首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to better understand the link between obesity and type 2 diabetes, lipolysis and its adrenergic regulation was investigated in various adipose depots of obese adult females SHR/N-cp rats. Serum insulin, glucose, free fatty acids (FFA), triglycerides (TG) and glycerol were measured. Adipocytes were isolated from subcutaneous (SC), parametrial (PM) and retroperitoneal (RP) fat pads. Total cell number and size, basal lipolysis or stimulated by norepinephrine (NE) and BRL 37344 were measured in each depot. Obese rats were hyperinsulinemic and hyperglycemic, suggesting high insulin resistance. They presented a marked dyslipidemia, attested by increased serum FFA and TG levels. High serum glycerol levels also suggest a strong lipolytic rate. Obese rats showed an excessive development of all fat pads although a more pronounced effect was observed in the SC one. The cellularity of this depot was increased 8 fold when compared to lean rats, but these fat cells were only 1.5 to 2-fold larger. SC adipocytes showed a marked increase in their basal lipolytic activity but a lack of change in responsiveness to NE or BRL 37344. The association between high basal lipolysis and increased cellularity yields to a marked adipose cell lipolytic rate, especially from the SC region. SHR/N-cp rats were characterized by a hyperplasic type of obesity with an excessive development of the SC depot. The dyslipidemia, attested by an altered serum lipid profile could be attributed to excessive lipolysis that contributes to increased FFA levels, and to early development of insulin resistance through a lipotoxicity effect.  相似文献   

2.
Lipolytic activity of human isolated fat cells from different fat deposits was studied. The purpose of the present investigations was to determine the epinephrine responsiveness, with regard to alpha- and beta-adrenergic receptor site activity, of omental and subcutaneous adipocytes (abdominal or from the lateral part of the thigh). Adipocytes were obtained from normal subjects or from obese subjects on iso- or hypocaloric diets. The lipolytic effect of epinephrine varied according to the fat deposits, while the beta-lipolytic effect of isoproterenol was more stable (Fig. 1). We explored the possible involvement of adrenergic alpha-receptors, in order to explain these results. The potentiating action of phentolamine on epinephrine-induced lipolysis, and the antilipolytic effect of alpha-agonists on basal or theophylline--induced lipolysis, were found to be a good indication of alpha-adrenergic activity. The alpha-adrenergic antilipolytic effect was most prominent in adipose tissue from the lateral part of the thigh, and less noticeable in omental adipocytes. In conclusion, the inability of epinephrine to induce lipolysis, and the epinephrine-induced inhibition of lipolysis observed when the basal rate of FFA release was spontaneously increased in subcutaneous fat-cells of the thigh, could be explained by an increased alpha adrenergic responsiveness (Fig. 2). Moreover, various alpha-adrenergic agonists (phenylephrine, noradrenaline and adrenaline) showed a clear inhibiting effect on theophylline-stimulated adipocytes from the thigh. The pharmacological study of the antilipolytic effect of epinephrine on theophylline-induced lipolysis showed that the inhibition was linked to a specific stimulation of the alpha-receptors of the subcutaneous adipocytes (Fig. 4). From the different sets of experiments, it is shown that the modifications in the lipolytic effect of epinephrine on adipocytes of different areas could be explained by the occurrence of a variable alpha-adrenergic effect initiated by catecholamine. Furthermore, theophylline stimulation of lipolysis provides an accurate system to investigate the alpha-inhibiting effect of catecholamines. Our study was completed by the investigation of the lipolytic activity of subcutaneous fat cells from obese subjects submitted to a hypocaloric diet (800-1 000 Cal/day). An increased alpha-inhibitory effect of epinephrine was shown on the increased basal lipolytic activity observed in the fat cells of obese subjects on a hypocaloric diet (Fig. 5); a similar effect was observed when these adipocytes were stimulated by theophylline. To conclude, these investigations allow the alpha-adrenergic effect to be considered as a regulator mechanism of the in vitro lipolytic activity in human adipose tissue, since the antilipolytic effect is operative whenever the basal rate of lipolysis is increased (spontaneously, after caloric restriction, or with a lipolytic agent such as theophylline).  相似文献   

3.
Following cerium injection to female rats: (1) Plasma free fatty acids (FFA) concentration increases during the first 24 hours, then remains constant up to 48 hours. (2) Adipose tissue lipolytic activity increases tremendously during the first 12 hours (+380%), maintaining high values throughout the study (48hrs). These modifications are followed by a time-dependent increase of total liver lipids consisting mainly of triglycerides and to a less extent of cholesterol. (3) Adrenalectomy prevented the development of cerium-induced fatty liver: plasma FFA and lipolysis failed to increase in adrenalectomized cerium-treated animals. Thus, our study demonstrates the involvement of adrenergic stimulation of adipose tissue lipase as an obligatory step in the development of cerium-induced fatty liver.  相似文献   

4.
Cyclic AMP, protein kinase activity and glycerol were measured in adipose tissue from fasted rats incubated with epinephrine with or without glucose. A drastic loss in the sensitivity of the adipose tissue to respond to the lipolytic action of the hormone was observed during fasting, when incubated without glucose. The addition of glucose reverses this process, and a greater lipolytic capacity was observed in the tissue of fasted rats than in fed rats. The three parameters measured were well correlated when there was epinephrine in the medium. Lipolysis is observed with glucose alone, but there was no variation in the cAMP levels nor in the protein kinase activity. These results are discussed in relation to the regulator effect of FFA, which is mobilized during starvation, on lipolysis.  相似文献   

5.
It has been shown that adipose tissue lipolytic activity is increased in endurance-trained subjects. In women, adipose tissue is extensive and it was thought interesting to confirm that endurance training increases the capacity of female adipose tissue to mobilize lipids, and moreover to more fully understand the mechanisms involved. So, biopsies of fat were obtained from the periumbilical region of 13 trained female runners (T) and 17 sedentary women (S) and the in vitro response to catecholamines of the collagenase-isolated fat cells was studied. Glycerol release, chosen as adipocyte lipolysis indicator, was measured by bioluminescence for various epinephrine and norepinephrine concentrations. In both groups, these substances provoked an increase in lipolysis, but the response was significantly higher in T. In both groups, isoproterenol increased the lipolytic activity above basal concentrations at 10(-8) M and above. Lipolytic activity in T was significantly higher (P less than 0.01) than the S control at 10(-7) M and above. Epinephrine plus propranolol decreased lipolysis in both groups, but at 10(-5) M, lipolytic activity was significantly lower in S than in T (P less than 0.05). It is concluded that in female subjects, endurance training increases the sensitivity of subcutaneous abdominal adipose tissue to the lipolytic action of catecholamines; this effect seems to be related both to a decreased efficiency of the alpha 2-adrenergic pathway and to an increased efficiency of the beta-adrenergic pathway. This latter effect seems to take place at a step beyond the receptor-adenylate cyclase system in the lipolytic cascade.  相似文献   

6.
The present investigation was directed to study the effect of in vitro or ex vivo NO donors, sodium nitroprusside and molsidomine, using isolated sliced adipose tissue or in the form of immobilized and perfused adipocytes on the basal and isoprenaline-stimulated lipolysis. The results demonstrated that 1) in vitro application of sodium nitroprusside to perfused adipocytes or molsidomine to sliced adipose tissues affects isoprenaline-induced lipolysis in two ways, an increase in lipolysis at low isoprenaline concentrations (which means the sensitization of adipose tissues to adrenergic effect by NO) and decreased adrenergic agonist-stimulated lipolysis at higher concentration of isoprenaline (a decrease in the maximum lipolytic effect of isoprenaline), 2) low concentrations of molsidomine alone induced lipolysis from adipose tissue which attained more than 60% of that by isoprenaline (pD2 value for molsidomine = 11.2, while pD2 for isoprenaline = 8.17) while sodium nitroprusside did not affect the basal lipolysis significantly, 3) in vivo administration of molsidomine for 2 days reduced the maximum lipolytic effect of isoprenaline and (only non-significantly) increased the sensitivity to low doses of isoprenaline. In conclusion the present data demonstrate that NO plays an important role in adrenergic lipolysis in adipose tissues and further investigations are needed to unravel the exact role of NO in lipolysis.  相似文献   

7.
Short-lasting hypothermia raises the FFA level in the blood and this rise is associated with increased lipid-mobilizing activity and higher lipolytic activity of the serum. Raised FFA level and increased lipid-mobilizing activity of the serum persist even when the degree of general anaesthesia is sufficient for preventing thermogenesis signs (shivering and piloerection) caused by falling body temperature. Beta-adrenergic blockade fails to abolish the effect of lipolysis activation caused by hypothermia. These observations suggest that during hypothermia in the blood of the animals appear factors stimulating lipolysis in the adipose tissue. One of these factors may stimulate tissue lipolysis independently of beta-adrenergic receptors. Insulin blocks significantly lipolytic processes in the adipose tissue of hypothermic animals, but its administration is connected with the danger of hypoglycaemia development.  相似文献   

8.
Adipose tissue lipolysis and fatty acid reesterification by liver and adipose tissue were investigated in rats fasted for 15 h under basal and calorigenic conditions. The fatty acid flux initiated by adipose fat lipolysis in the fasted rat is mostly futile and is characterized by reesterification of 57% of lipolyzed free fatty acid (FFA) back into adipose triglycerides (TG). About two-thirds of FFA reesterification are carried out before FFA release into plasma, whereas the rest consists of plasma FFA extracted by adipose tissue. Thirty-six percent of the fasting lipolytic flux is accounted for by oxidation of plasma FFA, whereas only a minor fraction is channeled into hepatic very low density lipoprotein-triglycerides (VLDL-TG). Total body calorigenesis induced by thyroid hormone treatment and liver-specific calorigenesis induced by treatment with beta, beta'-tetramethylhexadecanedioic acid (Medica 16) are characterized by a 1.7- and 1.3-fold increase in FFA oxidation, respectively, maintained by a 1.5-fold increase in adipose fat lipolysis. Hepatic reesterification of plasma FFA into VLDL-TG is negligible under both calorigenic conditions. Hence, total body fatty acid metabolism is regulated by adipose tissue as both source and sink. The futile nature of fatty acid cycling allows for its fine tuning in response to metabolic demands.  相似文献   

9.
Obese Zucker rat is often used as a model of genetic obesity to understand the mechanism of the development of obesity. In the present work, in order to better understand the regulation of lipolysis in the Zucker rat, the lipolytic activities of adipocytes isolated from different adipose depots of lean and obese Zucker rats, in the basal state or after catecholamine stimulation have been measured. The obese Zucker rat presents hyperinsulinemia without hyperglycemia and with elevated plasma free fatty acids, suggesting a dyslipidemia. Morphological studies of three adipose deposits show a marked hypertrophic and hyperplastic type of obesity, much pronounced in the subcutaneous depot. In the current study we show that the basal lipolytic rate is higher in adipocytes from each deposit of obese rats (when results are corrected for cell surface area). This finding, associated with the increase of all deposits, could contribute to the elevated plasma FFA observed. Investigation of the responsiveness of dibutyril cAMP (DBcAMP) points out that the defect in the NE responsiveness is essentially located at post-receptor level. Nevertheless, a receptor defect could not be excluded as suggested by a decrease of the beta-ARs observed in all deposits. Our study points out that the lipolytic resistance to catecholamines in adipose tissue of obese Zucker rats appears to counteract the increase in the lipolytic rate, in order to moderate the increase in plasma FFA levels that may contribute to the hyperinsulinemia observed, characteristic of an insulino-resistant state.  相似文献   

10.
Growth hormone (GH) has a lipolytic effect in adipose tissue but this effect may differ in adipose tissue from various fat depots. This latter possibility was investigated in the present study, in which the effects of GH in vivo on catecholamine-induced lipolysis and the number of β-adrenergic receptors in isolated adipocytes from different fat depots of hypophysectomized rats were investigated. Female and male Sprague-Dawley rats were hypophysectomized or sham-operated at 45 days of age. One week after the operation, hormonal replacement therapy with L-thyroxine and hydrocortisone acetate was given. In addition, groups of rats were treated with GH (1.33 mg/kg per day, given as two daily subcutaneous injections). After 1 week of hormonal treatment, adipocytes were isolated from the parametrial, epididymal and inguinal fat pads, and glycerol release after catecholamine-stimulation and 125I-cyanopindolol binding were measured. Hypophysectomy resulted in a marked decrease in the lipolytic response to catecholamines. GH treatment significantly increased catecholamine-induced lipolysis with similar effects in adipocytes from parametrial or epididymal and inguinal fat depots in both female and male rats. There were no differences between norepinephrine compared with isoproterenol-induced responses. 125I-cyanopindolol binding was reduced after hypophysectomy and normalized by GH treatment, without differences between parametrial and inguinal adipose tissue regions. We conclude that the lipolytic effects of GH in the rat may partly be mediated by a stimulatory effect on β-adrenergic receptors in adipocytes. In addition, GH exerted similar effect on catecholamine-induced lipolysis and β-adrenergic receptors in adipocytes from parametrial, epididymal and inguinal fat depots.  相似文献   

11.
Adenosine deaminase (1 unit/ml) potentiated the lipolytic action of noradrenaline in adipocytes isolated from brown adipose tissue of 1- and 6-week-old rats by decreasing the EC50 (concn. giving 50% of maximal effect) for noradrenaline by 3-4-fold. With cells from neonatal rabbit tissue, adenosine deaminase only had a small, non-significant, effect on the EC50 for noradrenaline. Lipolysis in rat brown adipocytes was inhibited by low concentrations of N6-phenylisopropyladenosine (PIA). Rabbit cells were far less sensitive to PIA. PIA, prostaglandin E1 and nicotinate all inhibited noradrenaline-stimulated respiration in rat brown adipocytes. Hypothyroidism diminished the maximum response of respiration and lipolysis to noradrenaline in rat cells and increased the EC50 for noradrenaline. Responsiveness of lipolysis to noradrenaline was particularly decreased in hypothyroidism and was partially restored by addition of adenosine deaminase. Lipolysis in cells from hypothyroid rats was more sensitive to the anti-lipolytic action of PIA. Bordetella pertussis toxin increased lipolysis in the presence of PIA, suggesting an involvement of the Ni guanine-nucleotide-binding protein in the control of brown-adipocyte metabolism.  相似文献   

12.
The effects of morphine on lipid levels of plasma and liver were studied in rats. The first injection of morphine induced a decrease in free fatty acids (FFA) and an increase in the plasma triglyceride level. No changes in phospholipid, cholesterol or cholesterol ester concentrations were observed. In chronic morphinized rats the plasma FFA level was unchanged one hour following the injection of morphine and tolerance developed to the depressive effect of the drug. In contrast, the rise in plasma triglycerides persisted, but to a lesser extent. In these animals, the plasma levels of FFA and of triglycerides were lower than in normal rats, when blood was sampled 24 hours after the last injection of morphine. In abstinent rats, a reversal of action of morphine was noticed. Nalorphine induced an increase in plasma FFA levels in normal and abstinent rats but not in chronically morphine-treated animals. In the liver no significant changes occured in lipids in either acute or chronically morphinized rats. The effects of morphine on plasma lipid levels might be linked to the action of the drug on the secretory activity of the adrenals and also to the depressive effect of the drug on the lipolytic activity of adipose tissue which was demonstrated in vitro.  相似文献   

13.
In this study, the difference in lipolytic response in inguinal subcutaneous and epididymal adipose tissues of male Sprague-Dawley rats was assessed in vivo by microdialysis. Probes were perfused with Ringer solution in which increasing concentrations of isoproterenol (10(-7) - 10(-4) mol/L) were added. Glycerol release, expressed as extracellular glycerol concentration, was used as lipolytic index. The effect of isoproterenol on local blood flow was investigated using the ethanol technique. No differences were found in the interstitial glycerol concentration between both adipose tissues under basal conditions. When isoproterenol was perfused, a dose-response increase in glycerol production was induced in both tissues. Interstitial glycerol concentration from epididymal adipose tissue was higher than that of inguinal subcutaneous depot at all isoproterenol concentrations. No vasodilatory effect of isoproterenol was found. These results suggest that epididymal adipose tissue is more responsive in vivo to beta-adrenergic lipolysis stimulation than is subcutaneous fat pad from the inguinal region.  相似文献   

14.
Summary Hormone stimulated lipolysis of mouse and rabbit adipocytes as measured by both free fatty acid and glycerol release, is proportionally elevated with increase in the adipocyte cAMP level up to 1 nmole/g. The correlation coefficients are 0.94 and 0.97 for FFA/cAMP and glycerol/cAMP respectively. Increments in cAMP greater than 1 nmole/g show no correlation with increase in lipolysis. The release of lipolytic products, glycerol and free fatty acids, from white adipocytes in response to ACTH, epinephrine or morepinephrine was measured using radiochemical assays in short term incubation systems, with cAMP levels measured at the same time and from the same cell sample. Under the conditions studied, epinephrine is a more effective lipolytic hormone than ACTH in mouse adipocyte, and ACTH is more effective than epinephrine in rabbit adipocyte. The effect of catecholamines on the rabbit adipocyte is not modified by phentolamine (10 μM), but it is potentiated by 1-methyl-3-isobutyl xanthine (0.1 mM). The results suggest that cAMP mediates the action of these lipolytic hormones in white adipocytes of mouse and rabbit.  相似文献   

15.
Glucocorticoids have been proposed to be both adipogenic and lipolytic in action within adipose tissue, although it is unknown whether these actions can occur simultaneously. Here we investigate both the in vitro and in vivo effects of corticosterone (Cort) on adipose tissue metabolism. Cort increased 3T3-L1 preadipocyte differentiation in a concentration-dependent manner, but did not increase lipogenesis in adipocytes. Cort increased lipolysis within adipocytes in a concentration-dependent manner (maximum effect at 1-10 μM). Surprisingly, removal of Cort further increased lipolytic rates (~320% above control, P < 0.05), indicating a residual effect on basal lipolysis. mRNA and protein expression of adipose triglyceride lipase and phosphorylated status of hormone sensitive lipase (Ser563/Ser660) were increased with 48 h of Cort treatment. To test these responses in vivo, Sprague-Dawley rats were subcutaneously implanted with wax pellets with/without Cort (300 mg). After 10 days, adipose depots were removed and cultured ex vivo. Both free fatty acids and glycerol concentrations were elevated in fed and fasting conditions in Cort-treated rats. Despite increased lipolysis, Cort rats had more visceral adiposity than sham rats (10.2 vs. 6.9 g/kg body wt, P < 0.05). Visceral adipocytes from Cort rats were smaller and more numerous than those in sham rats, suggesting that adipogenesis occurred through preadipocyte differentiation rather than adipocyte hypertrophy. Visceral, but not subcutaneous, adipocyte cultures from Cort-treated rats displayed a 1.5-fold increase in basal lipolytic rates compared with sham rats (P < 0.05). Taken together, our findings demonstrate that chronic glucocorticoid exposure stimulates both lipolysis and adipogenesis in visceral adipose tissue but favors adipogenesis primarily through preadipocyte differentiation.  相似文献   

16.
The putative role played by insulin sensitizers in modulating adipose tissue lipolysis in the fasting state was evaluated in obese conscious Zucker rats treated with troglitazone or beta,beta'-tetramethylhexadecanedioic acid (MEDICA 16) and compared with nontreated lean and obese animals. The rates of appearance (R(a)) of glycerol and free fatty acid (FFA), primary intra-adipose reesterification, and secondary reuptake of plasma FFA in adipose fat were measured using constant infusion of stable isotope-labeled [(2)H(5)]glycerol, [2,2-(2)H(2)]palmitate, and radioactive [(3)H]palmitate. The overall lipolytic flux (R(a) glycerol) was increased 1.7- and 1.4-fold in obese animals treated with troglitazone or MEDICA 16, respectively, resulting in increased FFA export (R(a) FFA) in the troglitazone-treated rats. Primary intra-adipose reesterification of lipolysis-derived fatty acids was enhanced twofold by insulin sensitizers, whereas reesterification of plasma fatty acids was unaffected by either treatment. Despite the unchanged R(a) FFA in MEDICA 16 or the increased R(a) FFA induced by troglitazone, very low density lipoprotein production rates were robustly curtailed. Total adipose tissue reesterification, used as an estimate of glucose conversion to glyceride-glycerol, was increased 1.9-fold by treatment with the insulin sensitizers. Our results indicate that, in the fasting state, insulin sensitizers induce, in vivo, a significant activation rather than suppression of adipose tissue lipolysis together with stimulation of glucose conversion to glyceride-glycerol.  相似文献   

17.
The administration of various catecholamines and adrenocorticotropic hormone to adult rabbit elevated plasma glycerol concentration. These catecholamines also induced the in vitro lipolysis of isolated interscapular fat cells but could not bring about the lipolysis of epididymal ones, while adrenocorticotropic hormone induced the lipolyses of both kinds of fat cells. It may be speculated from these results that catecholamines liberated endogenously in adult rabbit cannot act on all systemic adipose tissues but have lipolytic effects on a part of them.  相似文献   

18.
The aim of this experiment was to study the influence of 18-hour food deprivation on basal and stimulated lipolysis in adipocytes obtained from young male Wistar rats. Fat cells from fed and fasted rats were isolated from the epididymal adipose tissue by collagenase digestion. Adipocytes were incubated in Krebs-Ringer buffer (pH 7.4, 37 degrees C) without agents affecting lipolysis and with different lipolytic stimulators (epinephrine, forskolin, dibutyryl-cAMP, theophylline, DPCPX, amrinone) or inhibitors (PIA, H-89, insulin). After 60 min of incubation, glycerol and, in some cases, also fatty acids released from adipocytes to the incubation medium were determined. Basal lipolysis was substantially potentiated in cells of fasted rats in comparison to adipocytes isolated from fed animals. The inhibition of protein kinase A activity by H-89 partially suppressed lipolysis in both groups of adipocytes, but did not eliminate this difference. The agonist of adenosine A (1) receptor also did not suppress fasting-enhanced basal lipolysis. The epinephrine-induced triglyceride breakdown was also enhanced by fasting. Similarly, the direct activation of adenylyl cyclase by forskolin or protein kinase A by dibutyryl-cAMP resulted in a higher lipolytic response in cells derived from fasted animals. These results indicate that the fasting-induced rise in lipolysis results predominantly from changes in the lipolytic cascade downstream from protein kinase A. The antagonism of the adenosine A (1) receptor and the inhibition of cAMP phosphodiesterase also induced lipolysis, which was potentiated by food deprivation. Moreover, the rise in basal and epinephrine-stimulated lipolysis in adipocytes of fasted rats was shown to be associated with a diminished non-esterified fatty acids/glycerol molar ratio. This effect was presumably due to increased re-esterification of triglyceride-derived fatty acids in cells of fasted rats. Comparing fed and fasted rats for the antilipolytic effect of insulin in adipocytes revealed that short-term food deprivation resulted in a substantial deterioration of the ability of insulin to suppress epinephrine-induced lipolysis.  相似文献   

19.
Pharmacological properties of adrenergic receptors have been investigated in fat cells isolated from omental adipose tissue of the Dog. From the results, the following points can be stated. 1. Lipolysis is markedly enhanced by isoproterenol. This effect is competitively inhibited by propranolol (a beta-adrenoceptor blocking agent). (Fig 1). 2. The beta 2-sympathomimetic salbutamol is found to have only a slight effect on lipolysis rate (Fig. 2). 3. The epinephrine-induced lipolysis is potentiated by phentolamine (an alpha-adrenoceptor blocking agent) only on large sized adipose cells (mean fat cell size 96.7 +/- 5.3 micrometer; Fig. 5). 4. The isoproterenol-induced lipolysis is partially inhibited by phenylephrine (an alpha-adrenomimetic drug) (Table I). These findings show that beta 1 nature of the receptors involved in the adrenergic control of lipolysis in Dog adipose tissue. Moreover an antilipolytic effect of epinephrine, via alpha-adrenergic receptors, is observed, especially in large adipose cells.  相似文献   

20.
Male Sprague-Dawley rats displayed significantly higher rates of triglyceride/fatty acid (TG/FFA) substrate cycling in subcutaneous, perigenital, and mesenteric white adipose tissue, compared to females. To investigate possible regulation via androgens and estrogens, male rats were treated with the androgen antagonist, cyproterone acetate (10 mg daily in subcutaneous injections), or estradiol polyphosphate (0.3 mg intramuscularly, given as a single dose). Estradiol treatment did not affect TG/FFA cycling. Treatment with cyproterone acetate significantly decreased TG/FFA cycling in perigenital (epididymal) tissue. This effect could however largely be ascribed to concomitant inhibition of food intake by cyproterone acetate. The effects of cyproterone acetate on the two axes of TG/FFA cycling (lipolysis and re-esterification) were further studied in vitro. Norepinephrine-stimulated glycerol release from perigenital adipocytes was inhibited, whereas activities of esterification enzymes (GPAT and PPH) was essentially unaffected. We conclude that androgens seem to affect TG/FFA cycling indirectly via the lipolytic axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号