首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The maintenance of growth of hyphae of Saprolegnia ferax was dependent on the presence of external Ca2+ and the growth rate increased with increased external Ca2+ up to 5 × 10−2 m Ca2+. When Ca2+ was greater than 5 × 10−2 m, growth rates decreased. Internal membrane-associated Ca2+ was localized with chlortetracycline. Internal Ca2+ became depleted in hyphae grown in the absence of Ca2+ and was increased in hyphae grown in high concentrations of Ca2+, showing that internal Ca2+ can be modulated by external Ca2+. However, the range of the internal change was not as great as the range of external concentration used, indicating that the hyphae are capable of regulating Ca2+ in the presence of a large concentration gradient. In the absence of external Ca2+, growth can occur for a limited time through use of internal Ca2+. The actin cytoskeleton was altered in hyphae grown in both high and low Ca2+. Hyphae grown in 10−3 m Ca2+ had more actin in their apical network and peripheral plaques of actin were further from the apex than in more slowly growing hyphae in 10−1 m and 0 Ca2+. The tips of hyphae growing in low Ca2+ also had a tendency to swell, giving these hyphae irregular shapes. Ca2+ is known to affect cell wall rigidity and the consistency of actin gels, two factors that can be expected to affect hyphal growth. External Ca2+ does play a role in hyphal growth possibly directly by acting on the cell wall and indirectly by altering internal Ca2+, thus affecting the actin cytoskeleton and possibly other growth processes.  相似文献   

2.
Before successful fertilization can occur, oocytes must undergo meiotic maturation. In starfish, this can be achieved in vitro by applying 1-methyladenine (1-MA). The immediate response to 1-MA is the fast Ca2+ release in the cell cortex. Here, we show that this Ca2+ wave always initiates in the vegetal hemisphere and propagates through the cortex, which is the space immediately under the plasma membrane. We have observed that alteration of the cortical actin cytoskeleton by latrunculin-A and jasplakinolide can potently affect the Ca2+ waves triggered by 1-MA. This indicates that the cortical actin cytoskeleton modulates Ca2+ release during meiotic maturation. The Ca2+ wave was inhibited by the classical antagonists of the InsP3-linked Ca2+ signaling pathway, U73122 and heparin. To our surprise, however, these two inhibitors induced remarkable actin hyper-polymerization in the cell cortex, suggesting that their inhibitory effect on Ca2+ release may be attributed to the perturbation of the cortical actin cytoskeleton. In post-meiotic eggs, U73122 and jasplakinolide blocked the elevation of the vitelline layer by uncaged InsP3, despite the massive release of Ca2+, implying that exocytosis of the cortical granules requires not only a Ca2+ rise, but also regulation of the cortical actin cytoskeleton. Our results suggest that the cortical actin cytoskeleton of starfish oocytes plays critical roles both in generating Ca2+ signals and in regulating cortical granule exocytosis.  相似文献   

3.
In the embryo, fibroblasts migrating through extracellular matrices (ECM) are generally elongate in shape, exhibiting a leading pseudopodium with filopodial extensions, and a trailing cell process. Little is known about the mechanism of movement of embryonic cells in ECM, for studies of fibroblast locomotion in the past have been largely confined to observations of flattened cells grown on planar substrata. We confirm here that embryonic avian corneal fibroblasts migrating within hydrated collagen gels in vitro have the bipolar morphology of fibroblasts in vivo, and we show for the first time that highly flattened gerbil fibroma fibroblasts, grown as cell lines on planar substrata, can also respond to hydrated collagen gels by becoming elongate in shape. We demonstrate that the collagen-mediated change in cell shape is accompanied by dramatic rearrangement of the actin, α-actinin, and myosin components of the cytoskeleton. By immunofluorescence, the stress fibers of the flattened corneal fibroblasts grown on glass are seen to stain with antiactin, anti-α-actinin, and antimyosin, as has been reported for fibroma and other fibroblasts grown on glass. Stress fibers, adhesion plaques, and ruffles do not develop when the corneal or fibroma fibroblast is grown in ECM; these features seem to be a response to strong attachment of the cell underside to a planar substratum. When the fibroblasts are grown in ECM, antimyosin staining is distributed diffusely through the cytoplasm. Antiactin and anti-α-actinin stain the microfilamentous cell cortex strongly. We suggest that locomotion of the fibroblast in ECM is accompanied by adhesion of the cell to the collagen fibrils and may involve an interaction of the myosin-rich cytosol with the actin-rich filamentous cell cortex. Interestingly, the numerous filopodia that characterize the tips of motile pseudopodia of cells in ECM are very rich in actin and α-actinin, but seem to lack myosin; if filopodia use myosin to move, the interaction must be at a distance. Soluble collagen does not convert flattened fibroblasts on planar substrata to bipolar cells. Thus, the effect of collagen on the fibroblast cytoskeleton seems to depend on the presence of collagen fibrils in a gel surrounding the cell.  相似文献   

4.
In recent years, the exposure of organisms to static magnetic fields (SMFs) is continuously increasing. Thus, we investigated the effect of chronic exposure to a 2 mT SMF on in vitro cultured swine granulosa cells (GCs). In particular, the culture expansion (cell viability and doubling time), the cell phenotype (cell morphology and orientation, actin and α-tubulin cytoskeleton), the cell metabolism (intracellular Ca2+ concentration [Ca2+]i and mitochondrial activity) and the cell function (endocrine activity) were assessed. It has been found that the exposure to the field did not affect the cell viability, but the doubling time was significantly reduced (p < 0.05) in exposed samples after 72 h of culture. At the same time, the cell length and thickness significantly changed (p < 0.05), while the cell orientation was unaffected. Evident modifications were induced on actin and α-tubulin cytoskeleton after 3 days of exposure and, simultaneously, a change in [Ca2+]i and mitochondrial activity started to become evident. Finally, the SMF exposure of GCs longer than 72 h determined a significant alteration of progesterone and estrogen production (p < 0.05). In conclusion, our results demonstrate that the chronic exposure of swine GCs to a 2 mT SMF exerts a negative effect on cell proliferation, morphology, biochemistry and endocrine function in an in vitro model.  相似文献   

5.
6.
Cilia membrane preparations from axenically grown Paramecium contain ATPase activities with distinct electrophoretic mobilities on Triton-polyacrylamide gels [M. J. Doughty and E. S. Kaneshiro (1983) J. Protozool.30, 569–575]. Such gel analyses also show additional ATPase activity bands associated with ciliary axonemes (dyneins), cell pellicles, exocytotic trichocysts, and the external cell surface (ectoenzyme). In the present report, the in vitro properties of these activities in various cell fractions were compared. The activity in ciliary membranes was stimulated by Ca2+ > Mg2+, in pellicles by Ca2+ > Mg2+, and in trichocysts by Ca2+ = Mg2+. The ecto-ATPase was strictly Ca2+ dependent. Determination of the affinities for various phosphate-containing substrates showed that the activities in all fractions were nucleoside triphosphate phosphohydrolases. Unlike the axonemal dynein ATPases, all other fractions were vanadate- and p-chloromercuribenzoate-insensitive. Activities in all cell fractions were sensitive to ruthenium red, the ciliary membrane being the most sensitive (Ki = 4 μm). The ciliary membrane Ca2+ ATPase activity exhibited an apparent affinity for CaATP2− of 9 μm and was inhibited by other divalent cations, La3+, and phosphate, but not by ADP or AMP. The kinetic properties of the ciliary membrane Ca2+ ATPase activity in wild type and several behavioral mutants were similar except for those in the pawn mutant, d495, and the paranoiac mutant, d490, both of which had lower specific activities. These studies support the finding that the ciliary membrane ATPase activity of Paramecium is a specific Ca2+-dependent ATPase distinct from other divalent cation-dependent ATPase activities found in either the cilia or other cell surface structures.  相似文献   

7.
8.
A continuous line derived from a human skin squamous cell carcinoma has been grown in media of high, normal and low Ca2+ concentrations. The growth rate was unaffected by the Ca2+ levels even though morphological changes were observed. Desmosomes were absent at low Ca2+ and areas of cell piling were observed at high Ca2+. Cell protein staining patterns on polyacrylamide gels were identical for cells grown at the three Ca2+ levels. The variations were minor for the glycoproteins reacted with 125I-conA. Lactoper-oxidase iodination revealed changes in cell surface proteins, most markedly in the emergence of new proteins at high Ca2+.  相似文献   

9.
Protein functions are often revealed by their localization to specialized cellular sites. Recent reports demonstrated that swiprosin-1 is found together with actin and actin-binding proteins in the cytoskeleton fraction of human mast cells and NK-like cells. However, direct evidence of whether swiprosin-1 regulates actin dynamics is currently lacking. We found that swiprosin-1 localizes to microvilli-like membrane protrusions and lamellipodia and exhibits actin-binding activity. Overexpression of swiprosin-1 enhanced lamellipodia formation and cell spreading. In contrast, swiprosin-1 knockdown showed reduced cell spreading and migration. Swiprosin-1 induced actin bundling in the presence of Ca2+, and deletion of the EF-hand motifs partially reduced bundling activity. Swiprosin-1 dimerized in the presence of Ca2+ via its coiled-coil domain, and a lysine (Lys)-rich region in the coiled-coil domain was essential for regulation of actin bundling. Consistent with these observations, mutations of the EF-hand motifs and coiled-coil region significantly reduced cell spreading and lamellipodia formation. We provide new evidence of how swiprosin-1 influences cytoskeleton reorganization and cell spreading.  相似文献   

10.
The organization of filamentous actin (F-actin) in the synaptic pedicle of depolarizing bipolar cells from the goldfish retina was studied using fluorescently labeled phalloidin. The amount of F-actin in the synaptic pedicle relative to the cell body increased from a ratio of 1.6 ± 0.1 in the dark to 2.1 ± 0.1 after exposure to light. Light also caused the retraction of spinules and processes elaborated by the synaptic pedicle in the dark.Isolated bipolar cells were used to characterize the factors affecting the actin cytoskeleton. When the electrical effect of light was mimicked by depolarization in 50 mM K+, the actin network in the synaptic pedicle extended up to 2.5 μm from the plasma membrane. Formation of F-actin occurred on the time scale of minutes and required Ca2+ influx through L-type Ca2+ channels. Phorbol esters that activate protein kinase C (PKC) accelerated growth of F-actin. Agents that inhibit PKC hindered F-actin growth in response to Ca2+ influx and accelerated F-actin breakdown on removal of Ca2+.To test whether activity-dependent changes in the organization of F-actin might regulate exocytosis or endocytosis, vesicles were labeled with the fluorescent membrane marker FM1-43. Disruption of F-actin with cytochalasin D did not affect the continuous cycle of exocytosis and endocytosis that was stimulated by maintained depolarization, nor the spatial distribution of recycled vesicles within the synaptic terminal. We suggest that the actions of Ca2+ and PKC on the organization of F-actin regulate the morphology of the synaptic pedicle under varying light conditions.  相似文献   

11.
Adhesion of tumor cells to endothelial cells is known to be involved in the hematogenous metastasis of cancer, which is regulated by hypoxia. Hypoxia is able to induce a significant increase in free intracellular Ca2+ levels in both tumor cells and endothelial cells. Here, we investigate the regulatory effects of calmodulin (CaM), an intracellular calcium mediator, on tumor cell–endothelial cell adhesion under hypoxic conditions. Hypoxia facilitates HeLa cell–ECV304 endothelial cell adhesion, and results in actin cytoskeleton rearrangement in both endothelial cells and tumor cells. Suppression of CaM activation by CaM inhibitor W-7 disrupts actin cytoskeleton organization and CaM distribution in the cell–cell contact region, and thus inhibits cell–cell adhesion. CaM inhibitor also downregulates hypoxia-induced HIF-1-dependent gene expression. These results suggest that the Ca2+-CaM signaling pathway might be involved in tumor cell-endothelial cell adhesion, and that co-localization of CaM and actin at cell–cell contact regions might be essential for this process under hypoxic stress. W.-G. Shen and W.-X. Peng Contributed to this paper equally  相似文献   

12.
In cells of the eukaryotic microorganism Dictyostelium discoideum, at least eight small, four-EF-hand Ca2+-binding proteins of unknown function are expressed at specific times during development. One of these proteins, calcium-binding protein 1 (CBP1), first appears just prior to cell aggregation and then is present at relatively constant levels throughout development. To determine a role for CBP1 during development, the protein was used as bait in a yeast two-hybrid screen to reveal putative CBP1-interacting proteins. Two proteins identified in this screen were the actin-binding proteins, protovillin and EF-1α. Using an in vitro binding assay, both of these proteins were found to interact with CBP1 in the absence of Ca2+, but the interaction of CBP1 with EF-1α was increased substantially by Ca2+. CBP1 was also shown by fluorescence microscopy and by binding assays to associate with the actin cytoskeleton of Dictyostelium cells during development, and these interactions were partially Ca2+-dependent. cbpA-null cells grew normally, but under certain developmental conditions, cell aggregation was prolonged and irregular. This defect in aggregation appeared to be related to a general reduction in cell motility rather than to a decrease in the ability of the cells to respond to the chemoattractant cAMP. Together, these results suggest that CBP1 might function to help regulate the reorganization of the Dictyostelium actin cytoskeleton during cell aggregation.  相似文献   

13.
Lipid rafts/caveolae as microdomains of calcium signaling   总被引:1,自引:1,他引:0  
Ca2+ is a major signaling molecule in both excitable and non-excitable cells, where it serves critical functions ranging from cell growth to differentiation to cell death. The physiological functions of these cells are tightly regulated in response to changes in cytosolic Ca2+ that is achieved by the activation of several plasma membrane (PM) Ca2+ channels as well as release of Ca2+ from the internal stores. One such channel is referred to as store-operated Ca2+ channel that is activated by the release of endoplasmic reticulum (ER) Ca2+ which initiates store-operated Ca2+ entry (SOCE). Recent advances in the field suggest that some members of TRPCs and Orai channels function as SOCE channels. However, the molecular mechanisms that regulate channel activity and the exact nature of where these channels are assembled and regulated remain elusive. Research from several laboratories has demonstrated that key proteins involved in Ca2+ signaling are localized in discrete PM lipid rafts/caveolar microdomains. Lipid rafts are cholesterol and sphingolipid-enriched microdomains that function as unique signal transduction platforms. In addition lipid rafts are dynamic in nature which tends to scaffold certain signaling molecules while excluding others. By such spatial segregation, lipid rafts not only provide a favorable environment for intra-molecular cross-talk but also aid to expedite the signal relay. Importantly, Ca2+ signaling is shown to initiate from these lipid raft microdomains. Clustering of Ca2+ channels and their regulators in such microdomains can provide an exquisite spatiotemporal regulation of Ca2+-mediated cellular function. Thus in this review we discuss PM lipid rafts and caveolae as Ca2+-signaling microdomains and highlight their importance in organizing and regulating SOCE channels.  相似文献   

14.
Regulation of bi-directional communication between intracellular Ca2+ pools and surface Ca2+ channels remains incompletely characterized. We report Ca2+ release mediated by inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) pathways is diminished under actin cytoskeleton disruption in NG115-401L (401L) neuronal cells, yet despite truncated Ca2+ release, Ca2+ influx was not significantly altered in these experiments. However, disruption of cortical actin networks completely abolished IP3R induced Ca2+ release, whereas RyR-mediated Ca2+ release was preserved, albeit attenuated. Moreover, cortical actin disruption completely abolished IP3R and RyR linked Ca2+ influx even though Ca2+ pool sensitivities were different. These findings suggest discrete Ca2+ store/Ca2+ channel coupling mechanisms in the IP3R and RyR pathways as revealed by the differential sensitivity to actin perturbation.  相似文献   

15.
Changes in cell shape are postulated to modulate gene expression during differentiation of a number of cell types, including rabbit synovial fibroblasts, which are inducible for expression of the zymogen form of the metalloendopeptidase, collagenase. In the work presented here, fibroblasts cultured on and within hydrated collagen gels were allowed to contract by release of the gels from the sides of the culture dish. Within 24 h of cell release, synthesis and secretion of procollagenase was initiated in the absence of any chemical manipulation. Fibroblasts grown in and on collagen also responded to 12-O-tetradecanoylphorbol-13-acetate and cytochalasin B with morphologic change and induced procollagenase. However, colchicine, which altered morphology to varying degrees in cells on plastic, on collagen, and within collagen gels, did not induce procollagenase expression. In all cases, the enzyme was induced only after reorganization of polymerized actin, rather than after a change in cellular morphology per se. As a first approach to identifying other aspects of the stimulated phenotype that could affect collagen turnover, the expression of collagen and endogenous metalloproteinase inhibitors in relation to procollagenase secretion was investigated. Collagen secretion by fibroblasts decreased when procollagenase secretion was induced by the pharmacologic agents, but not when cells were stimulated by contraction on or within collagen gels. The expression of two endogenous inhibitors was not coordinately regulated with induction of procollagenase. Therefore, the extracellular matrix and the cellular actin cytoskeleton may transduce signals that modulate the tissue remodeling phenotype of fibroblasts.  相似文献   

16.

Background  

Mitochondria are dynamic organelles that move along actin filaments, and serve as calcium stores in plant cells. The positioning and dynamics of mitochondria depend on membrane-cytoskeleton interactions, but it is not clear whether microfilament cytoskeleton has a direct effect on mitochondrial function and Ca2+ storage. Therefore, we designed a series of experiments to clarify the effects of actin filaments on mitochondrial Ca2+ storage, cytoplasmic Ca2+ concentration ([Ca2+]c), and the interaction between mitochondrial Ca2+ and cytoplasmic Ca2+ in Arabidopsis root hairs.  相似文献   

17.
Protein phosphorylation with specific protein kinases plays the key role in the regulation of meiotic maturation of oocytes. However, little is known about the contribution of kinases to the temporal and positional regulation of the cytoskeleton rearrangement in maturing oocytes, including the actin cytoskeleton. In order to study a relationship between the kinase activities and actin cytoskeleton rearrangement, we analyzed protein phosphorylation in the isolated actin cytoskeleton of Xenopus laevis oocytes. Analysis of the full grown oocytes and eggs injected with [-32P]ATP has revealed phosphorylation of many proteins associated with the actin cytoskeleton and shown the appearance of three additional major phosphoproteins, 20, 43, and 69 kDa, during oocyte maturation. A significant number of these phosphoproteins were also found after incubation of the isolated cytoskeleton with [-32P]ATP in vitro, thus confirming that the kinases modifying these substrates are also specifically associated with actin. The in vivo and in vitro kinase activities were also stimulated during maturation. Analysis of kinase self-phosphorylation in situ and protein phosphorylation in solutions and substrate containing gels revealed a set of actin-associated kinases, including cAMP- and Ca2+-dependent kinases, as well as MAP, p34cdc2, and tyrosine kinase activities. Their level was the highest in the eggs. The involvement of kinases in the actin cytoskeleton rearrangement during oocyte maturation is discussed.  相似文献   

18.
Studies using either animal models or in vitro flow systems have shown that the shape of large-vessel endothelial cells (ECs) was sensitive to the amplitude of the flow imposed on them. In order to better understand the morphological changes experienced by ECs when exposed to physical forces such as shear stress, the mechanical integrity of confluent bovine aortic ECs (BAECs) was anisotropically perturbed using the five following types of experiments: (i) slicing and partial scraping of BAEC monolayers; (ii) culture of BAECs on narrow strips of adhesive plastic; (iii) incubation of confluent BAECs with media containing low Ca2+ concentrations; (iv) culture of ECs on top of rectangular collagen gels; and (v) exposure of BAECs to laminar steady shear stress. In all five experimental systems, BAECs exhibited an elongated morphology and aligned their major axes in specific directions. In addition, a preferential alignment of actin microfilaments, vimentin intermediate filaments, and streaks of vinculin with the major axes of the cells often occurred concomitantly with BAEC elongation. In all five systems, the elongation of ECs was analyzed in terms of a mechanical deformation borne by the cytoskeleton, and possibly caused by anisotropic distribution of the forces experienced by the cell structure. In addition, the strain-stress and stiffness-stress relationships characterizing the elongation of BAECs exposed to steady flow were qualitatively similar to those computed for the uniaxial deformation of a spherical geodesic. Our findings suggest that the cytoskeleton of ECs plays an important role in the transduction of those forces which cause an elongation of ECs.  相似文献   

19.
Human mammary carcinoma cell line MCF-7 cells grown on type I collagen gels floating in a medium occasionally invaginated into the gels as a cell mass and formed cylindrical or domed structures within it. The 0.05% Triton-insoluble cytoskeleton of such cellular structures sedimented as a white flocculent layer at the boundary between 60 and 70% sucrose layers by ultracentrifugation, and consisted of 4 basal components: 54-kD (beta-tubulin), 45-kD, 42-kD (actin), and 39-kD polypeptides. By contrast, the isolated cytoskeleton of MCF-7 cells grown as monolayers on plastic substratum formed a finer cytoskeletal network with a smaller buoyant density and consisted of two distinct polypeptides with apparent molecular sizes of 80-kD and 65-kD in addition to the 4 basal components found in the morphologically developing cells. The present results indicate that the cytoskeleton of MCF-7 cells forming the three-dimensional cellular structures within collagen gels is lacking in these two polypeptides, and that it has a coarser cytoskeletal network with a greater buoyant density than that of the monolayered cells on plastic.  相似文献   

20.
During myogenesis in vitro, the amount of gelsolin in myogenic cells increased by a factor of 3 from about 200 ng to a maximum of 750 ng per milligram of total protein. Gelsolin increased steadily from the myoblast state to terminally differentiated myotubes containing abundant cross-striated myofibrils. At the same time, the amount of total actin varied by only about 30%, the molar ratio of gelsolin:actin increased from 1:500 to approximately 1:150. This modulation of gelsolin expression was observed both in avian and mammalian myocultures. Once the state of terminal differentiation in myocultures was attained, the amount of gelsolin decreased again. On the other hand, gelsolin decreased continuously in the postnatal mouse muscle by a factor of 5 between Day 1 and Day 12 after birth. When myogenic cells from various stages of differentiation were extracted with Triton X-100, the majority of gelsolin was soluble, whereas a minor fraction was tightly associated with the cytoskeleton. The actual amount of insoluble gelsolin depended on both the Ca2+ concentration during extraction and the degree of differentiation. Whereas at [Ca21] > 105M about one-third of the total gelsolin was associated with the cytoskeleton at all stages of differentiation, the amount of insoluble gelsolin after Triton extraction in the presence of EGTA increased from 3 to 17% during differentiation. The amount of soluble actin decreased from 40 to 25% during the same period, independent of the Ca2+ concentration. We calculated that the amount of gelsolin associated with the cytoskeletal or myofibrillar system is approximately 20-fold higher in differentiated myotubes than in early myotubes, indicating a functional role of gelsolin for myofibrillar assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号