首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Increasing the level of physical fitness for competition is the primary goal of any conditioning program for wrestlers. Wrestlers often need to peak for competitions several times over an annual training cycle. Additionally, the scheduling of these competitions does not always match an ideal periodization plan and may require a modified training program to achieve a high level of competitive fitness in a short-time frame. The purpose of this study was to examine the effects of 4 weeks of sprint-interval training (SIT) program, on selected aerobic and anaerobic performance indices, and hormonal and hematological adaptations, when added to the traditional Iranian training of wrestlers in their preseason phase. Fifteen trained wrestlers were assigned to either an experimental (EXP) or a control (CON) group. Both groups followed a traditional preparation phase consisting of learning and drilling technique, live wrestling and weight training for 4 weeks. In addition, the EXP group performed a running-based SIT protocol. The SIT consisted of 6 35-m sprints at maximum effort with a 10-second recovery between each sprint. The SIT protocol was performed in 2 sessions per week, for the 4 weeks of the study. Before and after the 4-week training program, pre and posttesting was performed on each subject on the following: a graded exercise test (GXT) to determine VO(2)max, the velocity associated with V(2)max (νVO(2)max), maximal ventilation, and peak oxygen pulse; a time to exhaustion test (T(max)) at their νVO(2)max; and 4 successive Wingate tests with a 4-minute recovery between each trial for the determination of peak and mean power output (PPO, MPO). Resting blood samples were also collected at the beginning of each pre and posttesting period, before and after the 4-week training program. The EXP group showed significant improvements in VO(2)max (+5.4%), peak oxygen pulse (+7.7%) and T(max) (+32.2%) compared with pretesting. The EXP group produced significant increases in PPO and MPO during the Wingate testing compared with pretesting (p < 0.05). After the 4-week training program, total testosterone and the total testosterone/cortisol ratio increased significantly in the EXP group, whereas cortisol tended to decrease (p = 0.06). The current findings indicate that the addition of an SIT program with short recovery can improve both aerobic and anaerobic performances in trained wrestlers during the preseason phase. The hormonal changes seen suggest training-induced anabolic adaptations.  相似文献   

3.
We evaluated the effect of different types of sprint interval sessions on the balance between anabolic and catabolic hormones and circulating inflammatory cytokines. Twelve healthy elite junior handball players (17-25 years) participated in the study. Exercise consisted of increasing distance (100 m, 200 m, 300 m, 400 m) and decreasing distance (400 m, 300 m, 200 m, 100 m) sprint interval runs on a treadmill (at random order), at a constant work rate of 80% of the personal maximal speed (calculated from the maximal speed of a 100 m run). The total rest period between the runs in the different interval sessions were similar. Blood samples were collected before, after each run, and after 1-hour recovery. Both types of sprint interval trainings led to a significant (p < 0.05) increase in lactate and the anabolic factors growth hormone, insulin-like growth factor-I (IGF-I), IGF binding protein-3 (IGFBP-3), and testosterone levels. Both types of sprint interval sessions led to a significant (p < 0.05) increase in the circulating pro- and anti-inflammatory mediators IL-1, IL-6, and IL1ra. IL-6 remained elevated in both sessions after 1-hour recovery. Area under the curve was significantly greater (p < 0.05) for lactate and growth hormone (GH) in the decreasing distance session. In contrast, rate of perceived exertion was higher in the increasing distance session, but this difference was not statistically significant (p = 0.07). Changes in anabolic-catabolic hormones and inflammatory mediators can be used to gauge the training intensity of anaerobic-type exercise. Changes in the GH-IGF-I axis and testosterone level suggest exercise-related anabolic adaptations. Increases in inflammatory mediators may indicate their important role in muscle tissue repair after anaerobic exercise. The decreasing distance interval was associated with a greater metabolic (lactate) and anabolic (GH) response but not with a higher rate of perceived exertion. Coaches and athletes should be aware of these differences, and as a result, of a need for specific recovery adaptations after different interval training protocols.  相似文献   

4.
The Na+ -K+ -ATPase enzyme is vital in skeletal muscle function. We investigated the effects of acute high-intensity interval exercise, before and following high-intensity training (HIT), on muscle Na+ -K+ -ATPase maximal activity, content, and isoform mRNA expression and protein abundance. Twelve endurance-trained athletes were tested at baseline, pretrain, and after 3 wk of HIT (posttrain), which comprised seven sessions of 8 x 5-min interval cycling at 80% peak power output. Vastus lateralis muscle was biopsied at rest (baseline) and both at rest and immediately postexercise during the first (pretrain) and seventh (posttrain) training sessions. Muscle was analyzed for Na+ -K+ -ATPase maximal activity (3-O-MFPase), content ([3H]ouabain binding), isoform mRNA expression (RT-PCR), and protein abundance (Western blotting). All baseline-to-pretrain measures were stable. Pretrain, acute exercise decreased 3-O-MFPase activity [12.7% (SD 5.1), P < 0.05], increased alpha1, alpha2, and alpha3 mRNA expression (1.4-, 2.8-, and 3.4-fold, respectively, P < 0.05) with unchanged beta-isoform mRNA or protein abundance of any isoform. In resting muscle, HIT increased (P < 0.05) 3-O-MFPase activity by 5.5% (SD 2.9), and alpha3 and beta3 mRNA expression by 3.0- and 0.5-fold, respectively, with unchanged Na+ -K+ -ATPase content or isoform protein abundance. Posttrain, the acute exercise induced decline in 3-O-MFPase activity and increase in alpha1 and alpha3 mRNA each persisted (P < 0.05); the postexercise 3-O-MFPase activity was also higher after HIT (P < 0.05). Thus HIT augmented Na+ -K+ -ATPase maximal activity despite unchanged total content and isoform protein abundance. Elevated Na+ -K+ -ATPase activity postexercise may contribute to reduced fatigue after training. The Na+ -K+ -ATPase mRNA response to interval exercise of increased alpha- but not beta-mRNA was largely preserved posttrain, suggesting a functional role of alpha mRNA upregulation.  相似文献   

5.
The purposes of the present study were to characterize the histochemical and enzymatic profiles of various hindlimb skeletal muscles, as well as to determine maximal O2 consumption (VO2max) and respiratory exchange ratios (R) during steady-state exercise in the obese Zucker rat. The changes that occurred in these parameters in response to a 6-wk training program were then assessed. Obese rats were randomly assigned to a sedentary or training group. Lean littermates served as a second control. Training consisted of treadmill running at 18 m/min up an 8% grade, 1.5 h/day, 5 day/wk for 6 wk. During week 6, VO2max and R during a steady-state run (74% max) were determined. After 2 days of inactivity, hindlimb muscles were excised, stained for fiber type and capillaries, and assayed for hexokinase, citrate synthase, cytochrome oxidase, and beta-hydroxyacetyl-CoA dehydrogenase. The obese sedentary rats demonstrated greater oxidative enzyme activities per gram of muscle tissue than their lean littermates, greater R values during submaximal exercise of the same relative intensity, and greater absolute VO2max values. Training resulted in a 20-56% increase in oxidative enzymes, a 10% increase in VO2max, and an increase in capillary density in the soleus and plantaris. There was no alteration in R values during exercise at 74% VO2max or in fiber type composition in response to exercise training. Results suggest that the muscle of the obese Zucker rat manifests a greater oxidative capacity than the muscle of its lean littermates. The apparent inability of the obese rat to increase its use of fat during submaximal exercise of the same relative intensity in response to training remains to be elucidated.  相似文献   

6.
Fascicle angle (FA) is suggested to increase as a result of fiber hypertrophy and furthermore to serve as the explanatory link in the discrepancy in the relative adaptations in the anatomical cross-sectional area (CSA) and fiber CSA after resistance training (RT). In contrast to RT, the effects of endurance training on FA are unclear. The purpose of this study was therefore to investigate and compare the longitudinal effects of either progressive endurance training (END, n = 7) or RT (n = 7) in young untrained men on FA, anatomical CSA, and fiber CSA. Muscle morphological measures included the assessment of vastus lateralis FA obtained by ultrasonography and anatomical CSA by magnetic resonance imaging of the thigh and fiber CSA deduced from histochemical analyses of biopsy samples from m. vastus lateralis. Functional performance measures included VO2max and maximal voluntary contraction (MVC). The RT produced increases in FA by 23 ± 8% (p < 0.01), anatomical CSA of the knee extensor muscles by 9 ± 3% (p = 0.001), and fiber CSA by 19 ± 7% (p < 0.05). RT increased knee extensor MVC by 20 ± 5% (p < 0.001). END increased VO2max by 10 ± 2% but did not evoke changes in FA, anatomical CSA, or in fiber CSA. In conclusion, the morphological changes induced by 10 weeks of RT support that FA does indeed serve as the explanatory link in the observed discrepancy between the changes in anatomical and fiber CSA. Contrarily, 10 weeks of endurance training did not induce changes in FA, but the lack of morphological changes from END indirectly support the fact that fiber hypertrophy and FA are interrelated.  相似文献   

7.
Our laboratory recently showed that six sessions of sprint interval training (SIT) over 2 wk increased muscle oxidative potential and cycle endurance capacity (Burgomaster KA, Hughes SC, Heigenhauser GJF, Bradwell SN, and Gibala MJ. J Appl Physiol 98: 1895-1900, 2005). The present study tested the hypothesis that short-term SIT would reduce skeletal muscle glycogenolysis and lactate accumulation during exercise and increase the capacity for pyruvate oxidation via pyruvate dehydrogenase (PDH). Eight men [peak oxygen uptake (VO2 peak)=3.8+/-0.2 l/min] performed six sessions of SIT (4-7x30-s "all-out" cycling with 4 min of recovery) over 2 wk. Before and after SIT, biopsies (vastus lateralis) were obtained at rest and after each stage of a two-stage cycling test that consisted of 10 min at approximately 60% followed by 10 min at approximately 90% of VO2 peak. Subjects also performed a 250-kJ time trial (TT) before and after SIT to assess changes in cycling performance. SIT increased muscle glycogen content by approximately 50% (main effect, P=0.04) and the maximal activity of citrate synthase (posttraining: 7.8+/-0.4 vs. pretraining: 7.0+/-0.4 mol.kg protein -1.h-1; P=0.04), but the maximal activity of 3-hydroxyacyl-CoA dehydrogenase was unchanged (posttraining: 5.1+/-0.7 vs. pretraining: 4.9+/-0.6 mol.kg protein -1.h-1; P=0.76). The active form of PDH was higher after training (main effect, P=0.04), and net muscle glycogenolysis (posttraining: 100+/-16 vs. pretraining: 139+/-11 mmol/kg dry wt; P=0.03) and lactate accumulation (posttraining: 55+/-2 vs. pretraining: 63+/-1 mmol/kg dry wt; P=0.03) during exercise were reduced. TT performance improved by 9.6% after training (posttraining: 15.5+/-0.5 vs. pretraining: 17.2+/-1.0 min; P=0.006), and a control group (n=8, VO2 peak=3.9+/-0.2 l/min) showed no change in performance when tested 2 wk apart without SIT (posttraining: 18.8+/-1.2 vs. pretraining: 18.9+/-1.2 min; P=0.74). We conclude that short-term SIT improved cycling TT performance and resulted in a closer matching of glycogenolytic flux and pyruvate oxidation during submaximal exercise.  相似文献   

8.
The effects of added load (20% of body mass) on the selected enzyme activities of red and white quadriceps femoris (QF), soleus, and gastrocnemius muscles of rats were studied. The rats were divided into sedentary control (SC), sedentary control with added load (SC+AL), endurance training (ET), and endurance training with added load (ET+AL) groups (n = 10 rats/group). After 6 wk, the SC+AL group had 57% higher (P less than 0.001) beta-glucuronidase (beta-GU) activity and 24% lower (P less than 0.05) citrate synthase activity in white QF than SC. Citrate synthase activity was also decreased in red QF (P less than 0.05) after the added load was used during nontraining hours. The training with added load induced similar but more pronounced changes than normal endurance training, especially in white QF. The ET+AL group demonstrated higher citrate synthase activity in white QF (P less than 0.001) and gastrocnemius (P less than 0.01) and higher malate dehydrogenase activity (P less than 0.05) and beta-GU activity (P less than 0.001) in white QF than the ET group. ET+AL rats also had higher phosphofructokinase (P less than 0.01) and lower creatine kinase (P less than 0.001) activity in white QF than ET rats. In conclusion, the added load without training had minor adaptive influences on muscles. The added load during training hours seemed to be an effective means of influencing the activation and adaptation in muscles that contain fast glycolytic fibers.  相似文献   

9.
The purpose of this study was to compare changes in muscle strength, power, and morphology induced by conventional strength training vs. plyometric training of equal time and effort requirements. Young, untrained men performed 12 weeks of progressive conventional resistance training (CRT, n = 8) or plyometric training (PT, n = 7). Tests before and after training included one-repetition maximum (1 RM) incline leg press, 3 RM knee extension, and 1 RM knee flexion, countermovement jumping (CMJ), and ballistic incline leg press. Also, before and after training, magnetic resonance imaging scanning was performed for the thigh, and a muscle biopsy was sampled from the vastus lateralis muscle. Muscle strength increased by approximately 20-30% (1-3 RM tests) (p < 0.001), with CRT showing 50% greater improvement in hamstring strength than PT (p < 0.01). Plyometric training increased maximum CMJ height (10%) and maximal power (Pmax; 9%) during CMJ (p < 0.01) and Pmax in ballistic leg press (17%) (p < 0.001). This was far greater than for CRT (p < 0.01), which only increased Pmax during the ballistic leg press (4%) (p < 0.05). Quadriceps, hamstring, and adductor whole-muscle cross-sectional area (CSA) increased equally (7-10%) with CRT and PT (p < 0.001). For fiber CSA analysis, some of the biopsies had to be omitted. Type I and IIa fiber CSA increased in CRT (n = 4) by 32 and 49%, respectively (p < 0.05), whereas no significant changes occurred for PT (n = 5). Myosin heavy-chain IIX content decreased from 11 to 6%, with no difference between CRT and PT. In conclusion, gross muscle size increased both by PT and CRT, whereas only CRT seemed to increase muscle fiber CSA. Gains in maximal muscle strength were essentially similar between groups, whereas muscle power increased almost exclusively with PT training.  相似文献   

10.
The purpose of the present study was to examine the influence of 3 different high-intensity interval training regimens on the first and second ventilatory thresholds (VT(1) and VT(2)), anaerobic capacity (ANC), and plasma volume (PV) in well-trained endurance cyclists. Before and after 2 and 4 weeks of training, 38 well-trained cyclists (Vo(2)peak = 64.5 +/- 5.2 ml.kg(-1).min(-1)) performed (a) a progressive cycle test to measure Vo(2)peak, peak power output (PPO), VT(1), and VT(2); (b) a time to exhaustion test (T(max)) at their Vo(2)peak power output (P(max)); and (c) a 40-km time-trial (TT(40)). Subjects were assigned to 1 of 4 training groups (group 1: n = 8, 8 x 60% T(max) at P(max), 1:2 work-recovery ratio; group 2: n = 9, 8 x 60% T(max) at P(max), recovery at 65% maximum heart rate; group 3: n = 10, 12 x 30 seconds at 175% PPO, 4.5-minute recovery; control group: n = 11). The TT(40) performance, Vo(2)peak, VT(1), VT(2), and ANC were all significantly increased in groups 1, 2, and 3 (p < 0.05) but not in the control group. However, PV did not change in response to the 4-week training program. Changes in TT(40) performance were modestly related to the changes in Vo(2)peak, VT(1), VT(2), and ANC (r = 0.41, 0.34, 0.42, and 0.40, respectively; all p < 0.05). In conclusion, the improvements in TT(40) performance were related to significant increases in Vo(2)peak, VT(1), VT(2), and ANC but were not accompanied by significant changes in PV. Thus, peripheral adaptations rather than central adaptations are likely responsible for the improved performances witnessed in well-trained endurance athletes following various forms of high-intensity interval training programs.  相似文献   

11.
Neuromuscular adaptations to training   总被引:1,自引:0,他引:1  
The purpose of this experiment was to determine whether there is a central adaptation to resistance overload. The right adductor pollicis muscle of each subject was trained with either voluntary (n = 9) or electrically stimulated contractions (n = 7), the contralateral muscle acted as an internal control, and seven other subjects acted as a control group. Training was the same in both groups: 15 contractions at 80% maximal voluntary contraction (MVC), 3 days/wk for 5 wk. Trained muscles in both groups increased MVC by approximately 15% (voluntary, P less than 0.01; stimulated, P less than 0.05). There was a small (9.5%) but significant (P less than 0.05) increase in MVC of the untrained muscles in the voluntary group. MVC did not change in the control group. Maximal electromyogram (EMG) was highly reproducible pre-to posttraining in the control group (r = 0.92, slope = 0.995) and did not change pre- to posttraining in the trained groups. Sensory adaptation to training caused a reduction in force sensation in the stimulated group (P less than 0.05) but not in the voluntary group. Because there was a small increase in MVC of the untrained muscle of the voluntary group (9.5%, P less than 0.05) but not in the stimulated group, it is possible that there is a central motor adaptation, but it is not manifested in increased neural drive (EMG). Moreover, this central adaptation may be responsible for the decrease in force sensation that follows training.  相似文献   

12.
The purpose of the present study was to investigate the relationship between aerobic characteristics and sprint skiing performance, and the effects of high-intensity endurance training on sprint skiing performance and aerobic characteristics. Ten male and 5 female elite junior cross-country skiers performed an 8-week intervention training period. The intervention group (IG, n = 7) increased the volume of high-intensity endurance training performed in level terrain, whereas the control group (CG, n = 8) continued their baseline training. Before and after the intervention period, the skiers were tested for 1.5-km time-trial performance on roller skis outdoors in the skating technique. Maximal oxygen uptake (VO?max) and oxygen uptake at the ventilatory threshold (VO?VT) were measured during treadmill running. VO?max and VO?VT were closely related to sprint performance (r = ~0.75, both p < 0.008). The IG improved sprint performance, VO?max, and VO?VT from pre to posttesting and improved sprint performance and VO?VT when compared to the CG (all p < 0.01). This study shows a close relationship between aerobic power and sprint performance in cross-country skiing and highlights the positive effects of high-intensity endurance training in level terrain.  相似文献   

13.
Glycemic control is essential to reduce the risk of complications associated with metabolic syndrome (MetS) and type 2 diabetes (T2D). Aerobic and resistance exercise performed alone or in combination improve glycemic control in both conditions. However, perceived lack of time and commitment are considered principal barriers to performing exercise regularly. High intensity interval training (HIIT) and sprint interval training (SIT) can be performed in a fraction of the time required for continuous aerobic exercise. A substantial scientific evidence indicates that HIIT/SIT improve glycemic control to a similar or greater extent than aerobic exercise in populations without MetS or T2D. Likewise, growing evidence suggest that HIIT/SIT improve the glycemic control during MetS and T2D. The aim of this review is to discuss the effects of interval training protocols on peripheral markers of glucose metabolism in patients with MetS and T2D.  相似文献   

14.
The effects of sprint training on muscle metabolism and ion regulation during intense exercise remain controversial. We employed a rigorous methodological approach, contrasting these responses during exercise to exhaustion and during identical work before and after training. Seven untrained men undertook 7 wk of sprint training. Subjects cycled to exhaustion at 130% pretraining peak oxygen uptake before (PreExh) and after training (PostExh), as well as performing another posttraining test identical to PreExh (PostMatch). Biopsies were taken at rest and immediately postexercise. After training in PostMatch, muscle and plasma lactate (Lac(-)) and H(+) concentrations, anaerobic ATP production rate, glycogen and ATP degradation, IMP accumulation, and peak plasma K(+) and norepinephrine concentrations were reduced (P<0.05). In PostExh, time to exhaustion was 21% greater than PreExh (P<0.001); however, muscle Lac(-) accumulation was unchanged; muscle H(+) concentration, ATP degradation, IMP accumulation, and anaerobic ATP production rate were reduced; and plasma Lac(-), norepinephrine, and H(+) concentrations were higher (P<0.05). Sprint training resulted in reduced anaerobic ATP generation during intense exercise, suggesting that aerobic metabolism was enhanced, which may allow increased time to fatigue.  相似文献   

15.
Effects of creatine supplementation on performance and training adaptations   总被引:7,自引:0,他引:7  
Creatine has become a popular nutritional supplement among athletes. Recent research has also suggested that there may be a number of potential therapeutic uses of creatine. This paper reviews the available research that has examined the potential ergogenic value of creatine supplementation on exercise performance and training adaptations. Review of the literature indicates that over 500 research studies have evaluated the effects of creatine supplementation on muscle physiology and/or exercise capacity in healthy, trained, and various diseased populations. Short-term creatine supplementation (e.g. 20 g/day for 5–7 days) has typically been reported to increase total creatine content by 10–30% and phosphocreatine stores by 10–40%. Of the approximately 300 studies that have evaluated the potential ergogenic value of creatine supplementation, about 70% of these studies report statistically significant results while remaining studies generally report non-significant gains in performance. No study reports a statistically significant ergolytic effect. For example, short-term creatine supplementation has been reported to improve maximal power/strength (5–15%), work performed during sets of maximal effort muscle contractions (5–15%), single-effort sprint performance (1–5%), and work performed during repetitive sprint performance (5–15%). Moreover, creatine supplementation during training has been reported to promote significantly greater gains in strength, fat free mass, and performance primarily of high intensity exercise tasks. Although not all studies report significant results, the preponderance of scientific evidence indicates that creatine supplementation appears to be a generally effective nutritional ergogenic aid for a variety of exercise tasks in a number of athletic and clinical populations.  相似文献   

16.
Beta-endorphin and sprint training   总被引:2,自引:0,他引:2  
J M Metzger  E A Stein 《Life sciences》1984,34(16):1541-1547
Male, Wistar rats were sprint trained using a high intensity, interval type, treadmill running protocol. Sprint training produced a significant decrease in plasma beta-endorphin levels. Conversely, animals who performed a high intensity acute run displayed significant increases in the concentration of plasma beta-endorphin which may be stress-related. Neither training nor acute running had any significant effect on the beta-endorphin levels of the pituitary, cortex, posterior or anterior hypothalamus.  相似文献   

17.
Desplanches, D., H. Hoppeler, L. Tüscher, M. H. Mayet,H. Spielvogel, G. Ferretti, B. Kayser, M. Leuenberger, A. Grünenfelder, and R. Favier. Muscle tissue adaptations ofhigh-altitude natives to training in chronic hypoxia or acute normoxia.J. Appl. Physiol. 81(5):1946-1951, 1996.Twenty healthy high-altitude natives, residentsof La Paz, Bolivia (3,600 m), participated in 6 wk of enduranceexercise training on bicycle ergometers, 5 times/wk, 30 min/session, aspreviously described in normoxia-trained sea-level natives (H. Hoppeler, H. Howald, K. E. Conley, S. L. Lindstedt, H. Claassen, P. Vock, and E. R. Weibel. J. Appl.Physiol. 59: 320-327, 1985). A first group of 10 subjects was trained in chronic hypoxia (HT; barometricpressure = 500 mmHg; inspired O2fraction = 0.209); a second group of 10 subjects was trained in acutenormoxia (NT; barometric pressure = 500 mmHg; inspired O2 fraction = 0.314). Theworkloads were adjusted to ~70% of peak O2 consumption(O2 peak) measuredeither in hypoxia for the HT group or in normoxia for the NT group.O2 peak determination and biopsies of the vastus lateralis muscle were taken before and afterthe training program.O2 peak in the HTgroup was increased (14%) in a way similar to that in NT sea-levelnatives with the same protocol. Moreover,O2 peak in the NTgroup was not further increased by additionalO2 delivery during the training session. HT or NT induced similar increases in musclecapillary-to-fiber ratio (26%) and capillary density (19%) as well asin the volume density of total mitochondria and citrate synthaseactivity (45%). It is concluded that high-altitude natives have areduced capillarity and muscle tissue oxidative capacity; however,their training response is similar to that of sea-level residents,independent of whether training is carried out in hypobaric hypoxia orhypobaric normoxia.

  相似文献   

18.
19.
Erythropoietic adaptations involving the oxygen dissociation curve (ODC) and erythropoietin production have been implicated in the etiology of reduced blood haemoglobin concentrations in sportspersons (known as sports anaemia). A significant increase in the half-saturation pressure indicating a right-shift in the ODC was measured in 34 male [25.8-27.4 mmHg (3.44-3.65 kPa)] and 16 female (25.8-27.7 mmHg (3.44-3.69 kPa)] trained distance runners (P less than 0.01 for both genders) after completing a standard 42-km marathon. Erythrocyte 2,3-diphosphoglycerate concentrations measured concurrently were unaltered by exercise, although consistently higher in the female compared to the male athletes (P less than 0.05). The serum erythropoietin (EPO) concentrations of 15 male triathletes (26.3 U.ml-1) were significantly lower than those of 45 male distance runners (31.6 U.ml-1; P less than 0.05). However, the mean serum EPO concentrations of male and female athletes engaged in a variety of sports were not different from those of sedentary control subjects of both sexes (26.5-35.3 U.ml-1). Furthermore, the serum EPO concentrations were unaltered after prolonged strenuous exercise in 20 male marathon runners. These data suggest that the haematological status of these endurance athletes is in fact normal and that the observed shift in the ODC, while providing a physiological advantage during exercise, has no measurable effect on the erythropoietic drive.  相似文献   

20.
The purpose of this study was to evaluate the effects of sprint training on muscle function and dynamic athletic performance and to compare them with the training effects induced by standard plyometric training. Male physical education students were assigned randomly to 1 of 3 groups: sprint group (SG; n = 30), plyometric group (PG; n = 30), or control group (CG; n = 33). Maximal isometric squat strength, squat- and countermovement jump (SJ and CMJ) height and power, drop jump performance from 30-cm height, and 3 athletic performance tests (standing long jump, 20-m sprint, and 20-yard shuttle run) were measured prior to and after 10 weeks of training. Both experimental groups trained 3 days a week; SG performed maximal sprints over distances of 10-50 m, whereas PG performed bounce-type hurdle jumps and drop jumps. Participants in the CG group maintained their daily physical activities for the duration of the study. Both SG and PG significantly improved drop jump performance (15.6 and 14.2%), SJ and CMJ height ( approximately 10 and 6%), and standing long jump distance (3.2 and 2.8%), whereas the respective effect sizes (ES) were moderate to high and ranged between 0.4 and 1.1. In addition, SG also improved isometric squat strength (10%; ES = 0.4) and SJ and CMJ power (4%; ES = 0.4, and 7%; ES = 0.4), as well as sprint (3.1%; ES = 0.9) and agility (4.3%; ES = 1.1) performance. We conclude that short-term sprint training produces similar or even greater training effects in muscle function and athletic performance than does conventional plyometric training. This study provides support for the use of sprint training as an applicable training method of improving explosive performance of athletes in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号