol hexakisphosphate [InsP6]) is the storage compound of phosphorus in seeds. As phytic acid binds strongly to metallic cations, it also acts as a storage compound of metals. To understand the mechanisms underlying metal accumulation and localization in relation to phytic acid storage, we applied synchrotron-based x-ray microfluorescence imaging analysis to characterize the simultaneous subcellular distribution of some mineral elements (phosphorus, calcium, potassium, iron, zinc, and copper) in immature and mature rice (Oryza sativa) seeds. This fine-imaging method can reveal whether these elements colocalize. We also determined their accumulation patterns and the changes in phosphate and InsP6 contents during seed development. While the InsP6 content in the outer parts of seeds rapidly increased during seed development, the phosphate contents of both the outer and inner parts of seeds remained low. Phosphorus, calcium, potassium, and iron were most abundant in the aleurone layer, and they colocalized throughout seed development. Zinc was broadly distributed from the aleurone layer to the inner endosperm. Copper localized outside the aleurone layer and did not colocalize with phosphorus. From these results, we suggest that phosphorus translocated from source organs was immediately converted to InsP6 and accumulated in aleurone layer cells and that calcium, potassium, and iron accumulated as phytic acid salt (phytate) in the aleurone layer, whereas zinc bound loosely to InsP6 and accumulated not only in phytate but also in another storage form. Copper accumulated in the endosperm and may exhibit a storage form other than phytate.The transport of nutrients into developing seeds has received considerable attention. During the grain-filling stage, plants remobilize and transport nutrients distributed throughout the vegetative source organs into seeds. Plant seeds contain large amounts of phosphorus (P) in organic form, which supports growth during the early stages of seedling development. Most of the P in seeds is stored in the form of phytic acid (inositol hexakisphosphate [InsP6]). Seeds also accumulate mineral nutrients such as potassium (K), magnesium (Mg), calcium (Ca), iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn), which are used in seedling growth. Phytic acid acts as a strong chelator of metal cations and binds them to form phytate, a salt of InsP6 (Lott et al., 2002; Raboy, 2009). During germination, phytate is decationized and hydrolyzed by phytases, and then inorganic phosphates, inositol, and various minerals are released from the phytate (Loewus and Murthy, 2000). Phytate accumulates within protein bodies, generally of vacuolar origin, in seed storage cells and is usually concentrated in spherical inclusions called globoids. Many studies of the elemental composition of phytate in seeds have been published. Energy-dispersive x-ray microanalyses of many plant species have revealed that, other than P, globoids contain mainly K and Mg as well as low levels of Ca, Mn, Fe, and Zn (Lott, 1984; Lott et al., 1995; Wada and Lott, 1997). This indicates that phytate is a mixed salt of these cations.Whether all storage metal elements can bind equally to InsP6 is not known, although most elements are thought to exist in seeds in the form of phytate (Raboy, 2009). To form phytate, P and the other elements must be present in the same place. Therefore, determination of the precise locations of P and other elements in seed tissues makes it possible to judge whether an element exists in the form of phytate. Differences in metal distribution with P might suggest a storage form other than phytate. For determining distributions, synchrotron-based x-ray microfluorescence (µ-XRF) imaging utilizing an x-ray microbeam is a powerful tool. The microbeam excites the elements, thereby revealing the details of their spatial distribution. The development of focusing optics for high-energy x-rays using a Kirkpatrick-Baez mirror raises the imaging resolution of elements in µ-XRF analysis. A focal spot size smaller than 1 µm with x-ray energy as high as 100 keV enables detection of the subcellular distribution of elements in plant tissues (Fukuda et al., 2008; Takahashi et al., 2009).Whether there is an order in the affinity of elements for phytic acid in plant cells remains unknown. The stability of InsP6-metal complexes has been estimated by in vitro titration (Maddaiah et al., 1964; Vohra et al., 1965; Persson et al., 1998). The binding strength of InsP6 with metal is stronger for Zn and Cu than for Fe, Mn, and Ca. We also do not know if the mineral composition of phytate in seeds is determined by the relative abundance of these elements in the seed or by their biochemical characteristics. As a first step to address these issues, we examined the simultaneous changes in the distribution of P and metal elements during seed development using µ-XRF imaging analysis.Our objective in this study was to observe the dynamic changes in the distribution of some nutritionally important minerals (P, Ca, K, Fe, Zn, and Cu) in relation to the accumulation of phytic acid during rice (Oryza sativa) seed development.  相似文献   

19.
To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach (Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsic domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.Oxygenic photosynthesis supports most life on Earth through the absorption of solar energy, which powers the extraction of electrons from water and the subsequent use of those electrons to convert CO2 into organic compounds (Nelson and Ben-Shem, 2004; Merchant and Sawaya, 2005; Nelson, 2011). The light-dependent reactions of photosynthesis occur within photosynthetic or thylakoid membranes and are catalyzed by two reaction centers, PSI and PSII. Both photosystems have associated light-harvesting complexes (LHCI and LHCII) that act as antenna to efficiently capture light energy. The oxygen-evolving complex (OEC) is an integral component of PSII, catalyzing the extraction of electrons from water. The two photosystems are connected through an intersystem electron transport chain that includes the hydrophobic electron carrier plastoquinone, the membrane-bound cytochrome b6f complex (cyt b6f), and the mobile electron carrier plastocyanin. The electrochemical gradient generated during light-driven electron flow is used in the synthesis of ATP by the ATP synthase complex. Components of the photosynthetic apparatus vary among photosynthetic organisms and under different environmental conditions, especially for proteins associated with light-harvesting complexes (Liu and Scheuring, 2013). However, investigations of the mechanisms associated with the dynamic acclimation of photosynthetic electron transport and light harvesting to environmental cues require real-time observations that are difficult to achieve because of limitations in our ability to view such changes (e.g. difficulties in tagging proteins with fluorophores and resolving fluorescent images; Zaks et al., 2013).In vascular plants, thylakoid membranes form a network of interconnected tubular structures enclosing a lumenal space. This membrane system can be divided into two morphologically distinct regions: the grana, which are formed by stacks of appressed membranes; and the stroma lamellae, which are unappressed membranes that form connections between grana stacks. These distinct thylakoid regions are enriched for specific photosynthetic complexes. The major complexes in grana are PSII and LHCII, which can interact and form a variety of PSII-LHCII supercomplexes (Dekker and Boekema, 2005; Kouřil et al., 2012), as well as cyt b6f (Johnson et al., 2014). Grana stacks are also the site of water oxidation and oxygen evolution; the Mn4CaO5 cluster is the PSII cofactor that catalyzes this process (Umena et al., 2011). This cluster resides between the transmembrane subunits of the PSII core (formed by PSII proteins D1 and D2 and their associated pigment cofactors, with PSII reaction center proteins CP43 and CP47, α- and β-subunits of cytochrome b559, and PSII reaction center protein I [PsbI]) and the lumenal, peripheral membrane proteins of the OEC. The OEC is composed of extrinsic membrane polypeptides of 33 kD, 23 kD, and 17 kD, designated oxygen-evolving enhancer protein 1, 2, and 3 (PsbO, PsbP, and PsbQ) that protrude into the thylakoid lumen in vascular and nonvascular plants as well as in green algae. Cyanobacteria also have PsbO, with PsbV and PsbU serving as functional analogs of plant PsbP and PsbQ, respectively (Dekker and Boekema, 2005). Based on removal/reconstitution experiments, these subunits have been shown to be critical for PSII stability and oxygen evolution activity (Kuwabara and Murata, 1983; Ljungberg et al., 1983; Ghanotakis et al., 1984). They may also impact the association of Ca2+ and Cl with PSII, the polypeptide conformation around the manganese cluster, and the formation of channels within PSII that allow access of water to the catalytic site and the exit of protons from the complex as water is oxidized (Bricker et al., 2012).The x-ray crystal structures of purified PsbP (Kohoutová et al., 2009) and PsbQ (Balsera et al., 2005) from spinach (Spinacia oleracea) have been determined. For cyanobacteria, PSII crystals have been used to establish high-resolution structures for PsbO, PsbV, and PsbU (Umena et al., 2011), with more recent analyses at room temperature (Kern et al., 2013). To study the bound state of these peripheral proteins in spinach, electron density maps were established based on cryo-electron microscopy (cryo-EM) and single particle analysis of purified PSII-LHCII supercomplexes, with structural verification based on the removal of extrinsic polypeptides of the complexes from the membranes (Nield et al., 2002). In these structures, determined at less than 2 nm (or 20 Å) resolution, the PsbP and PsbQ subunits of OEC were assigned to a single membrane protrusion, with a second membrane protrusion assigned to PsbO (Boekema et al., 2000a); these topological structures are the most prominent protruding features of the reaction center-containing membrane protein complexes. Since two PSII reaction centers associate to form a dimeric PSII-LHCII supercomplex (Bumba and Vácha, 2003), the six OEC subunits (two PsbO, two PsbP, and two PsbQ) are visualized as four protrusions associated with each supercomplex. However, after the cyanobacterial PSII core structure was solved (including the positions of the extrinsic subunits) and aligned to the cryo-EM of PSII-LHCII supercomplexes (Nield and Barber, 2006), the structure was reevaluated. The PSII lumenal small protruding mass was assigned to the large extrinsic loop of CP47 (encoded by psbB), while the larger protrusion was assigned to PsbO, PsbP, PsbQ, and the large extrinsic loop associated with CP43 (encoded by psbC).Attempts have been made to visualize PSII complexes and proteins in their native membrane environment using transmission electron microscopy (TEM) in conjunction with freeze fracture (Johnson et al., 2011) and negative staining of grana membranes from both spinach (Boekema et al., 2000b) and Arabidopsis (Arabidopsis thaliana; Betterle et al., 2009; Wientjes et al., 2013). These techniques provide little information regarding the extent of the protrusion of the polypeptide subunits out of the plane of the membranes. Even though cryo-electron tomography of isolated chloroplasts and plunge-frozen thylakoid membranes (Daum et al., 2010) and grana stacks (Kouřil et al., 2011) can preserve sample hydration using a vitrification process during freezing, it is difficult to determine the height of the extrinsic thylakoid protein protrusions from the membrane surface. Furthermore, at the resolution obtained with these techniques, the small and large protrusions of each PSII monomer may appear merged into a single structure. This would result in the visualization of only two distinguishable topological entities for each PSII-OEC dimer.The generation of images by atomic force microscopy (AFM), which involves raster scanning by a sharp tip that is in contact with the sample, complements other structural determination methods. The vertical position of the tip is controlled in order to maintain a constant imaging force (balancing interaction forces between the tip and the scanned structure). Control is implemented by a feedback loop that continuously monitors the force with a highly sensitive force sensor that activates a high-precision actuator. Logging the vertical position of the piezoelectric actuator that controls the vertical position of the tip can provide particle height relative to the membrane at high vertical resolution; this is done concurrently with logging the lateral position of each pixel to generate the image (Bippes and Muller, 2011). Probing samples with AFM in air has been employed to image spinach grana membranes (Kirchhoff et al., 2008) to elucidate the arrangement of Arabidopsis PSII-LHCII supercomplexes associated with nonphotochemical quenching (Onoa et al., 2014) and to determine the areal density of Arabidopsis PSII-OEC during the PSII repair cycle (Puthiyaveetil et al., 2014).Most AFM studies of grana have been performed with membrane surfaces exposed to air. This raises issues concerning the extent to which membrane properties are altered during measurements in a nonaqueous environment (Zaks et al., 2013), where it may be impossible to maintain appropriate hydration and ionic conditions. However, AFM has also been used in aqueous medium to establish high-resolution topography images of membrane proteins (Bippes and Muller, 2011) and specifically to characterize the PSII-OEC, which was previously observed as an ordered array within spinach grana membranes (Sznee et al., 2011). In recent studies, a map of the lumenal surface of grana membranes was generated in aqueous medium that distinguishes cyt b6f dimers from PSII-OEC (Johnson et al., 2014). However, the potential of AFM imaging in a liquid environment has not been realized for the high-resolution analysis of features associated with thylakoid membranes and the PSII-OEC dimer. We used contact mode atomic force microscopy (CM-AFM) to (1) image PSII-OEC topology in liquid medium at high resolution, (2) identify other features/particles associated with grana membranes, and (3) optimize the use of AFM for monitoring the dynamics of thylakoid membrane complexes as the conditions of the environment are modulated (e.g. light, specific ions, and temperature).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号